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Abstract. A Buekenhout-Tits unital is defined to be a unital?&(2, g%) obtained by coning the Tits ovoid

using Buekenhout's parabolic method. The full linear collineation group stabilizing this unital is computed, and
related design questions are also addressed. While the answers to the design questions are very similar to those
obtained for Buekenhout-Metz unitals, the group theoretic results are quite different.
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1. Introduction

In [12] the even order Buekenhout-Metz unitals were studied in detail. In that paper it
is remarked that the unital obtained by forming the ovoidal cone of a Tits ovoid using
Buekenhout’s parabolic method should not be considered a Buekenhout-Metz unital since
the ovoid which is coned is not an elliptic quadric. Other authors (see [5] or [14], for
instance) have included such unitals in the class of Buekenhout-Metz unitals. In this paper
we compute the full linear collineation group stabilizing a Buekenhout-Tits unital, thereby
obtaining a group that s significantly smaller than the group one would obtain if the “starting
ovoid” were an elliptic quadric. This lends credence to the viewpoint that these unitals do
not belong to the Buekenhout-Metz class. Related design questions for these unitals are
also addressed.

2. Preliminary results

A unital is any 2— (n® + 1,n + 1, 1) design. It is well known that unitals are found
embedded in any square order desarguesian projective plane; namely, the absolute points
and nonabsolute lines of an hermitian polarit@(2, ) form a unital, called thelassical

or hermitianunital. In addition, unitals of ordem which do not embed in any projective
plane of orden? (desarguesian or not) have been constructed (see [6] and [15]), as have
unitals which embed in more than one projective plane (see [6] and [13]). Moreover, it is
known that unitals are embedded in every Hughes plane (see [17]), in Avelgne (see

[4]), in every derived Hughes plane (see [1]), and in every square order Figueroa plane
(see [10]).
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While itis still unknown which projective planes contain unitals, Buekenhout [8] showed
that every (projective) translation plane of ordgrwith GF(q) in its kernel contains a
“parabolic” unital. Hergparabolicmeans that the line at infinity meets the unital in exactly
one point. In[16] Metz showed how to use Buekenhout’'s method to construct a nonclassical
parabolic unital in the desarguesian pld®(2, %) for any prime power > 2. In [8]
Buekenhout also showed that every derivable translation plane ofagirdéth GF(q) in its
kernel contains a “hyperbolic” unital; that is, such a plane contains a unital meeting the line
atinfinity ing+ 1 points. However, recently Barwick [5] has shown that the only hyperbolic
unital in PG(2, g?) that is obtainable from Buekenhout's method is the classical unital.

We now briefly discuss Buekenhout’s parabolic method as appli®3@, g%). Let
¥ = PG(4, q) denote projective 4-space over the finite fi@&lE(q), and letH = PG(3, q)
be some fixed hyperplane &f. Let S be a regular spread df. We then may model
7 = PG(2, g?) by taking the points ok \ H as our affine points, the lines 8fas our points
at infinity, the planes okE\ H which meetH in a line of Sas our extended affine lines, and
Sas our line at infinity. Incidence is defined by inclusion (see [7], for instance).

To establish coordinates we let, y1, V2, z1, Z2) denote homogeneous coordinatesXor
wherex = 0 is the equation of the hyperplart at infinity, and we let(x, y, z) denote
homogeneous coordinates for wherex = 0 is the equation of the line at infinity for.

By picking e € GF(g?)\GF(q) and treating{1, ¢} as an ordered basis f@F(q?) over
GF(q), we may establish the identification thyat= y; + yoe andz = z; + ze. Now
choose a 3-dimensional ovof@ which meetH in a single pointP, and letQ be any point
other thanP on the unique spread line &containingP. Buekenhout showed in [8] that
the cone ove with vertex Q corresponds to a parabolic unitalef= PG(2, g?), using

the above model forr. The argument given by Metz in [16] to show that for apy- 2

it is possible to choos® so the resulting unital is nonclassical uses only elliptic quadrics
as candidates foD. Hence when we refer toBuekenhout-Metz unitalve mean a unital
embedded irPG(2, g%) obtained via Buekenhout's parabolic method in the special case
whenO is an elliptic quadric. We include the classical unital in this category, as it may be
obtained in this fashion.

Of course, wherg is an odd prime power, the only ovoids containedPi@(3, q) are
elliptic quadrics (see [3], for instance). However, whips- 2 is an odd power of 2, it is
known that ovoids exist iPG(3, q) which are not quadrics (see [18]). As we shall see in
the next section, the automorphism group of a nonclassical uniRGii2, g%) obtained
via Buekenhout'’s parabolic method depends heavily on whether the ovoid being coned is a
guadric or not.

3. The Buekenhout-Tits unital

For the remainder of this paper, lget= 2° for some odd integee > 1. Letos be the
automorphism o6F(q) defined by : x — x2°*. Thuso? : x — x?for all x € GF(q).
Using left normalized row vectors to uniquely represent poinB®(3, q), the Tits ovoid
[18] may be coordinatized @ = {(0,0,0, )} U {(1,s,t,s° 2+t +st) : s, t € GF(Q)}.

It is well known that every nontrivial planar section®fis a nonconic oval, and the unique
tangentplane t® at(1, s, t, s° 24+t +st) is [s7+2+t° +st, t, s, 1]. Throughout this paper
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[-- -] will denote the ordered coefficients of a linear equation representing a hyperplane in
the appropriate projective space. Clearly, the tangent pla@estq0, 0, 0, 1) is[1, 0, 0, 0].

Using the coordinates fa& = PG(4, q) described in the previous section, we emiged
in T by takingz; = 0 as the hyperplane containi@ Letting O denote the embedded Tits
ovoid and left normalizing point coordinates for uniqueness as above, weFhaveé N
H=(0,0,0,0, 1). Withoutloss of generality, we may assume one of the lines in our regular
spread ofH is ((0, 0, 0, 0, 1), (0, 0, O, 1, 0)), and hence we may choo&= (0, 0, 0, 1, 0)
as the vertex of our cone. Thus the cahever O with vertexQ is given by

C=1{(0,00,01}U{(0,0,01 1); r e GF@)}
U{@ s t,r 24+t +st):r, st eGF@Q)).

Modelingz = PG(2, g?) as in the previous sectiof, corresponds to the parabolic unital
U={0,01}U{(s+te,r + ("2 4+1t° +st)e):r,s,t e GF()}

embedded inr. We callU a Buekenhout-Tits unitalTo make our computations simpler,
we picke € GF(g?)\GF(q) so thate% = 1 + ¢ ande? = § + € for some 1+ § € GF(q)
with the trace ob overGF(2) equal to 1 (see [12], for instance).

LetG = {# e PGL(3, g% :6(U) = U} denote the linear collineation groupofleaving
U invariant. As we shall soon se@, must fix the special poine,, = (0, 0, 1) of U. Note
thatl,, = [1, 0, O] is the unique tangent line td at P,,. Of course, a simple counting
argument shows that every pointlfis incident with a unigue tangent line, and every point
of w\U is incident with exactlyy + 1 tangent lines t&J . Our proofs will frequently involve
shifting our viewpoint from the unitdll in PG(2, g?) to the ovoidO in PG(3, q), to the
coneC in PG(4, q), and so forth.

Lemma 1l Let R = (1, s, s°"2€) for some se GF(q). Then R € U and the unique
tangent line to U at Pis Is = [s? + s712¢, s, 1].

Proof: Clearly, Ps € U from the definition ofU, and hencéP; is incident with a unique
tangent line tdJ. Also Ps is incident withlg from a computation of the inner product.
Suppos&l, 5+te, F + (57 t2+1° 4 5b)e) is another point o) N s, wherer, §, T € GF(q).
Thens? + s°+2¢ + 5+ ste + 7 + (32 4 i + §)e = 0 and hence

(i) s°+s5+F=0
(i) s"t24+st4+5*2 41 45 =0.

Returning momentarily to the representation= {(0, 0,0, 1)} U {(1, a, b, a®*t?+b" +
ab) : a, b e GF(q)} for the Tits ovoidO in PG(3, q), we know that1, s, 0, s°*?) € O and
the unique tangent plane @ at this point is §° 2, 0, s, 1]. Since(1, §, , 32 + {” + 5i)
is also a point oD incident with the planeg’*2, 0, s, 1] by (i), we necessarily hav@= s
andf = 0. From (i) we then obtain = 0 and hencé; is tangent tdJ at Ps. m|

Lemma?2 The uniquetangentlinetoU atthe pointP= (1, S+te, r +(s° 2+t +st)e)
of U is the line Jst = [$? +t26 + St+T1 + (712 + 17 + St)e, s+ t + te, 1].
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Proof: Follows from Lemma 1, using the collineation induced by the matrix

1 te r+ts+t
M=]0 1 t +te
0 O 1

acting on row vectors, which mapsto |,;. O

If Ris a point ofr\U, theq + 1 points ofU incident with theq + 1 tangent lines to
U passing througtR will be called thefeetof R. We now characterize when the feet®f
form a collinear set, and use this characterization to help determine the @rprgviously
defined.

Theorem 3 Let R be any point ot \U. Then the feet of R are collinear if and only if
R e ly.

Proof: The fact that the feet of any point &g, other thanP,,, must be collinear follows
from the geometry of an ovoidal cone embeddeB®(4, q) as described above (see [11]
for the general case).

Conversely, supposR ¢ |,. ThenR = (1, y, 2) for somey, z € GF(q?). Expressing
y = Y1+ Yo€ andz = z; + zp¢ uniquely forys, v, 21, o € GF(q), theq + 1 tangent lines
incident with R are easily seen to be the lingg wherer, s, t € GF(q) satisfy

S+ t25 +st+r +yS+yit+yst+2=0
"2 4t 4 st+ yos+ yit + 2 + 0.

The corresponding feet are

F ={(1s+te, s+ 126 4 st+ yiS+ yit + Yot + 21 4 (72 + 17 + st)e) :
T2 4 t7 4 st = yo5+ yit + 25).

Ifthese feet were incident with a line of the foriy,[ B, 1], then by expressing = a; + age
andB = by + bye for &y, ap, by, by € GF(Qq), we obtain

(i) P+ 8t2+st+ (y1+b)s+ (Y1 + Y28 + 8t +23 4+ =0
(i) s°*2 41 +st=bps+ (b + bp)t + ap.

Viewing the ordered paifs, t) as a point in the desarguesian affine pl#&®(2, q) of
orderq, equation (ii) represents tlyet 1 points(s, t) on some (affine) planar section of the
Tits ovoid, while equation (i) represents the poifgst) of an affine conic. Since theg+ 1
ordered pairgs, t) corresponding to the fedt must satisfy both (i) and (ii), we arrive at
an obvious contradiction.

Similarly, if the feetF lie on a line of the form A, 1, 0], the corresponding ordered pairs
(s, t) satisfy the equatioa; + axe +s+te = 0, and hence = a;, t = a,. This contradicts
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the fact that we must hawp+ 1 choices for(s, t). Therefore, all cases considered, the feet
of a pointR ¢ |, do not form a collinear set. |

Theorem 4 Let G denote the linear collineation group-fieaving U invariant. Then G
is an abelian group of order%consisting of those collineations induced by the matrices

1 ue v+ Uu’e
0 1 u+ue |:u,veGF(@Q)
0 O 1
Proof: Straight forward computations show that tifelinear collineations induced by
the above matrices leatkinvariant. Moreover, these collineations clearly form an abelian
group.

Conversely, any element & must fix the pointP,, and hence the ling, by Theorem 3.
Since nonsingular matrices that are scalar multiples of one another induce the same collinea-
tion, we may therefore assume that every eleme@ of induced by a matrix of the form

1 a b
M=|0 e c|
0 0 f

for some choice o0&, b, ¢, e, f € GF(g?) with ef % 0. We now determine the conditions
imposed on the entries of any such matvix Once again we uniquely express= a; + age
for a;, a» € GF(qg), and so on fob, c, e, f.

Since(0, 0, 1) and(1, 0, 1) are points ofJ, the pointg0, 0, )M = (1, a, b) and(1, 0, 1)
M = (1,a, b+ f) must also be points d. This forcesf to be an element o&F(q)
and thusf, = 0. Next letPs; = (1, s+ te,r + (s°+2 4 t° + st)e) denote any point of
U\{Ps}, wherer, s, t € GF(q) are arbitrarily chosen. TheRsiM € U implies that

#) (a1 + €15 + &5t)(ay + &5+ (61 + e)t)
+(af +€]s” +€56°t7)(af + e2s? + €58%t?) + a3 + €5° + (&1 + &)°t°
= by + CoS + (C1 4+ C)t + f1(S7T2 + 17 + st)

must hold for all choices of andt in GF(q). Lettings = 0 = t, one obtains
(%) ajay +al 2 + a3 =b,.

Lettingt = 0 in (#) and using+), one sees that

o+2

(6] + f1)s" "% + (& + af€])s” + (a1 + aJ &)S” + (261 + &€ + C2)s =0

must hold for alls € GF(q). Treating the left-hand side of this equation as a polynomial
in s, the degree is at most®2Y/2 + 2, which is strictly less thag = 2° sincee > 3. Thus,
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in order to havey roots, the polynomial must be identically zero. This forces

fi=ef*?
= a’e]
ee, = aje?

e+ a1 =0C

Similarly, lettings = 0 in (#) and using+), another polynomial degree argument {(jn
shows that

eé’+28“+2 -0

fi=¢ef + e +a2egs”

a7 e55% = (e1 + e)€x8

C1+ C = a8 + (61 + &)

(% * %)

Sinces # 0 from its definition, one immediately obtaies = 0 from (x * %) and thus
e # 0 ase # 0. Solving éx) and & * %) simultaneously, it is quickly seen that the matrix
M must be of the form indicated in the theorem. O

Corollary Let G be the linear collineation group af stabilizing U. Then G fixes P,
has q orbits of size fjon U\{P.}, has q orbits of size q onJ\{P.}, and has § — q
orbits of size §onm\(U Uly).

Proof: From the proof of Theorem 4, we know th@tfixes P,. A trivial computation
shows thatG acts fixed-point-freely om\l.. If (0,1, z) is any point ofl,\{Px}, the
G-stablizer of this point consists of all collineations induced by matrices of the form

1 0b
0 1 Of,
0 01

whereb € GF(q) is arbitrary. Elementary counting finishes the proof. m|

The above results support our decision not to include the Buekenhout-TitsWinitéhe
class of Buekenhout-Metz unitals. In [12] it is shown that any nonclassical Buekenhout-
Metz unitalU (obtained by coning an elliptic quadric) of even ordexdmits a nonabelian
linear collineation grougs of orderg®(q — 1). The point orbits ofG acting onz are
(P}, U\ [P}, loo\ [P} @nd 7\ (U U l). In [2] similar results are obtained for odd
order Buekenhout-Metz unitals. These results differ significantly from those obtained in
Theorem 4 and its corollary above.
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4. Related structures

In[2] and [12] it is shown that all Buekenhout-Metz unitals (as defined above) are self-dual.
This is also true for the Buekenhout-Tits unitaldefined in the previous section. U+
denotes the dual design (i.e., the point&Jof are the tangent lines td and the blocks of

U+ are the points ofr\U), then the points df) - are

{[S* + 128 +st+r1 + ("2 +17 +ste, s+t + te, 1]:r,s5,t € GF(q)} U {[1, 0, O]}
= {[r + (°"? +1° +st)e, s+t +te, 1]:1, 5, te GF(Q)} U {[1, 0, O]}

by Lemma 2. Ifyr denotes the semilinear collineationoinduced by the Frobenius field
automorphisnx — x9 followed by interchanging first and third coordinates, then

YU) = {(r +" 2417 +st+ ("2 +17 + st)e, s+t + te, 1)
r.s,t e GF(} U {(1,0, 0}
={(r + (T2 +1° +st)e, s+t +te, 1):r, 8t € GF(Q)} U{(1,0,0)}

since(s+ te)d = s+t(1+¢€) = s+t + te. Thus the point set for the desigh* is
identified with(U) by simply interchanging square and round brackets.yAdearly
maps the blocks df} onto the blocks obJ - with this same identification, we have proven
the following resuilt.

Theorem 5 Buekenhout-Tits unitals are self-dual as designs.

In[12, Theorem 3] itis observed that an even order Buekenhout-Metz unital cannot contain
an oval. The same proof applies here.

Theorem 6 Buekenhout-Tits unitals contain no ovals.

Finally, in [2] and [12] it is shown that one can construct a 2-design from any Buekenhout-
Metz unital by “projecting” along the blocks incident with,,. This 2-design has the
parameters of a point residual of an inversive plane, and, moreover, can be completed to a
miquelian inversive plane in anatural way. The analogous result holds for a Buekenhout-Tits
unitalU. In fact, it holds for any parabolic Buekenhout unital embedded in any translation
plane (see [11]).

Theorem7 LetU be a Buekenhout-Tits unital. Then the points §f®,} and the blocks
of U not incident with B, project upon a2 — (g2, q + 1, q) design whosépoints' are
O\{P} and whoséblocks are the planar sections of O not incident with P. Cleatlis
2-design can be completed to a Suzuki-Tits inversive plane.

5. Open problems

The determination of the linear collineation group stabilizing a Buekenhout-Tits Wwhital
used the fact that the feet of a poiRte 7\U are collinear if and only iR € |,. The
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same is true for nonclassical Buekenhout-Metz unitals. It seems like an interesting problem
to determine the possible geometric configurations that may arise for the feet of a point
R e 7\U, whereU is any nonclassical unital obtained via Buekenhout's parabolic method.

It should be noted here that the feet of such a point form an arc or a collinear set when
U is an odd order Buekenhout-Metz unital that can be expressed as the union of conics
(see [2]). Such a study might lead to another geometric characterization of nonclassical
unitals embedded iRG(2, g?) arising from Buekenhout’s method (see [14]). In addition,
knowledge of the potential configurations for the feet might help resolve the questions of
which projective planes contain unitals and which unitals can be embedé& & g?).

The notion of “projection” discussed in the last section also seems worthy of further
investigation. For instance, if removal of a point and all the incident blocks from an
abstract unital enables the resulting structure to be projected upon the point residual of an
inversive plane, must the unital be embeddable in a translation plane? Must such a unital
be obtainable from Buekenhout’s parabolic method?
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