ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

An Algebra Associated with a Spin Model

Kazumasa Nomura
Tokyo Ikashika University Kounodai, Ichikawa 272 Japan

DOI: 10.1023/A:1008644201287

Abstract

To each symmetric n \times  n matrix W with non-zero complex entries, we associate a vector space N, consisting of certain symmetric n \times  n matrices. If W satisfies å x = 1 n \frac W a, x W b, x = n d a, b ( a, b = 1,..., n), \sum\limits_{x = 1}^n {\frac{{W_{a,x} }}{{W_{b,x} }} = n{δ}_{a,b} } (a,b = 1,...,n), then N becomes a commutative algebra under both ordinary matrix product and Hadamard product (entry-wise product), so that N is the Bose-Mesner algebra of some association scheme. If W satisfies the star-triangle equation: \frac1 Ö n å x = 1 n \frac W a, x W b, x W c, x = \frac W a, b W a, c W b, c ( a, b, c = 1,..., n), \frac{1}{{\sqrt n }}\sum\limits_{x = 1}^n {\frac{{W_{a,x} W_{b,x} }}{{W_{c,x} }} = \frac{{W_{a,b} }}{{W_{a,c} W_{b,c} }}} (a,b,c = 1,...,n), then W belongs to N. This gives an algebraic proof of Jaeger's result which asserts that every spin model which defines a link invariant comes from some association scheme.

Pages: 53–58

Keywords: spin model; association scheme; Bose-mesner algebra

Full Text: PDF

References

1. R. Bacher, P. de la Harpe, and V.F.R. Jones, Tours de Centralisateurs Pour Les Paires d'Alg`ebres, Mod`eles `a Spins et Mod`eles `a Vertex, in preparation.
2. E. Bannai and E. Bannai, “Spin models on finite cyclic groups,” J. Alg. Combin. 3 (1994), 243-259.
3. E. Bannai, E. Bannai, and F. Jaeger, “On spin models, modular invariance, and duality,” to appear.
4. E. Bannai and T. Ito, Algebraic Combinatorics I, Benjamin/Cummings, Menlo Park, 1984.
5. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, Heidelberg, 1989.
6. F. Goodman, P. de la Harpe, and V. Jones, Coxeter Graphs and Towers of Algebras, Springer, 1989.
7. P. de la Harpe and V. Jones, “Graph invariants related to statistical mechanical models: examples and problems,” J. Combin. Theory Ser. B 57 (1993), 207-227.
8. F. Jaeger, “Strongly regular graphs and spin models for the Kauffman polynomial,” Geom. Dedicata 44 (1992), 23-52.
9. F. Jaeger, “On spin models, triply regular association schemes, and duality,” J. Alg. Combin. 4 (1995), 103-144.
10. F. Jaeger, “New constructions of models for link invariants,” Pac. J. Math., to appear.
11. F. Jaeger, “Towards a classification of spin models in terms of association schemes,” Advanced Studies in Pure Math. 24 (1996), 197-225.
12. V. Jones, “On knot invariants related to some statistical mechanical models,” Pac. J. Math. 137 (1989), 311-336.
13. K. Nomura, “Spin models constructed from Hadamard matrices,” J. Combin. Theory Ser. A 68 (1994), 251- 261.
14. K. Nomura, “Spin models on bipartite distance-regular graphs,” J. Combin. Theory Ser. B 64 (1995), 300-313.
15. K. Nomura, “Spin models on triangle-free connected graphs,” J. Combin. Theory Ser. B 67 (1996), 284-295.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition