Finite Free Resolutions and 1-Skeletons of Simplicial Complexes

NAOKI TERAI
terai@cc.saga-u.ac.jp
Department of Mathematics, Faculty of Education, Saga University, Saga 840, Japan
TAKAYUKI HIBI
hibi@math.sci.osaka-u.ac.jp
Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka Osaka 560, Japan

Received June 7, 1995; Revised November 6, 1995

Abstract

A technique of minimal free resolutions of Stanley-Reisner rings enables us to show the following two results: (1) The 1 -skeleton of a simplicial $(d-1)$-sphere is d-connected, which was first proved by Barnette; (2) The comparability graph of a non-planar distributive lattice of rank $d-1$ is d-connected.

Keywords: simplicial complex, 1-skeleton, comparability graph, d-connected, free resolution

1. Introduction

A simplicial complex Δ on the vertex set $V=\left\{x_{1}, x_{2}, \ldots, x_{v}\right\}$ is a collection of subsets of V such that (i) $\left\{x_{i}\right\} \in \Delta$ for every $1 \leq i \leq v$ and (ii) if $\sigma \in \Delta$ and $\tau \subset \sigma$ then $\tau \in \Delta$. Each element σ of Δ is called a face of Δ. Set $d=\max \{\sharp(\sigma) ; \sigma \in \Delta\}$ and define the dimension of Δ to be $\operatorname{dim} \Delta=d-1$. Here $\sharp(\sigma)$ is the cardinality of a finite set σ.

A simplicial complex Δ of dimension $d-1$ is called a simplicial $(d-1)$-sphere if the geometric realization of Δ is homeomorphic to the $(d-1)$-sphere.

The 1 -skeleton $\Delta^{(1)}$ of Δ is the subcomplex

$$
\Delta^{(1)}=\{\sigma \in \Delta ; \sharp(\sigma) \leq 2\}
$$

of Δ, which is a 1-dimensional simplicial complex (i.e., graph) on the vertex set V. When a simplicial complex Δ is an order complex of a finite partially ordered set P, the 1 -skeleton of Δ is just the comparability graph $\operatorname{Com}(P)$ of P.

Given a subset W of V, we write Δ_{W} for the subcomplex

$$
\Delta_{W}=\{\sigma \in \Delta ; \sigma \subset W\}
$$

of Δ. In particular, $\Delta_{V}=\Delta$ and $\Delta_{\emptyset}=\{\emptyset\}$.
Let $\tilde{H}_{i}(\Delta ; k)$ denote the i-th reduced simplicial homology group of Δ with the coefficient field k. Note that $\tilde{H}_{-1}(\Delta ; k)=0$ if $\Delta \neq\{\emptyset\}$ and

$$
\tilde{H}_{i}(\{\emptyset\} ; k)= \begin{cases}0 & \text { if } i \geq 0 \\ k & \text { if } i=-1 .\end{cases}
$$

We fix an integer $1 \leq i<v$. A 1-dimensional simplicial complex Δ on the vertex set V is said to be i-connected if Δ_{V-W} is connected (i.e., $\tilde{H}_{0}\left(\Delta_{V-W} ; k\right)=0$) for every subset W of V with $\sharp(W)<i$.

The purpose of the present paper is first to give a ring-theoretical proof of a classical result that the 1 -skeleton of a simplicial $(d-1)$-sphere is d-connected (cf. Barnette [1]), and secondly to show that the comparability graph $\operatorname{Com}(L)$ of a finite distributive lattice L of rank $d-1$ is d-connected.

2. Algebraic background

We here summarize basic facts on finite free resolutions of Stanley-Reisner rings. See, e.g., $[2,4,6,8]$ for the detailed information.

Let $A=k\left[x_{1}, x_{2}, \ldots, x_{v}\right]$ be the polynomial ring in v variables over a field k. Here, we identify each element x_{i} in the vertex set V with the indeterminate x_{i} of A. We consider A to be the graded algebra $A=\bigoplus_{n \geq 0} A_{n}$ with the standard grading, i.e., each $\operatorname{deg} x_{i}=1$. Let \mathbf{Z} denote the set of integers. We write $A(j), j \in \mathbf{Z}$, for the graded module $A(j)=\bigoplus_{n \in \mathbf{Z}}[A(j)]_{n}$ over A with $[A(j)]_{n}:=A_{n+j}$. Given a simplicial complex Δ on V, define I_{Δ} to be the ideal of A generated by all squarefree monomials $x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}$, $1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq v$, with $\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{r}}\right\} \notin \Delta$. We say that the quotient algebra $k[\Delta]:=A / I_{\Delta}$ is the Stanley-Reisner ring of Δ over k.

When $k[\Delta]$ is regarded as a graded module $k[\Delta]=\bigoplus_{n \geq 0}(k[\Delta])_{n}$ over A with the quotient grading, it has a graded finite free resolution

$$
\begin{equation*}
0 \longrightarrow \bigoplus_{j \in \mathbf{Z}} A(-j)^{\beta_{h, j}} \xrightarrow{\varphi_{h}} \cdots \xrightarrow{\varphi_{2}} \bigoplus_{j \in \mathbf{Z}} A(-j)^{\beta_{1, j}} \xrightarrow{\varphi_{1}} A \xrightarrow{\varphi_{0}} k[\Delta] \longrightarrow 0, \tag{1}
\end{equation*}
$$

where each $\bigoplus_{j \in \mathbf{Z}} A(-j)^{\beta_{i, j},}, 1 \leq i \leq h$, is a graded free module of rank $0 \neq \sum_{j \in \mathbf{Z}} \beta_{i, j}<$ ∞, and where every φ_{i} is degree-preserving. Moreover, there exists a unique such resolution which minimizes each $\beta_{i, j}$; such a resolution is called minimal. If a finite free resolution (1) is minimal, then the non-negative integer h is called the homological dimension of $k[\Delta]$ over A and $\beta_{i, j}=\beta_{i, j}(k[\Delta])$ is called the (i, j)-th Betti number of $k[\Delta]$ over A. Furthermore, let $\beta_{i}=\beta_{i}(k[\Delta])$ denote the sum $\sum_{j \in \mathbf{Z}} \beta_{i, j}$.

Our fundamental technique in the present paper is based on the topological formula [6, Theorem (5.1)] which guarantees that

$$
\begin{equation*}
\beta_{i, j}(k[\Delta])=\sum_{W \subset V, \sharp(W)=j} \operatorname{dim}_{k} \tilde{H}_{j-i-1}\left(\Delta_{W} ; k\right) . \tag{2}
\end{equation*}
$$

Thus, in particular,

$$
\beta_{i}(k[\Delta])=\sum_{W \subset V} \operatorname{dim}_{k} \tilde{H}_{\sharp(W)-i-1}\left(\Delta_{W} ; k\right) .
$$

Lemma 2.1 Let Δ be a simplicial complex on the vertex set V with $\sharp(V)=v$ and i an integer with $1 \leq i<v$. Then the 1 -skeleton $\Delta^{(1)}$ of Δ is i-connected if and only if $\beta_{v-i, v-i+1}(k[\Delta])=0$.

Proof: The 1-skeleton $\Delta^{(1)}$ is i-connected if and only if, for every subset W of V with $\sharp(W)=i-1$, we have $\tilde{H}_{0}\left(\Delta_{V-W}^{(1)} ; k\right)\left(=\tilde{H}_{0}\left(\Delta_{V-W} ; k\right)\right)=0$. Moreover, by virtue of Eq. (2), $\tilde{H}_{0}\left(\Delta_{V-W} ; k\right)=0$ for every subset W of V with $\sharp(W)=i-1$ if and only if $\beta_{v-i, v-i+1}(k[\Delta])=0$ as desired.

3. Main results

We first give a ring-theoretical proof of the following classical result which was proved by Barnette [1].

Theorem 3.1 (Barnette [1]) The 1 -skeleton of a simplicial ($d-1$)-sphere with $d \geq 2$ is d-connected.

Proof: Suppose that Δ is a simplicial $(d-1)$-sphere on the vertex set V with $\sharp(V)=v$. We know that $k[\Delta]$ is Gorenstein; that is to say, $\beta_{i}(k[\Delta])=0$ for every $i>v-$ $d, \beta_{v-d, j}(k[\Delta])=0$ if $j \neq v$ and $\beta_{v-d, v}(k[\Delta])=1$. Thus, in particular, we have $\beta_{i, i+1}(k[\Delta])=0$ for every $i \geq v-d$. Hence, by Lemma (2.1), the 1 -skeleton $\Delta^{(1)}$ of Δ is d-connected as required.

Remark The above ring-theoretical technique enables us to show the 1 -skeleton of a level complex Δ (see, e.g., $[3,7]$) of dimension $d-1$ with v vertices is d-connected if $\sharp\{\sigma \in \Delta \mid \sharp(\sigma)=d\} \neq v-d-1$. In particular, we can see that the 1 -skeleton of a Gorenstein complex Δ (see, e.g., $[2,6,8]$) of dimension $d-1$ is d-connected.

We now turn to the study on comparability graphs of finite distributive lattices. Every partially ordered set ("poset" for short) is finite. A poset ideal in a poset P is a subset $I \subset P$ such that $\alpha \in I, \beta \in P$ and $\beta \leq \alpha$ together imply $\beta \in I$. A clutter is a poset in which no two elements are comparable. A chain of a poset P is a totally ordered subset of P. The length of a chain C is $\ell(C):=\sharp(C)-1$. The rank of a poset P is defined to be $\operatorname{rank}(P):=\max \{\ell(C) ; C$ is a chain of $P\}$. Given a poset P, we write $\Delta(P)$ for the set of all chains of P. Then $\Delta(P)$ is a simplicial complex on the vertex set P, which is called the order complex of P. The comparability graph $\operatorname{Com}(P)$ of a poset P is the 1 -skeleton $\Delta^{(1)}(P)$ of the order complex $\Delta(P)$. When $x \leq y$ in a poset P, we define the closed interval $[x, y]$ to be the subposet $\{z \in P ; x \leq z \leq y\}$ of P.

A lattice is a poset L such that any two elements α and β of L have a greatest lower bound $\alpha \wedge \beta$ and a least upper bound $\alpha \vee \beta$. Let $\hat{0}$ (resp. $\hat{1}$) denote the unique minimal (resp. maximal) element of a lattice L. A lattice L is called distributive if the equalities $\alpha \wedge(\beta \vee \gamma)=(\alpha \wedge \beta) \vee(\alpha \wedge \gamma)$ and $\alpha \vee(\beta \wedge \gamma)=(\alpha \vee \beta) \wedge(\alpha \vee \gamma)$ hold for all $\alpha, \beta, \gamma \in L$. Every closed interval of a distributive lattice is again a distributive lattice. A fundamental structure theorem for (finite) distributive lattices (see, e.g., [9, p. 106]) guarantees that, for every finite distributive lattice L, there exists a unique poset P such that $L=J(P)$, where $J(P)$ is the poset which consists of all poset ideals of P, ordered by inclusion. We say that a distributive lattice $L=J(P)$ is planar if P contains no three-element clutter. A boolean lattice is a distributive lattice $L=J(P)$ such that P is a clutter.

A chain $\mathcal{C}: \hat{0}=\alpha_{0}<\alpha_{1}<\cdots<\alpha_{s-1}<\alpha_{s}=\hat{1}$ of a distributive lattice L is called essential if each closed interval $\left[\alpha_{i}, \alpha_{i+1}\right]$ is a boolean lattice. In particular, all maximal chains of L is essential. Moreover, the chain $\hat{0}<\hat{1}$ of L is essential if and only if L is a boolean lattice. An essential chain $\mathcal{C}: \hat{0}=\alpha_{0}<\alpha_{1}<\cdots<\alpha_{s-1}<\alpha_{s}=\hat{1}$ is called fundamental if, for each $1 \leq i<s$, the subchain $\mathcal{C}-\left\{\alpha_{i}\right\}$ is not essential. The following Lemma (3.2) is discussed in [5].

Lemma 3.2 ([5]) Let L be a distributive lattice of rank $d-1$ with $\sharp(L)=v$ and $\Delta=\Delta(L)$ its order complex. Then the $(v-d, v-d+i)$-th Betti number $\beta_{v-d, v-d+i}(k[\Delta])$ is equal to the number of fundamental chains of L of length $d-i-1$.

We are now in the position to give the second result of the present paper.

Theorem 3.3 Suppose that a finite distributive lattice L of rank $d-1$ is non-planar. Then the comparability graph $\operatorname{Com}(L)$ of L is d-connected.

Proof: Let $P=\left\{p_{1}, p_{2}, \ldots, p_{d-1}\right\}$ denote a poset with $L=J(P)$ and $\mathcal{M}: \hat{0}=\alpha_{0}<$ $\alpha_{1}<\cdots<\alpha_{d-2}<\alpha_{d-1}=\hat{1}$ an arbitrary maximal chain of L. We may assume that each α_{i} is the poset ideal $\left\{p_{1}, p_{2}, \ldots, p_{i}\right\}$ of P. Since L is non-planar, there exists a three-element clutter, say, $\left\{p_{l}, p_{m}, p_{n}\right\}$ with $1 \leq l<m<n \leq d-1$. Hence, for some $l \leq i<m, p_{i}$ and p_{i+1} are incomparable in P, and for some $m \leq j<n, p_{j}$ and p_{j+1} are incomparable in P. Let $l \leq i<m$ (resp. $m \leq j<n$) denote the least (resp. greatest) integer i (resp. j) with the above property. Then $\beta=\left\{p_{1}, \ldots, p_{i-1}, p_{i+1}\right\}$ and $\gamma=\left\{p_{1}, \ldots, p_{j-1}, p_{j+1}\right\}$ both are poset ideals of P. Moreover, $\alpha_{i-1}<\beta<\alpha_{i+1}$ in L with $\beta \neq \alpha_{i}$ and $\alpha_{j-1}<\gamma<\alpha_{j+1}$ in L with $\gamma \neq \alpha_{j}$. Thus the closed intervals [$\alpha_{i-1}, \alpha_{i+1}$] and $\left[\alpha_{j-1}, \alpha_{j+1}\right]$ both are boolean. Hence, if $i+1 \leq j-1$, then the chain $\mathcal{M}-\left\{\alpha_{i}, \alpha_{j}\right\}$ is essential. On the other hand, if $i+1>j-1$, i.e., $i=m-1$ and $j=m$, then $p_{l}<p_{l+1}<\cdots<p_{m-1}$ and $p_{m+1}<p_{m+2}<\cdots<p_{n}$ in P; thus $\left\{p_{m-1}, p_{m}, p_{m+1}\right\}$ is a clutter of P. Hence the closed interval $\left[\alpha_{m-2}, \alpha_{m+1}\right]$ of L is boolean, and the chain $\mathcal{M}-\left\{\alpha_{m-1}, \alpha_{m}\right\}$ is essential. Consequently, there exists no fundamental chain of L of length $d-2$. Thus, by Lemma (3.2), $\beta_{v-d, v-d+1}(k[\Delta(L)])=0$. Hence, by Lemma (2.1) again, the comparability graph $\operatorname{Com}(L)=\Delta^{(1)}(L)$ of L is d-connected as desired.

Remark Easily seen from the above proof, for a planar distributive lattice L of rank $d-1$ which is not a chain, the following conditions are equivalent.
(1) The comparability graph $\operatorname{Com}(L)$ of L is d-connected.
(2) There exists no element $\alpha \in L$ such that both $[\hat{0}, \alpha]$ and $[\alpha, \hat{1}]$ are chains.

References

1. D. Barnette, "Graph theorems for manifolds," Israel J. Math. 16 (1973), 63-72.
2. W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge/New York/Sydney, 1993.
3. T. Hibi, "Level rings and algebras with straightening laws," J. Algebra 117 (1988), 343-362.
4. T. Hibi, Algebraic Combinatorics on Convex Polytopes, Carslaw Publications, Glebe, N.S.W., Australia, 1992.
5. T. Hibi, "Face number inequalities for matroid complexes and Cohen-Macaulay types of Stanley-Reisner rings of distributive lattices," Pacific J. Math. 154 (1992), 253-264.
6. M. Hochster, "Cohen-Macaulay rings, combinatorics, and simplicial complexes," in Ring Theory II, Lect. Notes in Pure and Appl. Math., No. 26, B.R. McDonald and R. Morris (Eds.), pp. 171-223. Dekker, New York, 1977.
7. R.P. Stanley, "Cohen-Macaulay complexes," in Higher Combinatorics, M. Aigner (Ed.), pp. 51-62. Reidel, Dordrecht/ Boston, 1977.
8. R.P. Stanley, Combinatorics and Commutative Algebra, Birkhäuser, Boston/Basel/Stuttgart, 1983.
9. R.P. Stanley, Enumerative Combinatorics, Volume I, Wadsworth \& Brooks/Cole, Monterey, Calif., 1986.
