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Abstract. A spin model is a triple(X, W, W™), whereW+ and W~ are complex matrices with rows and
columns indexed bX which satisfy certain equations (these equations allow the construction of a link invariant
from (X, W+, W™)). We show that these equations imply the existence of a certain isomorghisetween

two algebrasit and $ associated with X, W, W~). When9t = $ = A, 2 is the Bose-Mesner algebra

of some association scheme, a#dis a duality of2. These results had already been obtained in [15] when
W+, W~ are symmetric, and in [5] in the general case, but the present proof is simpler and directly leads tc
a clear reformulation of the modular invariance property for self-dual association schemes. This reformulatior
establishes a correspondence between the modular invariance property and the existence of “spin models at
algebraic level”. Moreover, for Abelian group schemes, spin models at the algebraic level and actual spin mode
coincide. We solve explicitly the modular invariance equations in this case, obtaining generalizations of the spi
models of Bannai and Bannai [3]. We show that these spin models can be identified with those constructed by K:
and Wakimoto [20] using even rational lattices. Finally we give some examples of spin models at the algebrai
level which are not actual spin models.

Keywords: spin model, association scheme, duality, modular invariance, Abelian group

1. Introduction
1) A brief history of spin models for link invariants

The concept of spin models considered here was first introduced by Jones [19] to produc
invariants of links. Namely, a spin model is defined as a tripleW*, W™) of a finite set
X and two complex square matricés™ andW— indexed by the elements of satisfying
certain conditions. The fact that association schemes and their Bose-Mesner algebr
provide a convenient and natural framework for the study of spin models was first pointe
out by Jaeger [15]. For several reasons, it is natural to consider the situation when tt
matricesWt andW~ belong to the Bose-Mesner algebra of an association scheme.

First, let us recall the main results of Jaeger [15]. The Potts models for the Jone
polynomial link invariant can be regarded as spin models corresponding to complete grapt
(i.e., association schemes of clabs= 1). Furthermore, the existence of spin models
which give specializations of the Kauffman polynomial link invariant is equivalent to the
existence of very special strongly regular graphs (i.e., symmetric triply regular self-dua
association schemes of clags= 2). In particular, an interesting example, corresponding



204 BANNAI, BANNAI AND JAEGER

to the Higman-Sims graph on 100 vertices, was discovered (cf. Jaeger [15], or de la Hary
[13] for further discussions of this and related topics).

Another important part of Jaeger [15] is devoted to a general theory of spin models ir
connection with association schemes, and is summarized as followsX L\t™, W—) be a
symmetric spin model with loop variabl@ (cf. [15, 19]). Lethht = (W™, J, -) (generated
by Wt andJ as an algebra with respect to ordinary matrix product) ang ket(W—, I, o)
(generated bW~ andl as an algebra with respect to Hadamard product). Then there exists
a unique algebra isomorphisinfrom 9t onto $ satisfying:

(W =DW~ and Ww(J)=|X|I.

Moreover, ifM = § (as sets), then it is the Bose-Mesner algebra of a formally self-
dual symmetric association scheme. Thiemlefines a dual map, i.e¥f(E;) = A; and

W (Aj) = |X|E; for suitable orderings of the adjacency matri¢és, As, ..., Aq} and the
primitive idempotent$Ey, Eg, ..., Eq}. Moreover, simplified conditions for the existence
of a spin model associated in this way with a self-dual Bose-Mesner algebra were describe
(see, e.g., Proposition 5 in [15]).

Inspired by a preprint of Jaeger [15], a number of people, particularly those in Japal
including the first two authors of the present paper, started the study of spin models fror
the point of view of association schemes. These researches headed for several directic
as mentioned below, and are related to each other:

a) generalization of the concept of spin models,

b) constructions of new spin models,

c) study of general properties of association schemes which contain spin models, ar
classification of spin models with certain properties.

a) The concept of generalized spin model, which drops the symmetry conditions (ir
the original definition of Jones [19]), was obtained and studied by Kawagoe et al. [23]. A
further generalization, namely the concept of 4-weight spin madelsVi (i = 1, 2, 3, 4)),
was introduced and studied by Bannai and Bannai [4].

b) Spin models on Hamming association scheidéd, q) were constructed by Bannai
et al. [7], by using solutions of the modular invariance property of the Hamming schemes
which had been previously studied in Bannai and Bannai [2]. However, these spin model
turned out to be nothing else than those obtained by a tensor product construction frol
the Potts models. (cf. [13, 23]). A family of generalized spin models was constructed or
finite cyclic groups by Bannai and Bannai [3]. There, the complete solutions of the modula
invariance property for cyclic group association schemes were first obtained, and then ft
each solution a generalized spin model was constructed. (This approach will be repeated
the present paper for finite Abelian groups.) The reason why we began to give importanc
to the modular invariance property is the following. In the context of fusion algebras at
algebraic level (cf. [1, 2]) we had been interested in the modular invariance property fol
commutative association schemes. Then we noticed that some of the necessary conditic
(given in [15]) for the existence of a spin model in an association scheme are closel
connected to the solutions of the modular invariance property for the association schem



ON SPIN MODELS, MODULAR INVARIANCE, AND DUALITY 205

Also, we noticed a similarity of the self-duality appearing in the theory of fusion algebras at
algebraic level and in the theory of association schemes admitting spin models. Recentl
motivated by the construction on cyclic groups by Bannai and Bannai [3], Kac and Wakimotc
constructed new examples of spin models [20]. They produced many generalized (and al
4-weight) spin models on finite Abelian groups by using rational valued bilinear forms. A
construction of spin models on Hadamard graphs was obtained by Nomura [25]. The linl
invariants corresponding to Nomura’s spin models were determined by Jaeger [16, 18].

c¢) There are many recent works on the connection between spin models and associati
schemes (for a survey on this topic, see [6, 16]). Bannai and Bannai [5] generalized most «
the general theory of (symmetric) spin models in symmetric association schemes (in Jaeg
[15]) to generalized spin models in non symmetric association schemes. Several properti
of association schemes related to the existence of spin models in their Bose-Mesner algel
and to the effective computation of the corresponding link invariants are studied in [17]. Ir
particular a “matrix-free” approach to this computation is introduced in the case of self-dua
triply regular schemes, which covers all spin models discussed above except those of [7]

Recent work by Nomura [26] studied twisted extensions of spin models (which gener:
alizes the tensor product construction). Other important contributions by Nomura are (i
study of spin models with small multiplicity of eigenvalues [27], and (ii) the determination
of distance-regular graphs which admit certain spin models ([28], see also [34]). Yamad
[31, 32] studied generalized and 4-weight spin models which are associated with Hadama
matrices and generalized Hadamard matrices, and obtained another version of twisted ¢
tensions of such spin models. Bannai et al. [9] studied spin models with small sizes, an
for example gave a classification of spin models (in the sense of Jones) with up to 7 vel
tices. Nomiyama [24] classified all association schemes with at most 10 vertices, which i
expected to be useful for the determination of various kinds of (including generalized an
4-weight) spin models with small sizes.

2) The contents of the present paper

In this subsection, we summarize what we will discuss in the present paper.

Section 2 is devoted to preliminaries.

Our first purpose is to give an alternative proof for results given in [15] (for the sym-
metric case) and [5] (for the nonsymmetric case). Namely, we give the following results ir
Section 3.1.

Let (X, W+, W™) be a generalized spin model in the sense of [23]. Then, defining
M = (WH,'W+, J, ) and$H = (W—, 'W—, I, o), we have a unique isomorphisinfrom
M to §) satisfying

w(l) = J,
¥(J) =nl,
Y(WH) = DWW,

v(iwh) = D'w-,
w(W™) = DWW,
(W) = DW™.
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As before, we prove that¥t = §thenitis the Bose-Mesner algebra of a formally self-dual
(not necessarily symmetric) commutative association scheme, andf tthefines the dual
map.

The second purpose of this paper is to study the modular invariance property for (th
character table of) a (not necessarily symmetric) commutative association schergte. Let
be a commutative formally self-dual association scheme (i.e., association scheme who
Bose-Mesner algebra is self-dual, i.8.,= Q whereP and Q are the first and second
eigenmatrices oft (cf. [8, 12]). Then we say that satisfies the modular invariance
property (with respect t®) if

(PA)2 = (constant- |

for an invertible diagonal matrix. (Note that this property has many equivalent expres-
sions, and this will be studied carefully in Section 3.2.)

The third purpose is to show that the existence of a (generalized) spin model whicl
generates the Bose-Mesner algebra of a (commutative) association scheme implies t
modular invariance property for the association scheme. This result is proved in Corollar
3.5. Therefore, if we are interested in spin models which generate the Bose-Mesner algek
of a commutative association scheme, then we shall first try to find the solutions of the
modular invariance property, and then check if those solutions give spin models.

The fourth purpose of this paper is to solve the problem just mentioned in the previou:
paragraph for group association schemes of finite Abelian groups. Namély@gbe the
group association scheme of a finite Abelian gr@upet & be any fixed dual map ah, and
let P be the character table &f(G) corresponding to the dual mdp Thenin Theorem 4.4,
the complete explicit solutions of the modular equivalence equafian)® = t,D3I are
given. On the other hand, in Proposition 4.1, it is shown that each solution of the modula
invariance equation (for an Abelian group scheme) gives a generalized spin model. Thi
completes the classification of spin models on Abelian groups which are associated with
modular invariance property.

We also establish connections between the above construction of generalized spin mod
and the Kac-Wakimoto construction of generalized spin models on finite Abelian group:s
[20].

In the final Section 5, some examples are also discussed. In particular we study th
modular invariance property for the character tables of strongly regular graphs and als
of the Sylow 2-subgroup of the Suzuki simple groBg8) and remark that a spin model
can not be constructed from the solutions of modular invariance equation of the Sylow 2
subgroup of the Suzuki simple grog®8). As for the strongly regular graphs we remark
that some do and some do not give spin models.

2. Spin models and association schemes: preliminaries
1) Association schemes

Let X be a finite non-empty set. We shall denoteNbyX) the vector space of matrices with
rows and columns indexed B¥ and with complex entries. We denote Bythe transpose
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of the matrixA, by | the identity matrix, byd the matrix with all entries equal to 1, and by
Ao B the Hadamard product of the matric&sB defined by(Ao B)[i, j] = Ali, j]1BIi, j].

A (commutative)d-class association scheme on(3ee [8]) is a(d + 1)-tuple X =
(A,1 =0,1,...,d) of non-zero matrices dfl (X) satisfying

(1) A o Aj =6 jAi, where$ is the Kronecker symbol.

(2 Ao=1.

(3) ToA =1

(4) Forevenyi in{0,1,...,d}there exist$’ in {0, 1, ..., d} with'A, = A,
(5) There exist integerpi‘fj (foralli, j,kin {0, 1,...,d}) such that

d
AA; = AA =D pfAc (oralli,jin{0,1,....d}.
k=0
In view of (1) and (3) we may consider the matricds 0 < i < d as the adjacency
matrices ofd + 1 binary relations onX which form a partition ofX x X, and give a
combinatorial interpretation of properties (2), (4), (5). We shall not adopt this combinatorial
point of view here. On the other hand we shall need the following algebraic concepts.
The Bose-Mesner algebraf the schemeX is the linear span of the matrice§,i =
0,1,...,d, which we shall denote b§{. We observe th&ll has the following properties:

(6) 2 containsl andJ.

(7) 2is closed under Hadamard product.

(8) 2lis closed under ordinary matrix product, which is commutative when restrici#d to
(9) 2 is closed under transposition.

Conversely, it is easy to show that any vector subspacéM (X) satisfying properties
(6)—(9) is the Bose-Mesner algebra of some association scherxe(this is a straight-
forward extension of [11], Theorem 2.6.1; see also [14]). Thus we shall call any suck
subspace Bose-Mesner algebréon X).

The matricesA,i = 0,1,...,d, form a basis ofl, and property (1) means that this
is a basis of orthogonal idempotents for the Hadamard product. It is well known (see fo
instance [8], Section 2.3) théthas also a basis of orthogonal idempotents for the ordinary
matrix product, which is necessarily unique. One may denote these ordinary idempoten
by Ej,i =0,1,...,d,insuch away that the following properties are satisfied:

(10) E #0, EEj =6 E;.

(11) Eo = ;9.
(12) YO E=1.

Theeigenmatrices Rind Q of 2 relate the two bases of idempotents as follows:

(13) A; = Y% P Ei.
(14) Ej = % Yo Qi j Al
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Thus
(15) PQ = |X]I.
We shall call the Bose-Mesner algeBtaelf-dualif P = Q for an appropriate choice of
the indices of the idempotents (this corresponds to the property of formal self-duality for

the association scheni@.
Let & be the invertible linear map frof to itself defined by

(16) W(E) = A,i =0,1,....,d.
In other words, in view of (13)W is the linear map defined by the matikin the basis

{Ei,i =0,1,...,d}. SinceE; is the conjugate of a diagonal (0, 1)-matrix by a unitary
matrix, E; is hermitian (see [8], Section 2.3). Hence by (14) and (16):

d
'E,=E = WZQL] M pA ZQH
It follows that, denoting byt the transposition map o, Q is the matrix of| X| ¥~z in
the basidE;,i =0,1,...,d}. ThusP = Q if and only if
(17) w2 = |X|t.

Clearly the linear map¥ which satisfy (16) for some indexing of the idempotents are
characterized by the property

(18) w(AB) = W(A) o ¥(B) for everyA, Bin 2.

Hencel is self-dual if and only if there exists a linear mép 2 — 2 which satisfies (17),
(18). We shall call any such mapdaiality of2(. It is easy to show that any dualitly of 2
satisfies

(19) W(Ao B) = %III(A)\II(B) for every A, B in 2.

2) Spin models

We shall consider here spin models as defined in [23] (see also [4]). Tépis anodel
will be a triple (X, W, W), whereX is a finite non-empty set of sizeandW*, W~ are
matrices inM (X) satisfying the following properties:

(20) W+ oW~ = J,

(21) WHW- = nl,

(22) > yex W e, X]WH[X, BIWT[X, y] = DW*[a, BIW~[B, y]W[e, y] for all o, B,
y in X, whereD? = n.
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The square rooD of n appearing in (22) is thimop variableof the model. It is easy to
show (see [23] Section 3, or [4] Propositions 4 and 5) that, under the hypotheses (20), (21
(22) there exists a non-zero complex numéécalled themodulusof the model) such that
the following two properties hold:

(23) oWt =al, l oW~ =a1l,
(24) IWF =W*J = Da1J, JW- =W~J = DalJ.

The following result can be found in [23] (Proposition 2.1, cases (iii) and (vii)) and in
[4] as a special case of Theorem 1.

Proposition 2.1 Under the hypothes&0), (21), the property(22) is equivalent to each

one of the following properties

(25 Y yex WHX, ]WH[x, BIW [y, x] = DWH[a, BIW[B, y]W [y, ] forall a, B,
yin X.

(26) > yex W e, XIWF[B, XIW™[X, y] = DW*[o, BIWT[B, y]W [y, ] forall o, B,
yin X.

Finally, we shall need the following auxiliary result which gives a matrix formulation of
equations such as (22), (25) or (26).

Proposition2.2 For A, B, C, A, B’, C'in M(X), the following properties are equivalent.
(1) X xex Ale, X]B[x, BIC[X, y] = DAa, B]B'[e, y]C'[y, B] for all , B, y in X.
(i) A(Bo(CM))=DA o (B (C"oM))forall M in M(X).

Proof: The [o, B]-entry of A(B o (CM)) is

Y Ale, x] (B[x, 1Y _Clx,yIMly, ﬂ])

XeX yeX

-y (2 Ala. B[x. FIC[x, y]) M[y. .

yeX \ xeX

The |, B]-entry of DA’ o (B'(C" o M)) is

DA, 81 ) Bl vI(C'ly, BIMIy. B])

yeX

= D) (Ale, BIB'a, yIC[y, BOMIy, Bl.

yeX

These two entries are equal for evévyif and only if

Z Ala, X] B[x, BIC[X, ¥] = DA[a, B]B'[e, y]C[y, Bl forall a, B,y in X. O

XeX
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This yields the following proposition.

Proposition 2.3 Under the hypothesg®0), (21), the property(22) is equivalent to each
one of the following properties

27) WHW~ 0o (WTM)) = DW= o (WT (W~ o M)) forall M in M(X).

(28) WH (W~ o (WTM)) = DW~ o (WH('W~ o M)) for all M in M (X).

(29) WH(W~ o (W*M)) = DW= o (WH(W~ o M)) forall M in M(X).

Proof: Applying Proposition 2.2 withA ='W+, B='W-, C=W", A ='W~,B' =

Wt, C’ = W~, we see that (27) is equivalent to (25) wheteand y have been ex-
changed. We also observe that exchangirand 8 in (25) amounts to replacing the three
matrices appearing in the right-hand side by their transposes, and thus (27) and (28) a
equivalent. Finally (26) is obtained from (25) by transposing the three matrices appearin
in the left-hand side, and thus (27) and (29) are equivalent. The result now follows frorm
Proposition 2.1. a

3. Duality and modular invariance
1) Duality

Let (X, W+, W™) be a spin model with loop variabl® (so thatD? = |X| = n) and
modulusa. Using Proposition 2.3, we may define a linear ndapM (X) — M (X) by the
following equivalent equations (for all in M (X)):

(30) ¥(M) = D ta'W*+ (W~ o (WHM))
(31) ¥(M) = D taWH (W~ o (W+M))
(32) ¥(M) =a'W~ o (W (W~ o M))
(33) (M) =aW~ o (W (W~ o M))

It is clear from (20), (21) that is invertible. Choosing appropriately one of the above
expressions for and using (20), (21), (23) and (24), it is easy to check the following
equations.

(34) w(l) = J.

(35) W(J) =nl.

(36) W(W*) = DW-.

(37) W(W+) = D W~
(38) W(W-) = D W+,
(39) W('\W~) = DW-.

Let M = (W—,'W—, J, ) be the algebra generated Wy, 'W—, J with product the
ordinary matrix product, and ley = (W*,'WT, |, o) be the algebra generated By,
‘W, | with product the Hadamard product.
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Remark It easily follows from (21) thatv+,'W™, | belong to9, and moreovedt =
(WH, "W+ J, ). Similarly, by (20),W~,'W~, J belong to$, and$) = (W=, "W, I, o).

Note that bott and$) are closed under transposition. We shall denoteypy{respec-
tively: 1) the restriction of the transposition map 8 (respectively: ). Similarly we
denote by, (respectively:W,) the restriction ofl’ to 9t (respectively:$).

Theorem 3.1 Wy, is an algebra isomorphism fro®t onto ), and %\Ilﬁ is an algebra
isomorphism fron) ontoMt. HenceNt is a commutative algebra. Moreover

Uy Wy =Nty and Wy Wy = N1y
Proof: Let us show first that
(i) Wy is an algebra homomorphism frdin to $.
It will be enough to prove that, for eveiM in 93,

(i) W(W~M) = ¥ (W) o W(M),
(i2) W(W~M) = W(W™) o W (M),
(i3) W(IM) = W(J) o W(M).

Indeed, by iterating (i1), (i2), (i3) we shall obtain thé&t transforms any finite product
M- My with M; € {(W—,'W—, J}fori =1,2,...,rintow(Mp)o---oW¥(M,), and this
Hadamard product will belong t9 by (35), (38), (39).

Let us prove (i1). By (30),

Y(W~M) = D ta'Wr (W~ o (WrW~M))
=Da'W (W~ o M) (by(21)).

On the other hand, by (38) and (33),

YW ) oW (M) =DWToaW o (WHW~ o M))
=Da'W (W~ o M) (by (20)
= W(W™M),

as required.

The proof of (i2) is exactly similar and is left to the reader. Finally, to prove (i3), we note
that (24) implies the existence of a linear one-dimensional represengétidit — C of

M such thaty M = 6*(M) J for all M € 9. Thus, by (35), (i3) is equivalent to

@i4) 1 oW (M) =06*(M)I forall M in 9.
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Assume that (i4) holds for sond in 9t. Then

o W(W-M) =1 oW W )oW(M) (by(il))
=DW+o(l oW(M)) (by(38)

= D'W+ o 6*(M)I

= DO*(M)al (by (23))
= 6*(W)e* (M) (by (24)
= 0*(W-M)I.

Thus (i4) also holds foiW~M. One shows in exactly the same way that (i4) holds for
‘W~-M. Now

loW(IM) =10W(O*"(M)J)

=0*(M)nl (by (35)
= 0*(M)O*(J)] = *(IM)I.

Thus (i4) holds folW~M, 'W~M and J M. Since it holds fotM = | by (34), it follows
(by induction on length) that (i4) holds for any finite product of matriceg/ifr, '‘W—, J}
and (by linearity) for allM in 93t. This completes the proof of (i).

The proof of

(i) %\Ifﬁ is an algebra homomorphism frafnto 9t

is quite similar and will be omitted.

Now sinceV is invertible, bothw,, and ¥ are injective. Then dirfiit < dim$) and
dim$ < dim9t. Hence din?t = dim$ and bothy,, and ¥, are bijective. Since
$ is commutative I is also commutative. The equalitym(%\llf,) = 1, of algebra
automorphisms afy is easily checked, using (34)—(39), on the generating\set'w+, 1.
The other equality, Wy, = Nty is proved similarly. O

The above result was essentially proved in [15] wki¢h, W~ are symmetric and in [5]
for the general case. The proof given here is conceptually simpler and will lead us to «
clear understanding of the modular invariance property for self-dual Bose-Mesner algebra
From now on we shall be mostly interested in the situation described by the following result

Corollary 3.2 The following properties are equivalent.
(i) 9 is closed under Hadamard product.

(i) $ is closed under ordinary matrix product.

(i) $» = M is a self-dual Bose-Mesner algebra.

Proof:  Clearly (iii) implies (i) and (ii). Conversely, if (i) holds) < 9 sincew, ‘W, |
belong todt. Then$ = 9 because dirfht = dim §. Similarly, if (i) holds, $ = 9. Itis
clear tha®l = §) = Mt then satisfies the properties (6)—(9) which characterize Bose-Mesnel
algebras. Nowr = W, = ¥, satisfies (17), (18) and hence this map is a dualit§f.ofd

Thus it is natural to look for spin modelsX, W*, W™) such thatWw*, W~ belong
to some Bose-Mesner algebfaon X. As explained in [5, 15, 17] this allows a very
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significant simplification in the study of equations (20), (21), (23), (24), which bear on
dim2 = d + 1 < n variables rather than on dii (X) = n? variables.
In this setting it is useful to state the following result.

Corollary 3.3 Let2 be a Bose-Mesner algebra on #nd let (X, W+, W™) be a spin
model with loop variable D and modulus a such that WV~ belong to?l. The following
properties are equivalent

(i) W~—,'W~, J generateX under ordinary matrix product.

(i) W+,'W+, | generate2l under Hadamard product.

Moreover if(i) and(ii) hold, 2 has a duality¥ satisfying propertie$30)—(33) for all M
in 2(, and hence also satisfyin@4)—(39).

If (i) and (ii) hold in Corollary 3.3, we shall say thaxX, W*, W~) generate<X.

2) Modular invariance

Let2 be a self-dual Bose-Mesner algebraXwith eigenmatrice®, Q satisfyingP = Q.

The following property has been considered in relation with fusion algebras of conforma
field theories [1] and with the construction of spin models [3, 7]. We shall say2that
satisfies thenodular invariance propertyith respect toP and the diagonal matria (of

size dim2 = d + 1) if (PA)2 is a non-zero multiple of the identity. L&t be the duality
on?l defined by the matri® in the basidE;,i =0, 1, ..., d} (or equivalently, defined by
(16)). Letwt = D Y% [ A[i,i]E andW~ = D~1w (W), with D2 = |X| = n.

Theorem 3.4 The following properties are equivalent for any non-zero complex number a.
(i) (PA)?® =a"tD3I.

(i) ¥(M)=D"ta'W*(W~ o (WtM))forall M in 2.

(i) w(M) = D~taW+ (W~ o (W+M)) for all M in £L.

(iv) (M) =a'W~ o (W*H(W~ o M))forall M in .

(V) ¥(M) =aW~ o (‘WH(W~- o M)) forall M in 2.

Proof: For everyA in 2, let us denote by:a (respectively: u}) the linear map from
2 to itself defined by the equalitga(M) = AM (respectivelyu’z(M) = Ao M) for
everyM in 2. Clearly DA is the matrix of the linear map-+ with respect to the basis
{Ei,i =0,1,...,d}. Hence (i) is equivalent to

(i) (Tpw+)®=a1ndd.
We may rewrite (vi) successively as follows.

uw+ VY aws W puw+ = a n*v!=atln?tw (by (17))
v = an_zr,uw+ W pw+ W pow+
= an 2w (TW pw- W) o+
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Itis easy to check thatW juw+ W = Nujy e+ = NP -~ Thus (vi) is equivalent to

W = aD  pow iy
and this shows the equivalence of (i) and (ii). Let us now rewrite (vi) as follows.

W U o+ W+ 0 = a~tndw
U = an 3z W uw V) uw (Y uws W)
= an 3(nDuiy-)w+(NDufy-)
= Ay~ Uy~

This shows the equivalence of (i) and (iv). Finally (ii) and (iii) correspond to each other by
multiplication byt and replacement dfl by (M), and (iv) and (v) correspond to each
other in the same way. O

We may now apply the above result to spin models (cf. [10]).

Corollary 3.5 Assume that the spin modéX, W, W~) with loop variable D and
modulus a generates the Bose-Mesner algebra_et & be the corresponding dual-
ity on 21 given by Corollary3.3 and choose the indices of the Hadamard idempotents
{Ai(i =0,1,...,d)} and ordinary idempotentsE;j (i = 0,1, ...,d)} in such a way that
Y(E) = A( = 0,1,...,d). Let P be the corresponding eigenmatrix @f. Then
(PA)2 = a~'D3I, where the diagonal matrid = Diagf[t, t1, ..., tq] iS determined by
one of the equivalent equations

M) W=t A

(i) WH=DY " tE:.

Proof: DefineA by Eq. (ii). Thusw* = D Zid=0 Ali,i]E;. We also havav— = D1
W (W) by (36). Since (30)—(33) hold for eveiyl in 2 Theorem 3.4 givegsPA)® =
a~'D3I. Equations (i) and (ii) are equivalent because applyin (ii) yields & (W*) =
D Zid:o tiA,lLe, W™ = Zid:o ti Aj, which is equivalent to (i) via (20). |

Thus if a spin model generates a Bose-Mesner algebra, this Bose-Mesner algebra is se
dual, with a modular invariance property directly given by the spin model matrices. We
now look for a (partial) converse to this statement.

We consider again a self-dual Bose-Mesner alg@b@n X with duality ¥ given by
the eigenmatrixP in the basis{E; (i = 0,1,...,d)}. Define the linear form# and
6* on 2l by the equalitied o A = 6(A)l andJA = 6*(A)J for every A in 2. Since
Y(E)=AGl=0,1,...,d),¥()=Jby(3)and (12). Leh = |X| and letA be any
element ofA. Then, by (19),J¥(A) = V()W (A) = n¥(l o A) = nd(A)J. Hence

(40) 6*W = ng.

Assume now that for some diagonal mattof sized + 1, (PA)2 is a non-zero multiple
of the identity. Note that\ is invertible and henc&[0, 0] # 0. Hence we may write
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(PA)3 = A[0, 0]rl for some non-zero complex number If D is a square root af, we
may multiply A by a suitable factor to obtaih= D3, that is,(PA)® = A[0, 0]D3I.

Theorem 3.6 Let A be a diagonal matrix of size ¢ 1 such thatA[0, 0] = a~! # O and
(PA)® =a1D3l. Let Wt = D Y2 A[i,i]E; and W~ = D~1w(W+). Then W, W~—
satisfy

(20) Wt oW~ = J.

(21) WtW~ =nl.

(23) l oW =al, l oW~ =a'l.

(24) IWt = WH+J = Da1J, JW- = W~J = DaJ.

and
(41) WH(W~ 0o (WTM)) = D'W~ o (WH (W~ o M)) forall Min L.

Proof: We have property (i) of Theorem 3.4 and hence also properties (ii)—(v). Property
(41) follows immediately. Let us apply (ii) tM = J. We obtain

nl =wJ) =D ta'Wr (W™ o 6*(WH)J)
= D tag*(W*) ‘Wt 'w—,

It is clear from (11) and the definition o+ that6*(W+) = DA[0,0] = Da~. This
yields (21). From this we hav& (W)0*(W™) = 0*(WTW~) = nd*(l) = n and hence
0*(W~) = Da. This yields (24). Applying¥ to (21) gives¥ (W) o ¥(W™) = nJ and
(20) follows. Finally, by (40)g(W*) = n~19*¥ (W) = n~16*(DW~) = a and this
together with (20) gives (23). O

Note that if we replace in (41) the condition “for &l in 2" by the condition “for allM in
M (X)” we obtain (27), which together with (20), (21) gives (according to Proposition 2.3)
the definition of a spin model. This leads us to defingpin model at the algebraic level
in 2 as a paiw*, W~ of elements of satisfying properties (20), (21), (23), (24), (41).
Thus we may interpret Theorem 3.6 as the statement that the modular invariance proper
for a self-dual Bose-Mesner algebra implies the existence of a spin model at the algebra
level in this algebra.

The above considerations indicate the following natural strategy for the construction o
spin models.

(i) Given a self-dual Bose-Mesner algel®aenumerate its dualities.
(i) For each duality, solve the corresponding modular invariance equation.
(iii) For each solution, check whether the corresponding spin model at the algebraic leve
is an actual spin model or not.

The main interest of this approach is that steps (i) and (ii) are much easier than the stuc
of the general spin model Egs. (20)—(22), and leave only a small number of cases to &
checked in step (iii). Also, any spin model which generates a Bose-Mesner algebra can |
found by this method.
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We now realize this program in the case of Bose-Mesner algebras of Abelian grou
schemes.

4. Spin models on Abelian groups
1) Abelian group schemes and Bose-Mesner algebras

Let X be an Abelian group of finite orderwritten additively. For eachin X, let A; in
M (X) be defined byA;[x, y] = 8i,y—x(X, y in X). Properties (1)—(5) are immediate, with
i’ = —i and pi‘fj = &4+« (for convenience we replace the index &&tl, ..., d} by X).
Thus we have an association schemg { € X) and a corresponding Bose-Mesner algebra
20 on X.

Let{E;i,i € X} be the ordinary idempotents of, with Ey = %J. Let P be the eigen-
matrix defined by

Aj=) RjE foralljinX
ieX
Then for allj, kin X

Z Pi+kEi = Ajpk = AjAc= Z P P .kEi

ieX ieX
and henceP, j,« = P j P« foralli in X. Hence for eachin X, the mapj — B j from
X to Cis a character oK. SinceP is invertible, each character &f appears exactly once
as a row ofP (the row indexed by 0 corresponds to the trivial character singe= J for
alli in X).

The first orthogonality relation for characters states P& = nl. Hence the self-
duality relation P = Q holds if and only ifP is symmetric, i.e.,P j = xi(j)(, j € X),
wherey;, i € X are the characters of with indices chosen so that(j) = x; (i) for all
i,jinX.

2) Spin models at the algebraic level are actual spin models

Let us compare conditions (41) and (27) wiers the Bose-Mesner algebra of the Abelian
group X. Itis clear that forM in M(X), the column ofW* (W~ o (W+M)) indexed by
a given elemenx of X only depends on the column &f indexed byx, and similarly for
D 'W~ o (W (W~ o M)). Since for everyM in M (X), there exists a matrik1’ in 2 with
the same column indexed lxyasM, property (41) implies property (27). This means that
every spin model at the algebraic level is an actual spin model.
Putting this together with Theorem 3.6 we obtain the following result (where-
(xi (I)i,jex andD? = n).

Proposition 4.1 Let A be a diagonal matrix indexed by X such thgf0, 0] = a=* # 0
and (PA)® = a™'D3l. Let W = DY, A[i,i]E and W~ = Y, A[i, i]A. Then
(X, W*, W) is a spin model.
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3) Reformulation of the modular invariance equation

Let A = Diaglti]iex) be invertible. The following result generalizes Proposition 3 of [8].
Proposition 4.2 (PA)3 = toD?l if and only if

(42) xy()tyt, = totyy, forallu, vin X,

and

(43) Yyex t* = Dlo.

Proof: The equation(PA)® = t,D3I is equivalent to

() APA =1%D}GQA Q)

The [u, v]-entry of the left-hand side of (i) ist,Py,t, = xu(v)tut,. The [u, v]-entry

of the right-hand side of (i) i5%D )", .y Quxtx1Qx.v- Now Qux = Pux = xu(X) =

xx (W), Qx,v = Px,u = xx(v) and henc@u,xQx,v = xx(Wxx(v) = xx(U+v). Thus the
right-hand side of (i) only depends an+ v and (42) expresses the same property for the
left-hand side. Then (i) restricted to the p]-entries becomes

(i) totyyy =to D erx xx (U + U)t;]'

which gives (43) when + v = 0. Conversely, assuming (42), (43), to prove (i) itis enough
to prove (i) for allu, v with u + v # 0, thatis)_, .y xx(Wt 't;* = D forallu # 0. By
(42), the left-hand side is

DWW (totx )t =11 (b

xeX xeX

and the result follows from (43). O

Corollary 4.3 Let Wr = DY (tE, W™ =} _«tA, where theiti € X, are
non-zero complex numbers.(#2) and (43) hold, then(X, W*, W™) is a spin model.

Remarks

(i) Corollary 4.3. was proved in a different way in [17] Proposition 23.
(ii) Any solution to (42) with)", _, t,* # O can be normalized to give a solution of both
(42) and (43).

4) Explicit solution of the modular invariance equation

All finite groups are considered & modules. LetX = X; & Xo @ --- @ X, be a
decomposition ofX into a direct sum of cyclic group¥Xs, Xo, ..., X;. For eachi e

{1,2,...,r} let & be a generator and, be the order of the cyclic groul;. Hence
IX| =n= ]'[ir:1 ni. Letx = Zi’:l Xiaq,y= Z{:l viai, wherex;, y; € Z, be elements
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in X. Thenx = yin X if and only if x; = yi(modn;) foralli € {1,2,...,r}. Let
di j(=d;;) be the greatest common divisor @f andn; fori, j € {1,2,...,r}. Then
Xa (@))% = xq (&) =1fori,j {12 ...,r}. We can easily check that

(44) () = xy(¥) = [Tiz [T xa (@)*”

for any expressions = > xja andy = >|_; yia of X, y.
We have the following result (for the special case wheiie a cyclic group, refer to [3]).

Theorem 4.4 The Bose-Mesner algebfd on X has the modular invariance property
(PA)® = toD3I with an invertible diagonal matrixA = Diag|t]xex, if and only if

|(X|
(45) tx = to{ﬂ. 11 Xa (&) }{I—[1§I<k§r Xa (@)%},
where x=Y"_, Xia;, X € Z, ni is a complex number satisfying" =
ief{l,2...,r}, and

(46) tg =D! ZX:ZI x,aex{nrj =17j = Xaj
Proof: By Proposition 4.2, it is enough to give the complete solutions for (42) and (43).

First assume that satisfies (42) and (43). L&j = nitofori =1,2,...,r. Then by (42)
and induction onj we have

< Xa (@) 79}

(47) tjai = 77|J

forj >0andi =1,2,...,r. Letj = n; in (47). We obtain

nj (”| -1

(48) n" = xa(a)~

fori =1,2,...,r. Using (42) and (47) and induction orwe get (45). Then (46) follows
from (43). Conversely assume thatsatisfies (45) and (46). Then clearly (43) holds. Let
Xx=>"_,xa andy = >"_, yia. Then by (45) we obtain

G YD +Y =1
tx+yto—to{l_[n*'+y' a(@) }{ I1 Xa(ak)(x'+M)(xk+yk)}

i=1 1<l <k<r
and
ror r —
Kx(Pety = té{ [TI T xa¢ )”k}{ [T @ }{ [] xa (ak)“k}
I=1k=1 i=1 1<l<k<r
r -

{ l—lnlylx Y|(y2 )}{ 1—[ Xa‘ (ak)ylyk}

i=1 1<l <k<r

Xi+Yi O +Yi) (X +Yi =D
1_[ i y a@) 2 1_[ Xa (ak)(x|+y|)(xk+yk) )
1<l <k<r

This implies (42). O
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Remark If the eigenmatrixP is a tensor product of the eigenmatrides P., ..., P of

the cyclic factors, thery, (ax) = 1 whenevett # k and it follows from (45) that every
solution A to the modular invariance equation with respecPt@s a tensor product of the
solutionsA 1, Ao, ..., A tothe modularinvariance equations with respe@ytoP,, ..., P
respectively. However there are some eigenmatrit@ghich are not expressed as tensor
products of eigenmatrices of cyclic factors. We can easily check that some solutions ¢
modular invariance equations with respect to thBsgeld spin models which are not tensor
products of cyclic models. For instance, ¥et= (Z/2Z)? and consider the eigenmatrix

1 1 1 1
1 1 -1 -1
P=11 21 1 -1

1 -1 -1 1
where the columns correspond #Q, o). A.1), A0, A1 in that order. LetA = Diag

[1,1,1, —1]. Then(PA)3 = 8I. HoweverA does not correspond to a tensor product of
two cyclic models, since otherwige would be of the form Diagdpt), tot;, tit}, tat;].

5) Relation with the Kac-Wakimoto construction of spin models
In [20] spin models are constructed using even rational lattices. More precisetioral

lattice L is afinitely generated free Abelian group with a symmegrealued bilinear form
(,). Arational latticeL is calledevenif the integral lattice

M={ael|{(x,B)eZfor all gel}

is even, i.e.{o,a) € 2Z for all« € M. Note thatX = L/M is a finite Abelian group.
Since(a, o) = (B, B)(mod Z) holds for anye andg € L with « = B(mod M), we can
define complex numbers, (¢ € X) andu by

(49) Ay = e(@)e™ L) o e X
and
(50) n = Zae)( )‘a’

wheree is a character oK. Let xo(8) = e 2"vV~1<®f> for ¢ andg € X, and letP,
Q € M(X) be the matrices defined B, s = x.(8) and Q. g = x«(B). Lemma 2.1 in
[20] implies

Z e oV =La—y.p) _ Nday»
peX
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wheren = | X|, which is equivalent to

D xelB)Xp(Y) = Ney.

BeX
This implies thatP and Q(= P) satisfyPQ = nl and are the eigenmatrices of the Bose-
Mesner algebra of the scheme ¥n= L /M (with respect to some ordering of the idempo-
tents). Lemma 2.4 in [20] implies

(51) pp=n.

Let|X| = n = D? (i.e., D is one of the square roots nj. Fix an elemeny in X and let
t{’ be one of the square roots Bfu.1,,, i.e.,

(52) (t()/))Z D,LLil)\.
((51) shows that # 0 and this definition is valid.) Defing”’ by
(53) ) = tg"" 1 Ay q fOr o € X.

Then we have the following.

Theorem 4.5

(54) xa Bty = tt )5 fora, p e X.

(55) Zaex toz)/) D(t(y)) 1

(56) Let W/ = Dzaex(téy)) LE, and W, = 3, o« ()L A,. Then(X, W, . W)

is a spin model with loop variable D.
(57) LetA = Diag[(t”") sex. Then(PA)3 = (t”)~1D3I.

Proof: (54) and (55) are easy to check from the definitions (they are also proved in the
original Japanese version of [20]). Then (56) follows from Corollary 4.3, and the following
equality (58) follows from (20).

(58) W) = Y pex t?) A,

In view of (58), (56) is essentially equivalent to Theorem 2.1 in [20]. Finally (54), (55) and
Proposition 4.2 imply (57). O

In the following we consider the converse of the construction by Kac and Wakimoto. For
any finite Abelian grouX we construct an even lattidein the following way. We use the
notation given in 4.4).

Since x4 (a,-)“tJ = 1, there exists a rational number; = «;j; satisfyingx, (a;) =
e 2v~1ui Moreover ifd; ; (= (n;, nj)) is odd, then we can choosg; = ki j/d:.; with
some even integd¢ ;. Thereforenje; ; € 2Z if n; is odd. Ifn; is even, themjw; ; € Z
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andninje; j € 2Z. Henceninje; j € 2Zforalli andjin {1,2,...,r}. LetL be a free
Abelian group of finite rank generated by, e, ..., &. Define a bilinear form o by
(a,e) =ajfori,jef{l,2....r}. LetM = {a € L|{, 8) € Zforall p € L}. The
next proposition is essentially equivalent to Lemma 2.5 in [20].

Proposition 4.6
(i) L isan even lattice.
(i) L/M = X.

Proof: We will first show that
(59) M =Y_,Znis.

Since(n; e, er:lxjej) = er:lxjniai,j eZforanyiin{1,2, ... ,r}andxy, Xo, ..., X
inZ, we haved_\_, Znjg € M. Conversely lek, = erzl xje; € M. Then(x_,q) € Z
foranyl in{1,2,...,r}. Letxx = Zir:l xia; € X. Then

Xxx (@) = Hxa @) = l_[e—zﬂx/—ilamq
i=1 i=1

— e727t\/7_lz{:10li,lxi — 6727'[‘/7_10(“a> = 1

r

foranyl in {1,2,...,r}. Thisimplies that, (y) = 1 forally in X. Thereforexx = 0in

Xandx; = 0(modn;) fori =1,2,...,r. This impliesM C Z[ZIZnie. and completes

the proof of (59). Sincénie, nje;) = ninje; ; € 2Z foralli, jin{1,2,...,r}, we have

(o, B) € 2Z for all « andg in M. HencelL is an even lattice. (ii) is immediate from (59).
O

From now on we identifyg anda; (i = 1,2, ...,r). Let us define by the following
equation:
Forx=Y1_,xa € X,

r
E(X) — l_[ nFXi efrrx/jlxiaiyi
i=1
r
— ni—Xi e*”\/*_lxi @.a)
i=1

Since
; ni (nj —1 I
(n7 e ™ )™ = yo (@)™t e N (by (48))
— eV e — 1 (by the definition oty ),

this definition is valid and: is a character oK. Definei,, u andty’ for o,y € X by
(49), (50), (52) and (53). Then one easily checks that the formula (45) of the solution of
the modular invariance equatio® A)® = toD31, A = Diag|[ty]xcx is expressed by

(60) tx = ()%, x € X,



222 BANNAI, BANNAI AND JAEGER

provided thaty = (téo))‘l. Finally note that formula (46), which expresses (43), becomes
(55).

Remark The Kac-Wakimoto construction essentially gives all the solutions of the mod-
ular invariance equation with respect to the given eigenmétrixHowever Theorem 4.4
shows that to obtain all the solutions it is enough to consider theycas®.

6) Dualities of Abelian group schemes

In this section we classify the dualities of Abelian group schemes. We use the same notatic

as givenin 4).
Define a duality oRl with the eigenmatri¥P given by

(61) Py =[Tia 6.

wherex = Y _; xiai,y = Y.i_, Yia € X andg is a primitiven; th root of unity. Since
the set of all the Hadamard (or ordinary) idempotentd iis uniquely determined and an
eigenmatrixP’ corresponds to a duality if and only if it is symmetric (see Section 4.1),

there is a one to one correspondence between the set of all the dualfiesdfthe set of
all the permutations on X satisfying

(62) 0(0) = 0andPx 4(y) = Ps(x),y for anyx andy in X.
Leto be such a permutation and teta;) = Zir=1 0i,j8, whereo; j € Z. For anyx € X,

leto(xX) = Zir:l(x)ia,-, with (x); € Z. Then by (62) we havé®, ;) = Po(a).a; @and
hence

(63) ¢ = ¢}
foranyi, j € {1,2,...,r}. Then by (62)

(X)j

fj = Paj,a(x) = PO'(aj),X

r
— 1_[ é,ixi(TLj
i=1

r

=[]s" (by®3)
i=1

— é.jZizlinJ,i ,

thatis,(x); = Y _|_; Xioj.i and hence the permutatienis given by

(64) o(x) = er:l(zirzl Xi0ji)a;j.
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We can easily check that (63) and (64) imply (62) and that the expression (64) determine
the permutatiorr on X uniquely without depending on the choice of thg € Z. Hence
we have the following result.

Theorem 4.7 The set of dualities of the Abelian group schelhkas a one to one cor-
respondence with the set of>t r nonsingular matricego; j) satisfyingo; ; € Z and
¢ = gj"“ foranyiand jin{1,2,...,r}. (Here such a matrix is said to be nonsingular
if it induces a permutation on X

Corollary 4.8 Let p beaprime number. The setof dualities of the scheme of the elementar
abelian groupZ, x --- x Z, of order g has a one to one correspondence with the set of
nonsingular symmetric i r matrices over the finite field .

Remark Corollary 4.8 forp = 2 was originally proved by Yamada [33].

5. Examples

Contrary to the Abelian group case, spin models at the algebraic level generally do not giv
actual spin models. In this section we give two such examples without proof.

1) Spin models on strongly regular graphs

We use the notations of [15].
Consider a strongly regular gra@hwith first eigenmatrix

We assume thas is formally self-dual, i.e.P? = nl, and this reduces to the equalities
K=r24r —rs, n=( —s)% LetD = &(r —s) withe € {+1, —1}. We assume > 2.
Let A = Diaglto, t1, t2] (ti # 0). Then we have the following result.

Theorem 5.1 With the notation given as above the modular invariance equafan)® =
toD31 holds if and only if one of the followingl) or (2) is satisfied.

DAkt =6t=—st+er + Dty and ' = —sty ' +(r + Dty
QN=4D=-2t=t1t=¢ty=—t.

Proof: First assume that the modular equivalence equation holds. Since the equation
equivalent toPAP = toDA"1PA~1 we have

() YroPuR.jt =1tDt R foralli, j.
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Puttingj =0,i =1 andj =0,i = 2, we have

to+st — (54 Dty = Dt; *
to+rt; — (r + Dtz = Dt, %,

respectively. Hencés — r)t; — (s — Nty = D(t;* — t,1) and then(t; — to))(s —r +
Dt;'t, 1) = 0. Therefore ift; # t, we havetit, = D(r — s)™! = . It follows that
to = —st + (s+ Det; ' + Dty ' = —sty + &(r + Dt; L. Puttingj =i = 0in (i) we have

to 4+ kt; + (n —k — Dt = Dt *
and hence
ot = DY (—st+e(r + Dyt + kty + (n —k — Det; ).

Easy calculations givg ' = — st;* 4 e(r + 1)t; and (1) holds.
If tl = t2, then

(i) to—t; = Dt; ™.
Puttingj =i = 0in (i) we have
(i) to+ (n— Dty = Dty ™.

By (ii) and (iii) we havet; + Dtl‘1 + M-t =Dy + Dtl‘l)*l and then(tl‘l + Dty)
(t1 + Dt;1) = 1. HenceD = —t? — t;2 and (by (i)))to = —t; . Next, takingj = 1 and
i =1,i =2in (i), we obtain:

(iv) kio + Sty — (s+ Drty = Dsiot; 2
(v) Kto +rsty — (r + Drty = Drtot; 2

The difference of these two equations gitgd = (s — r)D~'t;* = et3. Hence(t?)® = ¢
271 2n/~1 21 2n/—1

andt? e e, e 5 e, 5 gh ft2 #£6,D = —e(€5 +€ 35 )=c¢andn =1,
which we have ruled out in our hypothesisIﬂf: g, thentg = —t;, D = —2¢,n =4 and
(2) holds.

Conversely assume thigt t;, andt, satisfy the condition (1) or (2).
Let Wt = tg 1 +t;2A; + t, P Ay andW— = tol 4 tyA; + A, If W is the duality with
matrix P in the basig Eq, E;, E>}, its matrix in the basi$Ag, A1, Ay} is alsoP. We can
easily check that
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and then¢ (W) = DW™ holds. Let us denotl%,*l by a. We have clearly (20) and (23)
and by applyingd we get (21) and (24). Using this, one easily checks théatl) =

D law+(W~ o (W*M)) whenM = |, M = J, or M = W~. Assuming that; # t,
(case (1)), these three matrices form a basis of the Bose-Mesner affjebral hence
U(M) = D~ taWt (W~ o (WHM)) for all M in $. It then follows from Theorem 4.4. that
(PA)® = a~'D3l. For case (2) an explicit computation gives the modular equivalence
equation. O

In other wordsW+, W—, given in the proof of Theorem 5.1, define a spin model at the
algebraic level. However it is shown in [15] that™, W~ will define an actual spin model
if and only if G is primitive whenn > 5 andG is triply regular (i.e., both constituents with
respect to each vertex are strongly regular). Very few graphs meet this last requirement al
this yields many examples of spin models at the algebraic level which are not actual spi
models (for instance, consider Paley graphs with at least 13 vertices, or graphs associat
with bilinear forms, alternating bilinear forms or hermitian forms (see [7]).

2) Modular invariance of the association scheme on 2-Sylow subgroup of Suzuki simple
group Sz(8)

Letn > 1,q = 22", Let6 be a generator of the Galois group of the finite field extension
GF(q)/GF(2) defined by’ = o?' for « € GF(q). Fora, B € GF(q), let

1 0 0
af 1 0 O
(@,B)1 (@, B2 of 1

where(a, 8)1 = @t +a?B + ¥ and(a, ), = o1 + B. LetU = {S(w, B) | o, B €
GF(9)}. SinceS(e, B)S(y. 8) = Sla+y, ay’+B+8) andS(y, 8)S(y. y*+1+8) = S(0, 0)
(the identity element o6L(4, q)), U is a subgroup o6GL(4, q) of order|U| = g°. Itis
known thatU is isomorphic to the 2-Sylow subgroup of the Suzuki simple gréap)(see
[29, 30]). The center df is given byZ(U) = {S(0, B) | B € GF(q)} which is of order.
For anyy ands in GF(q), we haveS(y, y?*1+8)S(a, 8)S(v, 8) = S(a, B+ ya? +yfa).
ThereforeS(«, 8) and S(«y, B1) are conjugate to each other if and onlyif = « and
B = B + ya® + y%a with somey € GF(q). Let GF(g)* be the set of all the nonzero
elements irGF(q). Fora € GF(Q)*, let H, = {S(0, ya? +y%a) | ¥ € GF(q)}. ThenH,
is a subgroup oZ (U) of index 2. We can easily check th&0, «’*1) ¢ H,. Therefore
S(, O)Hy, S(a, e’ H,, o € GF(g)* and{S(0, o)}, « € GF(q) form the complete set
of conjugate classes bf.

Let A denote the following set of representatives of the conjugacy clasaes:
{S(a, 0), S(ar, 1) | € GF(@)*} U {S(0, o) |« € GF(q)}. Then|A| = 3q — 2. For
eachi € A, C, denotes the conjugacy class containingand A, denotes the matrix in
M (U) defined by

Alx,y] =1 ifyxtecC,,
=0 otherwise
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Then properties (1)—(5) are satisfied (see [8] Section 2.2.). For convenience we repla
the index set{0,1,...,d} by A. Note thatAgo = Ao = |, Ape) = Aow, and
Aw,00 = Awa+1y. ThusX = (A, A € A) is an association scheme of clags-33.

In the following we assumg = 23. ThenU is of order 64. LetA = Ao U A1, where
Ao = {S(0,a)la € GF(8)} € A andA;1 = {S(x, 0), S(or, «’*1) | & € GF(8)*} C A.
Then we can easily show tha&thas self-dual structures for the orderings of the ordinary
idempotent$E;, » € A}which give the matriceP defined below as the first eigen matrices
of X:

Po=1 foralli € A.
Pj=1 fori,je Ao
P,j=1 fori e {S0), S a’™h},jeH, and «=#0.

Pj=-1 fori €{S0),Sa"™}, j&H, and a##0.
P,j =R, =4P;i =4Pj; fori € Ag, j € A1
Pi=4¢ and Pj =R ;=—-4¢ fori e A1, wheres =¢ =+v-1

Pj=Pi=0 fori,jeAy and j#i,j#i"
We have the following result.

Theorem 5.2 The Bose-Mesner algebra of2ZaSylow subgroup U of the Suzuki simple
group Sz8) has the modular invariance properfPA)3 = toD3l with an invertible
diagonal matrixA = Diag[t;].ca if and only if the following conditions are satisfied.
(Note that D= +£8.)

(I) ty =tofor A € Ao.

(i) t +t, =0andt = il—J;to fori € Aj.

(iii) tg = D/8.
Remark

(i) The proof of Theorem 5.2 is done by straightforward but tedious computations.

(i) By Theorem 3.6(U, W, W) with Wt =D} _, tyExandW~ =} _, tyAcis
a spin model at the algebraic level. However we have checked that it is not an actue
spin model, in spite of the fact that in a sense this scheme is very close to an Abelia
group scheme.

In the original version of this paper and somewhere else we announced that a simile
statement like the one given in Theorem 5.2 is also true forgagy22"t1. However this
is not true in general fon > 2 as was pointed out by Hanaki and Okuyama in private
communication. Namely, the group association scheme may not be self-duat i.
(Previously, there were miscalulations of the character tables)o¥We thank Hanaki and
Okuyama for pointing out this mistake by showing that the groups for thercas@ are
not self-dual.
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