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Let G andH be directed graphs on the respective verticesU andV, and suppose that the
vertex sets have each been partitioned into disjoint subsetsU = U0∪U1 andV = V0∪V1.
Thepartitioned tensor product G×H of G andH with respect to this partitioning is defined
as follows:

a) Each vertex ofU0 is replaced by a copy ofH | V0, the subgraph ofH induced byV0;
b) Each vertex ofU1 is replaced by a copy ofH | V1;
c) Each arc ofG that runs fromU0 to U1 is replaced by a copy of the arcs ofH that run

from V0 to V1;
d) Each arc ofG that runs fromU1 to U0 is replaced by a copy of the arcs ofH that run

from V1 to V0.

For example, Figure 1 shows two partitioned tensor products. The example in Figure 1(b)
is undirected; this is the special case of a directed graph where each undirected edge
corresponds to a pair of arcs in opposite directions. Arcs ofG that stay withinU0 or U1

do not contribute toG× H , so we may assume that no such arcs exist (i.e., thatG is bi-
partite).

Figure 2 shows what happens if we interchange the roles ofU0 andU1 in G but leave
everything else intact. (Equivalently, we could interchange the roles ofV0 andV1.) These
graphs, which may be denotedGR× H to distinguish them from the graphsG× H in
Figure 1, might look quite different from their mates, yet it turns out that the characteristic
polynomials ofG×H andGR×H are strongly related.

Let Ei j be the arcs fromUi to U j in G, andFi j the arcs fromVi to Vj in H ; multiple arcs
are allowed, soEi j and Fi j are multisets. It follows thatG×H has|U0| |V0| + |U1| |V1|
vertices and|U0| |F00| + |U1| |F11| + |E01| |F01| + |E10| |F10| arcs. Similarly,GR× H
has |U1| |V0| + |U0| |V1| vertices and|U1| |F00| + |U0| |F11| + |E10| |F01| + |E01| |F10|
arcs.
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Figure 1. Partitioned tensor products, directed and undirected.

Figure 2. Dual products after right-left reflection ofG.
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The definition of partitioned tensor product is due to Godsil and McKay [3], who proved
the remarkable fact that

p(G×H) p(H | V0)
|U1|−|U0| = p(GT×H) p(H | V1)

|U1|−|U0|,

where p denotes the characteristic polynomial of a graph. They also observed [4] that
Figures 1(b) and 2(b) represent the smallest pair of connected undirected graphs having the
same spectrum (the samep). The purpose of the present note is to refine their results by
showing how to calculatep(G×H) explicitly in terms ofG andH .

We can use the symbolsG andH to stand for the adjacency matrices as well as for the
graphs themselves. Thus we have

G =
(

G00 G01

G10 G11

)
and H =

(
H00 H01

H10 H11

)
in partitioned form, whereGi j and Hi j denote the respective adjacency matrices corre-
sponding to the arcsEi j and Fi j . (These submatrices are not necessarily square;Gi j has
size|Ui | × |U j | andHi j has size|Vi | × |Vj |.) It follows by definition that

G×H =
(

I |U0| ⊗ H00 G01⊗ H01

G10⊗ H10 I |U1| ⊗ H11

)
where⊗ denotes the Kronecker product or tensor product [7, page 8] andIk denotes an
identity matrix of sizek× k.

Let H ↑ σ denote the graph obtained fromH by σ -fold repetition of each arc that
joins V0 to V1. In matrix form

H ↑ σ =
(

H00 σH01

σH10 H11

)
.

This definition applies to the adjacency matrix whenσ is any complex number, but of
courseH ↑ σ is difficult to “draw” unlessσ is a nonnegative integer. We will show that
the characteristic polynomial ofG× H factors into characteristic polynomials of graphs
H ↑ σ , times a power of the characteristic polynomials ofH00 or H11. The proof is simplest
whenG is undirected.

Theorem 1 Let G be an undirected graph, and let(σ1, . . . , σl ) be the singular values of
G01 = GT

10, where l= min(|U0|, |U1|). Then

p(G×H) =
{(∏l

j=1 p(H ↑ σ j )
)
p(H00)

|U0|−|U1|, if |U0| ≥ |U1|;(∏l
j=1 p(H ↑ σ j )

)
p(H11)

|U1|−|U0|, if |U1| ≥ |U0|.

Proof: Any realm× n matrix A has a singular value decomposition

A = QSRT



                
P1: KCU/SNG P2: MVG/ASH QC: RPS

Journal of Algebraic Combinatorics KL434-05-Knuth-II April 23, 1997 10:0

262 KNUTH

whereQ is anm×m orthogonal matrix,R is ann×n orthogonal matrix, andS is anm×n
matrix with Sj j = σ j ≥ 0 for 1≤ j ≤ min(m, n) andSi j = 0 for i 6= j [6, page 16]. The
numbersσ1, . . . , σmin(m,n) are called the singular values ofA.

Let m= |U0| andn = |U1|, and suppose thatQSRT is the singular value decomposition
of G01. Then(σ1, . . . , σl ) are the nonnegative eigenvalues of the bipartite graphG, and
we have(

QT ⊗ I |V0| O
O RT ⊗ I |V1|

)
G×H

(
Q⊗ I |V0| O

O R⊗ I |V1|

)
=
(

I |U0| ⊗ H00 S⊗ H01

ST ⊗ H10 I |U1| ⊗ H11

)
becauseG10 = RST QT . Row and column permutations of this matrix transform it into the
block diagonal form

H ↑ σ1

. . .

H ↑ σl

D

 ,
whereD consists ofm− n copies ofH00 if m≥ n, or n−m copies ofH11 if n ≥ m. 2

A similar result holds whenG is directed, but we cannot use the singular value decom-
position because the eigenvalues ofG might not be real and the elementary divisors of
λI −G might not be linear. The following lemma can be used in place of the singular value
decomposition in such cases.

Lemma Let A and B be arbitrary matrices of complex numbers, where A is m× n and
B is n×m. Then we can write

A = QSR−1 , B = RTQ−1,

where Q is a nonsingular m×m matrix, R is a nonsingular n× n matrix, S is an m× n
matrix, T is an n× m matrix, and the matrices(S, T) are triangular with consistent
diagonals:

Si j = Ti j = 0 for i > j ;
Sj j = Tj j or Sj j Tj j = 0 for 1≤ j ≤ min(m, n).

Proof: We may assume thatm ≤ n. If AB has a nonzero eigenvalueλ, let σ be any
square root ofλ and letx be a nonzerom-vector such thatABx= σ 2x. Then then-vector
y = Bx/σ is nonzero, and we have

Ay= σ x , Bx = σ y.

On the other hand, if all eigenvalues ofAB are zero, letx be a nonzero vector such that
ABx= 0. Then if Bx 6= 0, let y = Bx. If Bx = 0, let y be any nonzero vector such that
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Ay= 0; this is possible unless alln columns ofA are linearly independent, in which case
we must havem = n and we can findy such thatAy = x. In all cases we have therefore
demonstrated the existence of nonzero vectorsx andy such that

Ay= σ x , Bx = τy , σ = τ or στ = 0 .

Let X be a nonsingularm×m matrix whose first column isx, and letY be a nonsingular
n× n matrix whose first column isy. Then

X−1AY =
(
σ a
0 A1

)
, Y−1B X =

(
τ b
0 B1

)
whereA1 is (m− 1)× (n− 1) andB1 is (n− 1)× (m− 1). If m= 1, let Q = X, R= Y,
S = (σa), andT = ( τ0 ). Otherwise we haveA1 = Q1S1R−1

1 and B1 = R1T1Q−1
1 by

induction, and we can let

Q = X

(
1 0
0 Q1

)
, R= Y

(
1 0
0 R1

)
, S=

(
σ aR1

0 S1

)
, T =

(
τ BQ1

0 T1

)
.

All conditions are now fulfilled. 2

Theorem 2 Let G be an arbitrary graph, and let(σ1, . . . , σl ) be such thatσ j = Sj j = Tj j

or σ j = 0 = Sj j Tj j when G01 = QSR−1 and G10 = RT Q−1 as in the lemma, where
l = min(|U0| , |U1|). Then p(G×H) satisfies the identities of Theorem1.

Proof: Proceeding as in the proof of Theorem 1, we have(
Q−1⊗ I |V0| O

O R−1⊗ I |V1|

)
G×H

(
Q⊗ I |V0| O

O R⊗ I |V1|

)
=
(

I |U0| ⊗ H00 S⊗ H01

T ⊗ H10 I |U1| ⊗ H11

)
.

This time a row and column permutation converts the right-hand matrix to a blocktriangular
form, with zeroes below the diagonal blocks. Each block on the diagonal is eitherH ↑ σ j

or H00 or H11, or of the form(
H00 σH01

τH10 H11

)
, σ τ = 0.

In the latter case the characteristic polynomial is clearlyp(H00)p(H11) = p(H ↑ 0), so
the remainder of the proof of Theorem 1 carries over in general. 2

The proof of the lemma shows that the numbersσ 2
1 , . . . , σ

2
p are the characteristic roots

of G01G10, when|U0| ≤ |U1|, otherwise they are the characteristic roots ofG10G01. Either
square root ofσ 2

j can be chosen, since the matrixH ↑ σ is similar toH ↑ (−σ).
We have now reduced the problem of computingp(G×H) to the problem of computing

the characteristic polynomial of the graphsH ↑ σ . The latter is easy whenσ = 0, and
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some graphsG have only a few nonzero singular values. For example, ifG is the complete
bipartite graph having partsU0 andU1 of sizesm andn, all singular values vanish except
for σ = √mn.

If H is small, and if only a few nonzeroσ need to be considered, the computation of
p(H ↑ σ) can be carried out directly. For example, it turns out that

λ −1 −σ 0 0
−1 λ 0 0 −σ
−σ 0 λ −1 0
0 0 −1 λ −1
0 −σ 0 −1 λ

 = (λ2+ λ− σ 2)
(
λ3− λ2− (2+ σ 2)λ+ 2

) ;

so we can compute the spectrum ofG×H by solving a few quadratic and cubic equations,
whenH is this particular 5-vertex graph (a partitioned 5-cycle). But it is interesting to look
for large families of graphs for which simple formulas yieldp(H ↑ σ) as a function ofσ .

One such family consists of graphs that have only one edge crossing the partition. Let
H00 and H11 be graphs onV0 and V1, and form the graphH = H00 •−• H11 by adding
a single edge between designated verticesx0 ∈ V0 and x1 ∈ V1. Then a glance at the
adjacency matrix ofH shows that

p(H ↑ σ) = p(H00)p(H11)− σ 2 p(H00 | V0\x0)p(H11 | V1\x1) .

(The special caseσ = 1 of this formula is Theorem 4.2(ii) of [5].)
Another case wherep(H ↑ σ) has a simple form arises when the matrices

H0 =
(

H00 0
0 H11

)
and H1 =

(
0 H01

H10 0

)
commute with each other. Then it is well known [2] that the eigenvalues ofH0+ σH1 are
λ j + σµ j , for some ordering of the eigenvaluesλ j of H0 andµ j of H1. Let us say that
(V0,V1) is acompatible partitionof H if H0H1 = H1H0, i.e., if

H00H01 = H01H11 and H11H10 = H10H00 .

WhenH is undirected, so thatH00 = H T
00 andH11 = H T

11 andH10 = H T
01, the compatibility

condition boils down to the single relation

H00H01 = H01H11. (∗)

Let m = |V0| andn = |V1|, so thatH00 is m×m, H01 is m× n, andH11 is n× n. One
obvious way to satisfy(∗) is to let H00 andH11 both be zero, so thatH is bipartite as well
asG. ThenH ↑ σ is simplyσH , theσ -fold repetition of the arcs ofH , and its eigenvalues
are just those ofH multiplied by σ . For example, ifG is the M-cube PM

2 and H is a
pathPN on N points, and ifU0 consists of the vertices of even parity inG while V0 is one
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Figure 3. P3
2 ×P3.

of H ’s bipartite parts, the characteristic polynomial ofG×H is

∏
1≤ j≤M
1≤k≤N

(
λ− (2N − 4 j ) cos

kπ

N + 1

)(M
j )/2

,

because of the well-known eigenvalues ofG andH [1]. Figure 3 illustrates this construction
in the special caseM = N = 3. The smallest pair of cospectral graphs, and , is
obtained in a similar way by considering the eigenvalues ofP3×P3 andPT

3 ×P3 [4].
Another simple way to satisfy the compatibility condition(∗) with symmetric matri-

cesH00 andH11 is to let H01 consist entirely of 1s, and to letH00 andH11 both be regular
graphs of the same degreed. Then the eigenvalues ofH0 are (λ1, . . . , λm, λ

′
1, . . . , λ

′
n),

where(λ1, . . . , λm) belong toH00 and (λ′2, . . . , λ
′
n) belong toH11 andλ1 = λ′1 = d.

The eigenvalues ofH1 are (
√

mn,−√mn, 0, . . . ,0). We can match the eigenvalues
of H0 properly with those ofH1 by looking at the common eigenvectors(1, . . . ,1)T and
(1, . . . ,1,−1, . . . ,−1)T that correspond tod in H0 and±√mn in H1; the eigenvalues of
H ↑ σ are therefore

(d + σ√mn, λ2, . . . , λm, d − σ
√

mn, λ′2, . . . , λ
′
n) .

Yet another easy way to satisfy(∗) is to assume thatm= n and to letH00 = H11 commute
with H01. One general construction of this kind arises when the vertices ofV0 andV1 are
the elements of a group, and whenH00 = H11 is a Cayley graph on that group. In other
words, two elementsα andβ are adjacent inH00 iff αβ−1 ∈ X, whereX is an arbitrary set
of group elements closed under inverses. And we can letα ∈ V0 be adjacent toβ ∈ V1 iff
αβ−1 ∈ Y, whereY is any normal subgroup. ThenH00 commutes withH01. The effect
is to make the cosets ofY fully interconnected betweenV0 andV1, while retaining a more
interesting Cayley graph structure insideV0 andV1. If Y is the trivial subgroup, so that
H01 is simply the identity matrix, our partitioned tensor productG×H becomes simply the
ordinary Cartesian productG ⊕ H = I |U | ⊗ H + G ⊗ I |V |. But in many other cases this
construction gives something more general.
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A fourth family of compatible partitions is illustrated by the following graphH in which
m= 6 andn = 12:

0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0
1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0
1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1
0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0


In general, letC2k be the matrix of a cyclic permutation on 2k elements, and letm = 2k,
n = 4k. Then we obtain a compatible partition if

H00 =
(
C j

2k + Ck
2k + C− j

2k

)
, H01 = (I2k C2k) , H11 =

(
C j

2k + C− j
2k Ck+1

2k

Ck−1
2k C j

2k + C− j
2k

)
.

The 18× 18 example matrix is the special casej = 2, k = 3. The eigenvalues ofH ↑ σ
in general are

ω j l + ω− j l + 1, ω j l + ω− j l − 1+
√

2σ, ω j l + ω− j l − 1−
√

2σ

for 0≤ l < 2k, whereω = eπ i /k.
Compatible partitionings of digraphs are not difficult to construct. But it would be

interesting to find further examples of undirected graphs, without multiple edges, that have
a compatible partition.
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