Finite Free Resolutions and 1-Skeletons of Simplicial Complexes

NAOKI TERAI

Department of Mathematics, Faculty of Education, Saga University, Saga 840, Japan

terai@cc.saga-u.ac.jp

TAKAYUKI HIBI

hibi@math.sci.osaka-u.ac.jp Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka Osaka 560, Japan

Received June 7, 1995; Revised November 6, 1995

Abstract. A technique of minimal free resolutions of Stanley–Reisner rings enables us to show the following two results: (1) The 1-skeleton of a simplicial (d-1)-sphere is d-connected, which was first proved by Barnette; (2) The comparability graph of a non-planar distributive lattice of rank d-1 is d-connected.

Keywords: simplicial complex, 1-skeleton, comparability graph, *d*-connected, free resolution

1. Introduction

A simplicial complex Δ on the vertex set $V = \{x_1, x_2, \dots, x_v\}$ is a collection of subsets of V such that (i) $\{x_i\} \in \Delta$ for every $1 \leq i \leq v$ and (ii) if $\sigma \in \Delta$ and $\tau \subset \sigma$ then $\tau \in \Delta$. Each element σ of Δ is called a face of Δ . Set $d = \max\{\sharp(\sigma); \sigma \in \Delta\}$ and define the dimension of Δ to be dim $\Delta = d - 1$. Here $\sharp(\sigma)$ is the cardinality of a finite set σ .

A simplicial complex Δ of dimension d-1 is called a *simplicial* (d-1)-sphere if the geometric realization of Δ is homeomorphic to the (d-1)-sphere.

The 1-*skeleton* $\Delta^{(1)}$ of Δ is the subcomplex

 $\Delta^{(1)} = \{ \sigma \in \Delta; \ \sharp(\sigma) < 2 \}$

of Δ , which is a 1-dimensional simplicial complex (i.e., graph) on the vertex set V. When a simplicial complex Δ is an order complex of a finite partially ordered set P, the 1-skeleton of Δ is just the comparability graph Com(P) of P.

Given a subset W of V, we write Δ_W for the subcomplex

$$\Delta_W = \{ \sigma \in \Delta; \ \sigma \subset W \}$$

of Δ . In particular, $\Delta_V = \Delta$ and $\Delta_{\emptyset} = \{\emptyset\}$.

Let $H_i(\Delta; k)$ denote the *i*-th reduced simplicial homology group of Δ with the coefficient field k. Note that $\tilde{H}_{-1}(\Delta; k) = 0$ if $\Delta \neq \{\emptyset\}$ and

$$\tilde{H}_i(\{\emptyset\}; k) = \begin{cases} 0 & \text{if } i \ge 0\\ k & \text{if } i = -1. \end{cases}$$

We fix an integer $1 \le i < v$. A 1-dimensional simplicial complex Δ on the vertex set V is said to be *i*-connected if Δ_{V-W} is connected (i.e., $\tilde{H}_0(\Delta_{V-W}; k) = 0$) for every subset W of V with $\sharp(W) < i$.

The purpose of the present paper is first to give a ring-theoretical proof of a classical result that the 1-skeleton of a simplicial (d - 1)-sphere is *d*-connected (cf. Barnette [1]), and secondly to show that the comparability graph Com(*L*) of a finite distributive lattice *L* of rank d - 1 is *d*-connected.

2. Algebraic background

We here summarize basic facts on finite free resolutions of Stanley–Reisner rings. See, e.g., [2, 4, 6, 8] for the detailed information.

Let $A = k[x_1, x_2, ..., x_v]$ be the polynomial ring in v variables over a field k. Here, we identify each element x_i in the vertex set V with the indeterminate x_i of A. We consider A to be the graded algebra $A = \bigoplus_{n \ge 0} A_n$ with the standard grading, i.e., each deg $x_i = 1$. Let \mathbb{Z} denote the set of integers. We write $A(j), j \in \mathbb{Z}$, for the graded module $A(j) = \bigoplus_{n \in \mathbb{Z}} [A(j)]_n$ over A with $[A(j)]_n := A_{n+j}$. Given a simplicial complex Δ on V, define I_{Δ} to be the ideal of A generated by all squarefree monomials $x_{i_1}x_{i_2} \cdots x_{i_r}$, $1 \le i_1 < i_2 < \cdots < i_r \le v$, with $\{x_{i_1}, x_{i_2}, \ldots, x_{i_r}\} \notin \Delta$. We say that the quotient algebra $k[\Delta] := A/I_{\Delta}$ is the *Stanley–Reisner ring* of Δ over k.

When $k[\Delta]$ is regarded as a graded module $k[\Delta] = \bigoplus_{n\geq 0} (k[\Delta])_n$ over A with the quotient grading, it has a graded finite free resolution

$$0 \longrightarrow \bigoplus_{j \in \mathbf{Z}} A(-j)^{\beta_{h,j}} \xrightarrow{\varphi_h} \cdots \xrightarrow{\varphi_2} \bigoplus_{j \in \mathbf{Z}} A(-j)^{\beta_{1,j}} \xrightarrow{\varphi_1} A \xrightarrow{\varphi_0} k[\Delta] \longrightarrow 0,$$
(1)

where each $\bigoplus_{j \in \mathbb{Z}} A(-j)^{\beta_{i,j}}$, $1 \le i \le h$, is a graded free module of rank $0 \ne \sum_{j \in \mathbb{Z}} \beta_{i,j} < \infty$, and where every φ_i is degree-preserving. Moreover, there exists a unique such resolution which minimizes each $\beta_{i,j}$; such a resolution is called *minimal*. If a finite free resolution (1) is minimal, then the non-negative integer *h* is called the *homological dimension* of $k[\Delta]$ over *A* and $\beta_{i,j} = \beta_{i,j}(k[\Delta])$ is called the (i, j)-th *Betti number* of $k[\Delta]$ over *A*. Furthermore, let $\beta_i = \beta_i(k[\Delta])$ denote the sum $\sum_{j \in \mathbb{Z}} \beta_{i,j}$.

Our fundamental technique in the present paper is based on the topological formula [6, Theorem (5.1)] which guarantees that

$$\beta_{i,j}(k[\Delta]) = \sum_{W \subset V, \ \sharp(W)=j} \dim_k \tilde{H}_{j-i-1}(\Delta_W; k).$$
⁽²⁾

Thus, in particular,

$$\beta_i(k[\Delta]) = \sum_{W \subset V} \dim_k \tilde{H}_{\sharp(W)-i-1}(\Delta_W; k).$$

Lemma 2.1 Let Δ be a simplicial complex on the vertex set V with $\sharp(V) = v$ and i an integer with $1 \le i < v$. Then the 1-skeleton $\Delta^{(1)}$ of Δ is *i*-connected if and only if $\beta_{v-i,v-i+1}(k[\Delta]) = 0$.

Proof: The 1-skeleton $\Delta^{(1)}$ is *i*-connected if and only if, for every subset *W* of *V* with $\sharp(W) = i - 1$, we have $\tilde{H}_0(\Delta_{V-W}^{(1)}; k) \ (= \tilde{H}_0(\Delta_{V-W}; k)) = 0$. Moreover, by virtue of Eq. (2), $\tilde{H}_0(\Delta_{V-W}; k) = 0$ for every subset *W* of *V* with $\sharp(W) = i - 1$ if and only if $\beta_{v-i,v-i+1}(k[\Delta]) = 0$ as desired.

3. Main results

We first give a ring-theoretical proof of the following classical result which was proved by Barnette [1].

Theorem 3.1 (Barnette [1]) The 1-skeleton of a simplicial (d - 1)-sphere with $d \ge 2$ is *d*-connected.

Proof: Suppose that Δ is a simplicial (d-1)-sphere on the vertex set V with $\sharp(V) = v$. We know that $k[\Delta]$ is Gorenstein; that is to say, $\beta_i(k[\Delta]) = 0$ for every i > v - d, $\beta_{v-d,j}(k[\Delta]) = 0$ if $j \neq v$ and $\beta_{v-d,v}(k[\Delta]) = 1$. Thus, in particular, we have $\beta_{i,i+1}(k[\Delta]) = 0$ for every $i \geq v - d$. Hence, by Lemma (2.1), the 1-skeleton $\Delta^{(1)}$ of Δ is *d*-connected as required.

Remark The above ring-theoretical technique enables us to show the 1-skeleton of a level complex Δ (see, e.g., [3, 7]) of dimension d - 1 with v vertices is d-connected if $\sharp\{\sigma \in \Delta \mid \sharp(\sigma) = d\} \neq v - d - 1$. In particular, we can see that the 1-skeleton of a Gorenstein complex Δ (see, e.g., [2, 6, 8]) of dimension d - 1 is d-connected.

We now turn to the study on comparability graphs of finite distributive lattices. Every partially ordered set ("poset" for short) is finite. A *poset ideal* in a poset *P* is a subset $I \,\subset P$ such that $\alpha \in I$, $\beta \in P$ and $\beta \leq \alpha$ together imply $\beta \in I$. A *clutter* is a poset in which no two elements are comparable. A *chain* of a poset *P* is a totally ordered subset of *P*. The *length* of a chain *C* is $\ell(C) := \sharp(C) - 1$. The *rank* of a poset *P* is defined to be rank(*P*) := max{ $\ell(C)$; *C* is a chain of *P*}. Given a poset *P*, we write $\Delta(P)$ for the set of all chains of *P*. Then $\Delta(P)$ is a simplicial complex on the vertex set *P*, which is called the *order complex* of *P*. The *comparability graph* Com(*P*) of a poset *P* is the 1-skeleton $\Delta^{(1)}(P)$ of the order complex $\Delta(P)$. When $x \leq y$ in a poset *P*, we define the closed interval [*x*, *y*] to be the subposet { $z \in P$; $x \leq z \leq y$ } of *P*.

A *lattice* is a poset *L* such that any two elements α and β of *L* have a greatest lower bound $\alpha \wedge \beta$ and a least upper bound $\alpha \vee \beta$. Let $\hat{0}$ (resp. $\hat{1}$) denote the unique minimal (resp. maximal) element of a lattice *L*. A lattice *L* is called *distributive* if the equalities $\alpha \wedge (\beta \vee \gamma) = (\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$ and $\alpha \vee (\beta \wedge \gamma) = (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$ hold for all α , β , $\gamma \in L$. Every closed interval of a distributive lattice is again a distributive lattice. A fundamental structure theorem for (finite) distributive lattices (see, e.g., [9, p. 106]) guarantees that, for every finite distributive lattice *L*, there exists a unique poset *P* such that L = J(P), where J(P) is the poset which consists of all poset ideals of *P*, ordered by inclusion. We say that a distributive lattice L = J(P) is *planar* if *P* contains no three-element clutter. A *boolean lattice* is a distributive lattice L = J(P) such that *P* is a clutter. A chain $C:\hat{0} = \alpha_0 < \alpha_1 < \cdots < \alpha_{s-1} < \alpha_s = \hat{1}$ of a distributive lattice *L* is called *essential* if each closed interval $[\alpha_i, \alpha_{i+1}]$ is a boolean lattice. In particular, all maximal chains of *L* is essential. Moreover, the chain $\hat{0} < \hat{1}$ of *L* is essential if and only if *L* is a boolean lattice. An essential chain $C:\hat{0} = \alpha_0 < \alpha_1 < \cdots < \alpha_{s-1} < \alpha_s = \hat{1}$ is called *fundamental* if, for each $1 \le i < s$, the subchain $C - \{\alpha_i\}$ is not essential. The following Lemma (3.2) is discussed in [5].

Lemma 3.2 ([5]) Let *L* be a distributive lattice of rank d-1 with $\sharp(L) = v$ and $\Delta = \Delta(L)$ its order complex. Then the (v - d, v - d + i)-th Betti number $\beta_{v-d,v-d+i}(k[\Delta])$ is equal to the number of fundamental chains of *L* of length d - i - 1.

We are now in the position to give the second result of the present paper.

Theorem 3.3 Suppose that a finite distributive lattice L of rank d - 1 is non-planar. Then the comparability graph Com(L) of L is d-connected.

Proof: Let $P = \{p_1, p_2, \dots, p_{d-1}\}$ denote a poset with L = J(P) and $\mathcal{M} : \hat{0} = \alpha_0 < 0$ $\alpha_1 < \cdots < \alpha_{d-2} < \alpha_{d-1} = \hat{1}$ an arbitrary maximal chain of L. We may assume that each α_i is the poset ideal $\{p_1, p_2, \dots, p_i\}$ of P. Since L is non-planar, there exists a three-element clutter, say, $\{p_l, p_m, p_n\}$ with $1 \le l < m < n \le d-1$. Hence, for some $l \leq i < m$, p_i and p_{i+1} are incomparable in P, and for some $m \leq j < n$, p_i and p_{j+1} are incomparable in P. Let $l \leq i < m$ (resp. $m \leq j < n$) denote the least (resp. greatest) integer i (resp. j) with the above property. Then $\beta = \{p_1, \ldots, p_{i-1}, p_{i+1}\}$ and $\gamma = \{p_1, \ldots, p_{j-1}, p_{j+1}\}$ both are poset ideals of P. Moreover, $\alpha_{i-1} < \beta < \alpha_{i+1}$ in L with $\beta \neq \alpha_i$ and $\alpha_{i-1} < \gamma < \alpha_{i+1}$ in L with $\gamma \neq \alpha_i$. Thus the closed intervals $[\alpha_{i-1}, \alpha_{i+1}]$ and $[\alpha_{j-1}, \alpha_{j+1}]$ both are boolean. Hence, if $i + 1 \leq j - 1$, then the chain $\mathcal{M} - \{\alpha_i, \alpha_j\}$ is essential. On the other hand, if i + 1 > j - 1, i.e., i = m - 1 and j = m, then $p_l < p_{l+1} < \cdots < p_{m-1}$ and $p_{m+1} < p_{m+2} < \cdots < p_n$ in P; thus $\{p_{m-1}, p_m, p_{m+1}\}$ is a clutter of P. Hence the closed interval $[\alpha_{m-2}, \alpha_{m+1}]$ of L is boolean, and the chain $\mathcal{M} - \{\alpha_{m-1}, \alpha_m\}$ is essential. Consequently, there exists no fundamental chain of L of length d - 2. Thus, by Lemma (3.2), $\beta_{v-d,v-d+1}(k[\Delta(L)]) = 0$. Hence, by Lemma (2.1) again, the comparability graph $Com(L) = \Delta^{(1)}(L)$ of L is d-connected as desired.

Remark Easily seen from the above proof, for a planar distributive lattice L of rank d-1 which is not a chain, the following conditions are equivalent.

- (1) The comparability graph Com(L) of L is d-connected.
- (2) There exists no element $\alpha \in L$ such that both $[\hat{0}, \alpha]$ and $[\alpha, \hat{1}]$ are chains.

References

- 1. D. Barnette, "Graph theorems for manifolds," Israel J. Math. 16 (1973), 63-72.
- W. Bruns and J. Herzog, *Cohen-Macaulay Rings*, Cambridge University Press, Cambridge/New York/Sydney, 1993.

FINITE FREE RESOLUTIONS AND 1-SKELETONS

- 3. T. Hibi, "Level rings and algebras with straightening laws," J. Algebra 117 (1988), 343-362.
- 4. T. Hibi, Algebraic Combinatorics on Convex Polytopes, Carslaw Publications, Glebe, N.S.W., Australia, 1992.
- T. Hibi, "Face number inequalities for matroid complexes and Cohen-Macaulay types of Stanley-Reisner rings of distributive lattices," *Pacific J. Math.* 154 (1992), 253–264.
- M. Hochster, "Cohen-Macaulay rings, combinatorics, and simplicial complexes," in *Ring Theory II*, Lect. Notes in Pure and Appl. Math., No. 26, B.R. McDonald and R. Morris (Eds.), pp. 171–223. Dekker, New York, 1977.
- R.P. Stanley, "Cohen-Macaulay complexes," in *Higher Combinatorics*, M. Aigner (Ed.), pp. 51–62. Reidel, Dordrecht/ Boston, 1977.
- 8. R.P. Stanley, Combinatorics and Commutative Algebra, Birkhäuser, Boston/Basel/Stuttgart, 1983.
- 9. R.P. Stanley, Enumerative Combinatorics, Volume I, Wadsworth & Brooks/Cole, Monterey, Calif., 1986.