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Abstract. A Buekenhout-Tits unital is defined to be a unital inPG(2,q2) obtained by coning the Tits ovoid
using Buekenhout’s parabolic method. The full linear collineation group stabilizing this unital is computed, and
related design questions are also addressed. While the answers to the design questions are very similar to those
obtained for Buekenhout-Metz unitals, the group theoretic results are quite different.
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1. Introduction

In [12] the even order Buekenhout-Metz unitals were studied in detail. In that paper it
is remarked that the unital obtained by forming the ovoidal cone of a Tits ovoid using
Buekenhout’s parabolic method should not be considered a Buekenhout-Metz unital since
the ovoid which is coned is not an elliptic quadric. Other authors (see [5] or [14], for
instance) have included such unitals in the class of Buekenhout-Metz unitals. In this paper
we compute the full linear collineation group stabilizing a Buekenhout-Tits unital, thereby
obtaining a group that is significantly smaller than the group one would obtain if the “starting
ovoid” were an elliptic quadric. This lends credence to the viewpoint that these unitals do
not belong to the Buekenhout-Metz class. Related design questions for these unitals are
also addressed.

2. Preliminary results

A unital is any 2− (n3 + 1, n + 1, 1) design. It is well known that unitals are found
embedded in any square order desarguesian projective plane; namely, the absolute points
and nonabsolute lines of an hermitian polarity ofPG(2,q2) form a unital, called theclassical
or hermitianunital. In addition, unitals of ordern which do not embed in any projective
plane of ordern2 (desarguesian or not) have been constructed (see [6] and [15]), as have
unitals which embed in more than one projective plane (see [6] and [13]). Moreover, it is
known that unitals are embedded in every Hughes plane (see [17]), in every1-plane (see
[4]), in every derived Hughes plane (see [1]), and in every square order Figueroa plane
(see [10]).
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While it is still unknown which projective planes contain unitals, Buekenhout [8] showed
that every (projective) translation plane of orderq2 with GF(q) in its kernel contains a
“parabolic” unital. Hereparabolicmeans that the line at infinity meets the unital in exactly
one point. In [16] Metz showed how to use Buekenhout’s method to construct a nonclassical
parabolic unital in the desarguesian planePG(2,q2) for any prime powerq > 2. In [8]
Buekenhout also showed that every derivable translation plane of orderq2 with GF(q) in its
kernel contains a “hyperbolic” unital; that is, such a plane contains a unital meeting the line
at infinity inq+1 points. However, recently Barwick [5] has shown that the only hyperbolic
unital inPG(2,q2) that is obtainable from Buekenhout’s method is the classical unital.

We now briefly discuss Buekenhout’s parabolic method as applied toPG(2,q2). Let
6 = PG(4,q) denote projective 4-space over the finite fieldGF(q), and letH ∼= PG(3,q)
be some fixed hyperplane of6. Let S be a regular spread ofH . We then may model
π = PG(2,q2) by taking the points of6\H as our affine points, the lines ofSas our points
at infinity, the planes of6\H which meetH in a line ofSas our extended affine lines, and
Sas our line at infinity. Incidence is defined by inclusion (see [7], for instance).

To establish coordinates we let(x, y1, y2, z1, z2) denote homogeneous coordinates for6,
wherex = 0 is the equation of the hyperplaneH at infinity, and we let(x, y, z) denote
homogeneous coordinates forπ , wherex = 0 is the equation of the line at infinity forπ .
By picking ε ∈ GF(q2)\GF(q) and treating{1, ε} as an ordered basis forGF(q2) over
GF(q), we may establish the identification thaty = y1 + y2ε andz = z1 + z2ε. Now
choose a 3-dimensional ovoidO which meetsH in a single pointP, and letQ be any point
other thanP on the unique spread line ofS containingP. Buekenhout showed in [8] that
the cone overO with vertexQ corresponds to a parabolic unital ofπ = PG(2,q2), using
the above model forπ . The argument given by Metz in [16] to show that for anyq > 2
it is possible to chooseO so the resulting unital is nonclassical uses only elliptic quadrics
as candidates forO. Hence when we refer to aBuekenhout-Metz unital, we mean a unital
embedded inPG(2,q2) obtained via Buekenhout’s parabolic method in the special case
whenO is an elliptic quadric. We include the classical unital in this category, as it may be
obtained in this fashion.

Of course, whenq is an odd prime power, the only ovoids contained inPG(3,q) are
elliptic quadrics (see [3], for instance). However, whenq > 2 is an odd power of 2, it is
known that ovoids exist inPG(3,q) which are not quadrics (see [18]). As we shall see in
the next section, the automorphism group of a nonclassical unital inPG(2,q2) obtained
via Buekenhout’s parabolic method depends heavily on whether the ovoid being coned is a
quadric or not.

3. The Buekenhout-Tits unital

For the remainder of this paper, letq = 2e for some odd integere > 1. Let σ be the
automorphism ofGF(q) defined byσ : x→ x2(e+1)/2

. Thusσ 2 : x→ x2 for all x ∈ GF(q).
Using left normalized row vectors to uniquely represent points ofPG(3,q), the Tits ovoid
[18] may be coordinatized as̄O = {(0, 0, 0, 1)} ∪ {(1, s, t, sσ+2+ tσ +st) : s, t ∈ GF(q)}.
It is well known that every nontrivial planar section ofŌ is a nonconic oval, and the unique
tangent plane tōO at(1, s, t, sσ+2+tσ+st) is [sσ+2+tσ+st, t, s, 1]. Throughout this paper
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[· · ·] will denote the ordered coefficients of a linear equation representing a hyperplane in
the appropriate projective space. Clearly, the tangent plane toŌ at(0, 0, 0, 1) is [1, 0, 0, 0].

Using the coordinates for6=PG(4,q) described in the previous section, we embedŌ
in6 by takingz1= 0 as the hyperplane containinḡO. LettingO denote the embedded Tits
ovoid and left normalizing point coordinates for uniqueness as above, we haveP = O ∩
H = (0, 0, 0, 0, 1). Without loss of generality, we may assume one of the lines in our regular
spread ofH is 〈(0, 0, 0, 0, 1), (0, 0, 0, 1, 0)〉, and hence we may chooseQ= (0, 0, 0, 1, 0)
as the vertex of our cone. Thus the coneC over O with vertexQ is given by

C = {(0, 0, 0, 0, 1)} ∪ {(0, 0, 0, 1, λ); λ ∈ GF(q)}
∪ {(1, s, t, r, sσ+2+ tσ + st) : r, s, t ∈ GF(q)}.

Modelingπ = PG(2,q2) as in the previous section,C corresponds to the parabolic unital

U = {(0, 0, 1)} ∪ {(1, s+ tε, r + (sσ+2+ tσ + st)ε) : r, s, t ∈ GF(q)}

embedded inπ . We callU a Buekenhout-Tits unital. To make our computations simpler,
we pickε ∈ GF(q2)\GF(q) so thatεq = 1+ ε andε2 = δ + ε for some 16= δ ∈ GF(q)
with the trace ofδ overGF(2) equal to 1 (see [12], for instance).

Let G = {θ ∈PGL(3,q2) : θ(U ) = U } denote the linear collineation group ofπ leaving
U invariant. As we shall soon see,G must fix the special pointP∞ = (0, 0, 1) of U . Note
that l∞ = [1, 0, 0] is the unique tangent line toU at P∞. Of course, a simple counting
argument shows that every point ofU is incident with a unique tangent line, and every point
of π\U is incident with exactlyq+1 tangent lines toU . Our proofs will frequently involve
shifting our viewpoint from the unitalU in PG(2,q2) to the ovoidŌ in PG(3,q), to the
coneC in PG(4,q), and so forth.

Lemma 1 Let Ps = (1, s, sσ+2ε) for some s∈ GF(q). Then Ps ∈ U and the unique
tangent line to U at Ps is ls = [s2+ sσ+2ε, s, 1].

Proof: Clearly, Ps ∈ U from the definition ofU , and hencePs is incident with a unique
tangent line toU . Also Ps is incident withls from a computation of the inner product.
Suppose(1, s̄+ t̄ε, r̄ + (s̄σ+2+ t̄σ + s̄t̄)ε) is another point ofU ∩ ls, wherer̄ , s̄, t̄ ∈ GF(q).
Thens2+ sσ+2ε + ss̄+ st̄ε + r̄ + (s̄σ+2+ t̄σ + s̄t̄)ε = 0 and hence

(i) s2+ ss̄+ r̄ = 0
(ii) sσ+2+ st̄ + s̄σ+2+ t̄σ + s̄t̄ = 0.

Returning momentarily to the representationŌ = {(0, 0, 0, 1)} ∪ {(1,a, b,aσ+2+ bσ +
ab) : a, b ∈ GF(q)} for the Tits ovoidŌ in PG(3,q), we know that(1, s, 0, sσ+2) ∈ Ō and
the unique tangent plane tōO at this point is [sσ+2, 0, s, 1]. Since(1, s̄, t̄, s̄σ+2+ t̄σ + s̄t̄)
is also a point ofŌ incident with the plane [sσ+2, 0, s, 1] by (ii), we necessarily havēs= s
andt̄ = 0. From (i) we then obtain̄r = 0 and hencels is tangent toU at Ps. 2

Lemma 2 The unique tangent line to U at the point Prst = (1, s+tε, r+(sσ+2+tσ+st)ε)
of U is the line lrst = [s2+ t2δ + st+ r + (sσ+2+ tσ + st)ε, s+ t + tε, 1].
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Proof: Follows from Lemma 1, using the collineation induced by the matrix

M =
1 tε r + ts+ tσ ε

0 1 t + tε
0 0 1


acting on row vectors, which mapsls to lrst. 2

If R is a point ofπ\U , theq + 1 points ofU incident with theq + 1 tangent lines to
U passing throughR will be called thefeetof R. We now characterize when the feet ofR
form a collinear set, and use this characterization to help determine the groupG previously
defined.

Theorem 3 Let R be any point ofπ\U. Then the feet of R are collinear if and only if
R ∈ l∞.

Proof: The fact that the feet of any point onl∞, other thanP∞, must be collinear follows
from the geometry of an ovoidal cone embedded inPG(4,q) as described above (see [11]
for the general case).

Conversely, supposeR 6∈ l∞. ThenR = (1, y, z) for somey, z ∈ GF(q2). Expressing
y = y1+ y2ε andz= z1+ z2ε uniquely fory1, y2, z1, z2 ∈ GF(q), theq+ 1 tangent lines
incident withR are easily seen to be the lineslrst wherer, s, t ∈ GF(q) satisfy{

s2+ t2δ + st+ r + y1s+ y1t + y2δt + z1 = 0
sσ+2+ tσ + st+ y2s+ y1t + z2+ 0.

The corresponding feet are

F = {(1, s+ tε, s2+ t2δ + st+ y1s+ y1t + y2δt + z1+ (sσ+2+ tσ + st)ε) :

sσ+2+ tσ + st = y2s+ y1t + z2}.

If these feet were incident with a line of the form [A, B, 1], then by expressingA = a1+a2ε

andB = b1+ b2ε for a1,a2, b1, b2 ∈ GF(q), we obtain

(i) s2+ δt2+ st+ (y1+ b1)s+ (y1+ y2δ + b2δ)t + z1+ a1 = 0
(ii) sσ+2+ tσ + st = b2s+ (b1+ b2)t + a2.

Viewing the ordered pair(s, t) as a point in the desarguesian affine planeAG(2,q) of
orderq, equation (ii) represents theq+1 points(s, t) on some (affine) planar section of the
Tits ovoid, while equation (i) represents the points(s, t) of an affine conic. Since theq+ 1
ordered pairs(s, t) corresponding to the feetF must satisfy both (i) and (ii), we arrive at
an obvious contradiction.

Similarly, if the feetF lie on a line of the form [A, 1, 0], the corresponding ordered pairs
(s, t) satisfy the equationa1+a2ε+s+ tε = 0, and hences= a1, t = a2. This contradicts
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the fact that we must haveq+ 1 choices for(s, t). Therefore, all cases considered, the feet
of a pointR 6∈ l∞ do not form a collinear set. 2

Theorem 4 Let G denote the linear collineation group ofπ leaving U invariant. Then G
is an abelian group of order q2 consisting of those collineations induced by the matrices

1 uε v + uσ ε
0 1 u+ uε
0 0 1

 : u, v ∈ GF(q)

 .
Proof: Straight forward computations show that theq2 linear collineations induced by
the above matrices leaveU invariant. Moreover, these collineations clearly form an abelian
group.

Conversely, any element ofG must fix the pointP∞ and hence the linel∞ by Theorem 3.
Since nonsingular matrices that are scalar multiples of one another induce the same collinea-
tion, we may therefore assume that every element ofG is induced by a matrix of the form

M =
1 a b

0 e c
0 0 f

,
for some choice ofa, b, c, e, f ∈ GF(q2) with ef 6= 0. We now determine the conditions
imposed on the entries of any such matrixM . Once again we uniquely expressa = a1+a2ε

for a1,a2 ∈ GF(q), and so on forb, c, e, f .
Since(0, 0, 1) and(1, 0, 1) are points ofU , the points(0, 0, 1)M = (1,a, b) and(1, 0, 1)

M = (1,a, b+ f ) must also be points ofU . This forces f to be an element ofGF(q)
and thusf2 = 0. Next letPrst = (1, s+ tε, r + (sσ+2 + tσ + st)ε) denote any point of
U\{P∞}, wherer, s, t ∈ GF(q) are arbitrarily chosen. ThenPrst M ∈ U implies that

(#) (a1+ e1s+ e2δt)(a2+ e2s+ (e1+ e2)t)

+ (aσ1 + eσ1 sσ + eσ2 δ
σ tσ

)(
a2

1 + e2
1s2+ e2

2δ
2t2
)+ aσ2 + eσ2 sσ + (e1+ e2)

σ tσ

= b2+ c2s+ (c1+ c2)t + f1(s
σ+2+ tσ + st)

must hold for all choices ofs andt in GF(q). Lettings= 0= t , one obtains

(∗) a1a2+ aσ+2
1 + aσ2 = b2.

Letting t = 0 in (#) and using (∗), one sees that(
eσ+2

1 + f1
)
sσ+2+ (eσ2 + aσ1 eσ1

)
sσ + (e1e2+ aσ1 e2

1

)
s2+ (a2e1+ a1e2+ c2)s= 0

must hold for alls ∈ GF(q). Treating the left-hand side of this equation as a polynomial
in s, the degree is at most 2(e+1)/2+ 2, which is strictly less thanq = 2e sincee≥ 3. Thus,
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in order to haveq roots, the polynomial must be identically zero. This forces

(∗∗)


f1 = eσ+2

1

eσ2 = a2
1eσ1

e1e2 = aσ1 e2
1

a2e1+ a1e2 = c2

.

Similarly, lettings = 0 in (#) and using (∗), another polynomial degree argument (int)
shows that

(∗ ∗ ∗)


eσ+2

2 δσ+2 = 0

f1 = eσ1 + eσ2 + a2
1eσ2 δ

σ

aσ1 e2
2δ

2 = (e1+ e2)e2δ

c1+ c2 = a2e2δ + a1(e1+ e2)

Sinceδ 6= 0 from its definition, one immediately obtainse2 = 0 from (∗ ∗ ∗) and thus
e1 6= 0 ase 6= 0. Solving (∗∗) and (∗ ∗ ∗) simultaneously, it is quickly seen that the matrix
M must be of the form indicated in the theorem. 2

Corollary Let G be the linear collineation group ofπ stabilizing U. Then G fixes P∞,
has q orbits of size q2 on U\{P∞}, has q orbits of size q on l∞\{P∞}, and has q2 − q
orbits of size q2 onπ\(U ∪ l∞).

Proof: From the proof of Theorem 4, we know thatG fixes P∞. A trivial computation
shows thatG acts fixed-point-freely onπ\l∞. If (0, 1, z) is any point ofl∞\{P∞}, the
G-stablizer of this point consists of all collineations induced by matrices of the form

1 0 b
0 1 0
0 0 1

 ,
whereb ∈ GF(q) is arbitrary. Elementary counting finishes the proof. 2

The above results support our decision not to include the Buekenhout-Tits unitalU in the
class of Buekenhout-Metz unitals. In [12] it is shown that any nonclassical Buekenhout-
Metz unitalŪ (obtained by coning an elliptic quadric) of even orderq admits a nonabelian
linear collineation groupḠ of orderq3(q − 1). The point orbits ofḠ acting onπ are
{P∞}, Ū\{P∞}, l∞\{P∞} andπ\(Ū ∪ l∞). In [2] similar results are obtained for odd
order Buekenhout-Metz unitals. These results differ significantly from those obtained in
Theorem 4 and its corollary above.
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4. Related structures

In [2] and [12] it is shown that all Buekenhout-Metz unitals (as defined above) are self-dual.
This is also true for the Buekenhout-Tits unitalU defined in the previous section. IfU⊥

denotes the dual design (i.e., the points ofU⊥ are the tangent lines toU and the blocks of
U⊥ are the points ofπ\U ), then the points ofU⊥ are

{[s2+ t2δ + st+ r + (sσ+2+ tσ + st)ε, s+ t + tε, 1] : r, s, t ∈ GF(q)} ∪ {[1, 0, 0]}
= {[r + (sσ+2+ tσ + st)ε, s+ t + tε, 1] : r, s, tεGF(q)} ∪ {[1, 0, 0]}

by Lemma 2. Ifψ denotes the semilinear collineation ofπ induced by the Frobenius field
automorphismx→ xq followed by interchanging first and third coordinates, then

ψ(U ) = {(r + sσ+2+ tσ + st+ (sσ+2+ tσ + st)ε, s+ t + tε, 1) :

r, s, t ∈ GF(q)} ∪ {(1, 0, 0)}
= {(r + (sσ+2+ tσ + st)ε, s+ t + tε, 1) : r, s, t ∈ GF(q)} ∪ {(1, 0, 0)}

since(s+ tε)q = s+ t (1+ ε) = s+ t + tε. Thus the point set for the designU⊥ is
identified withψ(U ) by simply interchanging square and round brackets. Asψ clearly
maps the blocks ofU onto the blocks ofU⊥ with this same identification, we have proven
the following result.

Theorem 5 Buekenhout-Tits unitals are self-dual as designs.

In [12, Theorem 3] it is observed that an even order Buekenhout-Metz unital cannot contain
an oval. The same proof applies here.

Theorem 6 Buekenhout-Tits unitals contain no ovals.

Finally, in [2] and [12] it is shown that one can construct a 2-design from any Buekenhout-
Metz unital by “projecting” along the blocks incident withP∞. This 2-design has the
parameters of a point residual of an inversive plane, and, moreover, can be completed to a
miquelian inversive plane in a natural way. The analogous result holds for a Buekenhout-Tits
unitalU . In fact, it holds for any parabolic Buekenhout unital embedded in any translation
plane (see [11]).

Theorem 7 Let U be a Buekenhout-Tits unital. Then the points of U\{P∞} and the blocks
of U not incident with P∞ project upon a2− (q2,q + 1,q) design whose“points” are
O\{P} and whose“blocks” are the planar sections of O not incident with P. Clearly, this
2-design can be completed to a Suzuki-Tits inversive plane.

5. Open problems

The determination of the linear collineation group stabilizing a Buekenhout-Tits unitalU
used the fact that the feet of a pointR ∈ π\U are collinear if and only ifR ∈ l∞. The
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same is true for nonclassical Buekenhout-Metz unitals. It seems like an interesting problem
to determine the possible geometric configurations that may arise for the feet of a point
R ∈ π\Ū , whereŪ is any nonclassical unital obtained via Buekenhout’s parabolic method.
It should be noted here that the feet of such a point form an arc or a collinear set when
Ū is an odd order Buekenhout-Metz unital that can be expressed as the union of conics
(see [2]). Such a study might lead to another geometric characterization of nonclassical
unitals embedded inPG(2,q2) arising from Buekenhout’s method (see [14]). In addition,
knowledge of the potential configurations for the feet might help resolve the questions of
which projective planes contain unitals and which unitals can be embedded inPG(2,q2).

The notion of “projection” discussed in the last section also seems worthy of further
investigation. For instance, if removal of a point and all the incident blocks from an
abstract unital enables the resulting structure to be projected upon the point residual of an
inversive plane, must the unital be embeddable in a translation plane? Must such a unital
be obtainable from Buekenhout’s parabolic method?
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