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Abstract. Let F be a rank three incidence geometry of points, lines and planes whose planes are linear spaces 
and whose point residues are dual linear spaces (notice that we do not require anything on the line residues). 
We assume that the residual linear spaces of F belong to a natural class of finite linear spaces, namely those 
linear spaces whose full automorphism group acts flag-transitively and whose orders are polynomial functions 
of some prime number. This class consists of  six families of  linear spaces. In F the amalgamation of two such 
linear spaces imposes an equality on their orders leading, in particular, to a series of  diophantine equations, 
the solutions of which provide a reduction theorem on the possible amalgams of linear spaces that can occur 
in F. 

We prove that one of the following holds (up to a permutation of the words "point" and "plane"). 

A) the planes of F and the dual of the point residues belong to the same family and have the same orders, 
B) the diagram of F is in one of six families, 
C) the diagram of F belongs to a list of seven sporadic cases. 

Finally, we consider the particular case where the line residues of [" are generalized digons. 
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1. Introduction 

We assume some knowledge of  a few basic definitions and facts from the theory of  diagram 
geometries (see for instance [2] or [3]). We introduce a few definitions and notation. Let 
1TM be a geometry over I = {0 . . . . .  k} and let i ~ I. As usual, we say that Y has orders 
(qo . . . . .  qk) if for each i in I ,  there is a positive integer qi such that for each flag F of  
cotype i, the number of /-elements  in the residue of  F is qi -I- 1. The number qi is called 
the i-order of F. We recall that a linear space is a rank 2 geometry consisting of points and 
lines such that any two points are incident with exactly one line, any point is incident with 
at least two lines and any line with at least two points. From now on, we will use "linear 
space" for "finite linear space". 
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We will consider geometries belonging to 

1 

0 

where A is a class of linear spaces and B is a class of dual linear spaces. Since the class 
X is not important for our work, we denote the above diagram by [A a B], where the 
symbol a indicates that this diagram is triangular. If we want to specify that X is a class 
of generalized digons, then we write [A. B] instead of [A a B]. We say that a geometry F 
over {i, j } (i < j e N) belongs to [L] (resp. [L*]) if F is a linear space whose points are the 
i-elements (resp. j-elements) and whose lines are the j-elements (resp. /-elements). The 
diagram [L*] is the dual diagram of[L]. Let [Y] denote a diagram. From now on, we say 
that "F is a [Y]-geometry" instead of "F is a geometry belonging to [Y]". We also write 
r ~ [Y]. 

Let F be a [ L  A L*]-geometry having orders. We make assumptions on F motivated by 
the classification of linear spaces having a flag-transitive group of automorphisms [4]. The 
flag-transitive linear spaces (i.e. those having a flag-transitive group of automorphisms) 
are known except if the group involved is a 1-dimensional affine group [4]. We take from 
[4] the orders of the known thick flag-transitive linear spaces and we do not require more 
data on those. Then we look at the conditions imposed by the orders of these linear spaces. 
Indeed, if we "amalgamate" two classes A and B of linear spaces of respective orders (a, b) 
and (c, d) to get a diagram [A a B*], the numbers b and d must be equal. The main part 
of this article consists in studying the diophantine equations resulting from "b = d". We 
deduce from this study a reduction theorem on [L A L~]-geometries. Next, we examine the 
particular case where the line residues are generalized digons: we use the Doyen-Hubaut 
theorem [6] to eliminate some diagrams containing a residual projective plane and for most 
of the remaining diagrams A, we give a geometry belonging to a .  

No knowledge of linear spaces or of group theory is needed for this paper. The only 
consequence of the group-theoretic assumption is the restriction of the class of the residual 
linear spaces of the geometries we consider. The method used here is very general; it may 
be applied to every amalgamation problem of rank two geometries having orders and it has 
indeed been applied in such work by various authors. 

Let K be the class of rank 3 geometries whose residues are either generalized digons 
or linear spaces. Can we classify those geometries belonging to K whose residual linear 
spaces belong to the family of known flag-transitive linear spaces? This is not an easy 
question. This paper can be considered as a first and elementary step in this direction or 
towards the classification of flag-transitive geometries belonging to K. 

The author is grateful to Buekenhout and to Doyen for helpful conversations. 
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2. Main results 

We give a specific diagram to some classes of flag-transitive linear spaces according to their 
orders (see [4] for more information). We distinguish six families of diagrams: we first 
write the notation for the diagram, next the corresponding class of linear spaces. We also 
specify the orders of these linear spaces and if necessary some restrictions. In all this work, 
these six families of diagrams may be viewed as families of diagrams with given orders. 
Here q denotes a prime power. 

1) [Pn(q)] Projective Spaces (q, q,-1 + . . .  + q), n > 2, 
2) [AnY(q)] Affine Spaces (q - 1 ,q"- I  + . . .  + q ) ,  n > 2, 
3) [W(q)] Witt-Bose-Shrikhande Spaces (q /2  - 1, q), q = 2 s, s > 3, 
4) [Her] Hering Spaces (8, 90), 
5) [UH(q)] Hermitian Unitals (q, q2 _ 1), q > 3, 
6) [Un(q)] Ree Unitals (q, q2 _ 1), q = 32r+l, r > 1. 

The Ree Unitals U R ( 3  2r+l)  a r e  in fact defined for r = 0. However, as UR(3) --~ W(8), 
we only consider the case where r > 1. Similarly, we assume that q _> 3 for the Hermitian 
Unitals Un(q)  because Un (2) is an affine plane. 

From the classification of finite flag-transitive linear spaces F [4], we know that either I" 
belongs to one of the above six families, or 1-" is a complete graph, or the full automorphism 
group of I" is a one-dimensional affine group. However, we do not consider the two latter 
in this paper, because their orders can take too general values. 

Here also we distinguish [Pn (q)] and [P*(q)] . . . . .  according to the choice of points and 
lines. We denote by E the union of the above six families of diagrams and by E* the set 
of the dual diagrams of E. We say that a [A A B]-geometry I" is E-homogeneous if for 
each i in {0, 2}, there is a diagram of E U E* such that the residues of the/-elements of P 
belong to this diagram. In this case, we denote the residue of an i-element by P,. 

Theorem 2.1 Let F be a E-homogeneous [L A L*]-geometry. Then I" belongs, up to a 
permutation of  the types 0 and 2, to one o f  the following diagrams. 
A) [A A B], where A = B* ~ {Pn(q), A f ( q ) ,  W(q) ,  Her, UH(q), UR(q)} 
B) six families 

1. [ Pn ( q ) A P*(q')] with qn-1 + . . .  + q2 + q = q,m- I + . . .  -t- q,2 _}_ q,, n ~ m and 
n , m # 2 .  

2. [AT(q) A Af*(q')] with qn-J + . . .  + q2 q_ q = q,m-I + . . .  + qr2 + q,, n r m and 

n , m # 2 .  
3. [Pn(q) A Af*(q')] with qn-1 + . . .  + q2 .q_ q = q,m-I + . . .  + q,Z + q, (moreover, 

i f  either n = 2 or m = 2, then m = n and q = q'). 
4. [W(U) A A2Y*(U)] 
5. [W(U) A p~(2.~)] 
6. [UR(32r+l) A U~/(32r+l)] 

C) seven sporadic cases 
1. [U. (3)  A ,~ 

2. [Un(3) A A2Y*(8)] 
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3. [UH(3) A W*(8)] 

4. [ U n ( l l )  A ,o5*(3)] 

5. [ U n ( l l ) / x  AsY*(3)] 

6. [Her A ,~ 

7. [Her/x Af*(9)] 

Theorem 2.2 Let 1" be a E-homogeneous [L �9 L*]-geometry. Then 1" belongs, up to a 
permutation o f  the types 0 and 2, to one o f  the diagrams o f  Theorem 2.1, where "A" is 
replaced by "." and from which we remove cases B)5 and C)1. 

Under the additional assumption that 1, admits a flag-transitive automorphism group, 
Theorem 2.1 can be improved as follows: "Either 1,o -~ 1"2 or the diagram o f f  is given by 
case B)I or B)3, with (n, q) - (m, q') in the latter case" [7]. 

Let us mention that it is possible to deduce other reduction theorems from Theorem 2.1 
by modifying the classes of geometries corresponding to the diagrams of Z because to 
prove Theorem 2.1, the only information we need on the geometries 1" we consider is the 
polynomial function defining the 1-orders of 1"0 and 1"2. 

3. A few results from number theory 

This section contains one proposition about diophantine equations and some easy facts 
needed afterwards. 

Proposition 3.1 [8] l f  q is a prime power and y is a natural number, then the only solutions 
o f  the equation qn + . . .  + q2 + q + 1 = y2 are: 

(1) n = l, q = 3 a n d  y = 2, 

(2) n =  1, q = 8 a n d y = 3 ,  

(3) n = 3 ,  q = 7 a n d y = 2 0 ,  

(4) n = 4 ,  q = 3 a n d y =  11. 

From now on q, q' denote prime powers, and n, m are integers with n, m >_ 2. 

Fact  3.2 Assume that qn-~ + . . .  + q2 + q = q,m-1 + . . .  + q,2 + q~. Then q = q' if and 

only i f  n = m, and n = 2 if  and only i f  m = 2. 

Proof: The proof is straightforward. [] 

Fact  3.3 The unique solution o f  the equation qn-I + . . .  + q2 + q = 90 is given by q = 9 
and n = 3. 

Proof: Observe first that q divides 90. As q is a prime power, q = 2, 3, 5 or 9. Moreover, 
qn-I + . . .  + q2 + q = 90 if and only if (qn _ l) = 91(q - 1). We immediately deduce 
the result. [] 
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4. The Doyen-Hubaut theorem 

Here we write in terms of diagrams and without giving all details, the Doyen-Hubaut  
theorem [6]. 

Proposition 4.1 [6] Let F be a geometry belonging to [L. P2(q)] with finite orders 
(s, t, t). Then one of the following holds: 

(1) I" 6 [A2Y(q). P2(q)] 
(2) F E [P2(q) '  P2(q)] 
(3) t = (s + 1) 2 

(4) t = ( s + l )  3 + ( s + l )  

We immediately deduce the following statement. 

Proposition 4.2 Let F be a [ L . P2 ( q ) ]-geometry of orders ( a, b, c ). l f  m >_ 3 then ( a , b, c) 
is not equal t o  (2 m- I  - 1,2 m, 2m). 

5. Proof of the Theorems 

Let 1" be a E-homogeneous [L A L*]-geometry. Let a (resp. b) be the order of  the 0-elements 
(resp. 1-elements) of F2 and let c (resp. d) be the order of  the 2-elements (resp. 1-elements) 
of  F0. By definition of the orders of  a geometry, we have b = d. 

We now look at the diophantine equations resulting from the equality "b = d". Since 
Pn (q), A f (q), W (q) and Her have a line order equal to q n -1 + . . .  + q 2 + q (with n = 2 and 
(n, q) = (3, 9) respectively for the two latter cases) and UH (q), UR (q) have a line order equal 
to q2 _ 1, all the equations we obtain are particular cases of  one of the following equations: 
qn-1 + . . . + q 2  + q  = q ,2_  1, q2 _ 1 = q ,2_ 1 and q, - I  + . . . + q 2 + q  = q,m-I +...q_qr2d_q," 

By Proposition 3.1, the only solutions of the equation q , - I  + . . .  + q2 + q = q,2 _ 1, 
where q, q '  are prime powers with q '  > 3 and n is an integer > 2, are (n, q, q ' )  = (2, 8, 3) 
and (5, 3, 11). Clearly q2 _ 1 = q,2 _ 1 implies that q = q' .  It suffices then to use Facts 
3.2 and 3.3 to end the proof of  Theorem 2.1. 

By Proposition 4.2, there does not exist a geometry belonging to [ W ( T )  �9 P2"(2")] or 
[UH (3) �9 P2* (8)]. Consequently, using Theorem 2.1, we deduce Theorem 2.2. 

Remark We get above the equation qn-i + . . .  + q2 -k- q = q,m-1 q_.. .  -I- qt2 + q, where 
q, q '  are prime powers and n, m are integers > 2. One non-trivial solution (that is with 
q ~ q '  and n ~ m) is known and is given by (n, q, m, q ')  = (3, 5, 5, 2) [9]. We do not 
know how many non-trivial solutions there are. This problem seems to be unsolved (see 
[9] for more information on this equation). 

6. Examples 

Let A be a diagram of Theorem 2.2. In this section, we discuss the existence of a geometry 
belonging to A. I f  we know the existence of  geometries on A, we only give one example 
(see [7] for references to more examples). Let F be a Dn-geometry over Fq, n > 3. Denote 
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by {1 . . . . .  n} the set of  types of  P. The {n - 2, n - 1, n}-truncation of F is a geometry 
belonging to [Pn-I (q) �9 P,~-I (q)]. Let f" be the half-spin geometry Dn.~ (we recall that the 
n-elements of  F may be identified with a set of  points of  a projective space IP of  dimension 
2n_~ 1 over Fq and that F may be represented in IP; we call F this representation). It is 
well-known that one example of  [A,Y_1 (q) .  P,*-I (q)] can be obtained by deleting a suitable 
projective hyperplane from F' and by truncating on {n - 2, n - 1, n}. 

We give here a construction due to Pasini [5] which provides a geometry for many 
diagrams of Theorem 2.2. We say that a linear space F admits  a paral le l i sm if there is an 
equivalence relation II defined on the lines of  F such that for every line L of F and every 
point p of  F, there is a unique line M of F such that M is incident with p and M II L. The 
equivalence class of  a line L of F is denoted by oo(L) and the set of  the equivalence classes 
is denoted by oo(F).  Notice that I ~ ( F ) I  = b + 1 if F is of  orders (a, b). Let F and F '  be 
two linear spaces of  orders (a, b) and (a ' ,  b'),  respectively. Assume that F and F '  admit 
a parallelism. If  oo(F)  and o~(F')  have the same cardinality (that is if b = b'), we may 
identify them, and a rank 3 geometry 1 ~ can be constructed as follows : the points  (resp. 
planes)  of  F are those of  F (resp. F');  the l ines of  Y are the pairs (X, X')  where X is a line 
of  F and X'  is a line of  F '  with the property that ~ ( X )  " = "  oo(X') ;  every point of 1 ~ is 
incident with every plane of F; a point (resp. plane) x of  F is incident with a line (X, X')  
of  f" i f x  is incident with X in F (resp. X'  in F'). If  F belongs to [A] and F '  to [B], it is not 
difficult to show that 1 ~ belongs to [A.  B*]. 

Any linear space 1-" belonging to [Her], [UR(q)], [W(q)], [UH(q)] or [Af(q)]  admits a 
parallelism [5]. The case F ~ [P~(q)] is more complicated : i f n  is even, F does not admit 
a parallelism; if n is odd and either q = 2 or n = 2 i - 1 (i = 2, 3 . . . .  ), then F admits a 
parallelism ([1] or [5]). The general case n odd seems to be unsolved. 

Consequently, for any diagram [A. B*] of  the list of  Theorem 2.2, where neither A nor B 
is a class of  projective spaces, there is a geometry belonging to [A- B*]. There is moreover a 
geometry belonging to [Her. P3"(9)], [P3(5) �9 P5"(2)], [/~ Af*(2)] and [A3f(5) �9 ,~ 
(the latter three diagrams correspond to the unique known non-trivial solution (n, q, m, q ' )  
of  the equation qn-I  _1_... + q2 .q_ q = qtm-I -k- "" �9 -t- q,2 + q,). 

In conclusion, there is a geometry belonging to any diagram of the list of  Theorem 2.2 
except for C)4 and for cases B)1 and B)3 provided there exists another non-trivial solution 
to the equation given above. We do not know if there is a geometry belonging to these 
latter diagrams. 

R e m a r k  There are two non-isomorphic linear spaces belonging to [Her] and for some val- 
ues of  q, there are Desarguesian and non-Desarguesian affine planes of order q. Let [Herl ] 
and [Her2] denote the two Hering's  spaces. If  F is a Desarguesian (resp. non-Desarguesian) 
[A2f(q)]-geometry, we say that F belongs to [AfD] (resp. [AfND]). The above Pasini con- 
struction yields in fact an example of  a geometry F for any r belonging to [Her1 - Her~], 
[Her2- Her~], [Her1. ner~], [AfD" AffD], [AfND- A ~ o ] ,  [AfD. AffND], [ W(2"~) - AffD(2S)], etc. 
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