Partitioned Tensor Products and Their Spectra

DONALD E. KNUTH
Department of Computer Science, Stanford University, Stanford, CA 94305-9045
Received March 9, 1995

Abstract

A pleasant family of graphs defined by Godsil and McKay is shown to have easily computed eigenvalues in many cases.

Keywords: partitioned tensor product, graph spectra, generalized products of graphs, Cayley graph, compatible partition

Let G and H be directed graphs on the respective vertices U and V, and suppose that the vertex sets have each been partitioned into disjoint subsets $U=U_{0} \cup U_{1}$ and $V=V_{0} \cup V_{1}$. The partitioned tensor product $G \times H$ of G and H with respect to this partitioning is defined as follows:
a) Each vertex of U_{0} is replaced by a copy of $H \mid V_{0}$, the subgraph of H induced by V_{0};
b) Each vertex of U_{1} is replaced by a copy of $H \mid V_{1}$;
c) Each arc of G that runs from U_{0} to U_{1} is replaced by a copy of the arcs of H that run from V_{0} to V_{1};
d) Each arc of G that runs from U_{1} to U_{0} is replaced by a copy of the arcs of H that run from V_{1} to V_{0}.

For example, Figure 1 shows two partitioned tensor products. The example in Figure 1(b) is undirected; this is the special case of a directed graph where each undirected edge corresponds to a pair of arcs in opposite directions. Arcs of G that stay within U_{0} or U_{1} do not contribute to $G \times H$, so we may assume that no such arcs exist (i.e., that G is bipartite).

Figure 2 shows what happens if we interchange the roles of U_{0} and U_{1} in G but leave everything else intact. (Equivalently, we could interchange the roles of V_{0} and V_{1}.) These graphs, which may be denoted $G^{R} \times H$ to distinguish them from the graphs $G \times H$ in Figure 1, might look quite different from their mates, yet it turns out that the characteristic polynomials of $G \times H$ and $G^{R} \subseteq H$ are strongly related.

Let $E_{i j}$ be the arcs from U_{i} to U_{j} in G, and $F_{i j}$ the arcs from V_{i} to V_{j} in H; multiple arcs are allowed, so $E_{i j}$ and $F_{i j}$ are multisets. It follows that $G \times H$ has $\left|U_{0}\right|\left|V_{0}\right|+\left|U_{1}\right|\left|V_{1}\right|$ vertices and $\left|U_{0}\right|\left|F_{00}\right|+\left|U_{1}\right|\left|F_{11}\right|+\left|E_{01}\right|\left|F_{01}\right|+\left|E_{10}\right|\left|\overline{F_{10}}\right|$ arcs. Similarly, $G^{R} \times H$ has $\left|U_{1}\right|\left|V_{0}\right|+\left|U_{0}\right|\left|V_{1}\right|$ vertices and $\left|U_{1}\right|\left|F_{00}\right|+\left|U_{0}\right|\left|F_{11}\right|+\left|E_{10}\right|\left|F_{01}\right|+\left|E_{01}\right|\left|F_{10}\right|$ arcs.

Figure 1. Partitioned tensor products, directed and undirected.

(a)

(b)

Figure 2. Dual products after right-left reflection of G.

The definition of partitioned tensor product is due to Godsil and McKay [3], who proved the remarkable fact that

$$
p(G \times H) p\left(H \mid V_{0}\right)^{\left|U_{1}\right|-\left|U_{0}\right|}=p\left(G^{T} \times H\right) p\left(H \mid V_{1}\right)^{\left|U_{1}\right|-\left|U_{0}\right|}
$$

where p denotes the characteristic polynomial of a graph. They also observed [4] that Figures 1(b) and 2(b) represent the smallest pair of connected undirected graphs having the same spectrum (the same p). The purpose of the present note is to refine their results by showing how to calculate $p(G \times H)$ explicitly in terms of G and H.

We can use the symbols G and H to stand for the adjacency matrices as well as for the graphs themselves. Thus we have

$$
G=\left(\begin{array}{ll}
G_{00} & G_{01} \\
G_{10} & G_{11}
\end{array}\right) \quad \text { and } \quad H=\left(\begin{array}{ll}
H_{00} & H_{01} \\
H_{10} & H_{11}
\end{array}\right)
$$

in partitioned form, where $G_{i j}$ and $H_{i j}$ denote the respective adjacency matrices corresponding to the arcs $E_{i j}$ and $F_{i j}$. (These submatrices are not necessarily square; $G_{i j}$ has size $\left|U_{i}\right| \times\left|U_{j}\right|$ and $H_{i j}$ has size $\left|V_{i}\right| \times\left|V_{j}\right|$.) It follows by definition that

$$
G \underline{\times} H=\left(\begin{array}{ll}
I_{\left|U_{0}\right|} \otimes H_{00} & G_{01} \otimes H_{01} \\
G_{10} \otimes H_{10} & I_{\left|U_{1}\right|} \otimes H_{11}
\end{array}\right)
$$

where \otimes denotes the Kronecker product or tensor product [7, page 8] and I_{k} denotes an identity matrix of size $k \times k$.

Let $H \uparrow \sigma$ denote the graph obtained from H by σ-fold repetition of each arc that joins V_{0} to V_{1}. In matrix form

$$
H \uparrow \sigma=\left(\begin{array}{cc}
H_{00} & \sigma H_{01} \\
\sigma H_{10} & H_{11}
\end{array}\right) .
$$

This definition applies to the adjacency matrix when σ is any complex number, but of course $H \uparrow \sigma$ is difficult to "draw" unless σ is a nonnegative integer. We will show that the characteristic polynomial of $G \times H$ factors into characteristic polynomials of graphs $H \uparrow \sigma$, times a power of the characteristic polynomials of H_{00} or H_{11}. The proof is simplest when G is undirected.

Theorem 1 Let G be an undirected graph, and let $\left(\sigma_{1}, \ldots, \sigma_{l}\right)$ be the singular values of $G_{01}=G_{10}^{T}$, where $l=\min \left(\left|U_{0}\right|,\left|U_{1}\right|\right)$. Then

$$
p(G \times H)= \begin{cases}\left(\prod_{j=1}^{l} p\left(H \uparrow \sigma_{j}\right)\right) p\left(H_{00}\right)^{\left|U_{0}\right|-\left|U_{1}\right|}, & \text { if }\left|U_{0}\right| \geq\left|U_{1}\right| ; \\ \left(\prod_{j=1}^{l} p\left(H \uparrow \sigma_{j}\right)\right) p\left(H_{11}\right)^{\left|U_{1}\right|-\left|U_{0}\right|}, & \text { if }\left|U_{1}\right| \geq\left|U_{0}\right| .\end{cases}
$$

Proof: Any real $m \times n$ matrix A has a singular value decomposition

$$
A=Q S R^{T}
$$

where Q is an $m \times m$ orthogonal matrix, R is an $n \times n$ orthogonal matrix, and S is an $m \times n$ matrix with $S_{j j}=\sigma_{j} \geq 0$ for $1 \leq j \leq \min (m, n)$ and $S_{i j}=0$ for $i \neq j$ [6, page 16]. The numbers $\sigma_{1}, \ldots, \sigma_{\min (m, n)}$ are called the singular values of A.

Let $m=\left|U_{0}\right|$ and $n=\left|U_{1}\right|$, and suppose that $Q S R^{T}$ is the singular value decomposition of G_{01}. Then $\left(\sigma_{1}, \ldots, \sigma_{l}\right)$ are the nonnegative eigenvalues of the bipartite graph G, and we have

$$
\left(\begin{array}{cc}
Q^{T} \otimes I_{\left|V_{0}\right|} & O \\
O & R^{T} \otimes I_{\left|V_{1}\right|}
\end{array}\right) G \times H\left(\begin{array}{cc}
Q \otimes I_{\left|V_{0}\right|} & O \\
O & R \otimes I_{\left|V_{1}\right|}
\end{array}\right)=\left(\begin{array}{cc}
I_{\left|U_{0}\right|} \otimes H_{00} & S \otimes H_{01} \\
S^{T} \otimes H_{10} & I_{\left|U_{1}\right|} \otimes H_{11}
\end{array}\right)
$$

because $G_{10}=R S^{T} Q^{T}$. Row and column permutations of this matrix transform it into the block diagonal form

$$
\left(\begin{array}{ccccc}
H \uparrow \sigma_{1} & & & & \\
& \ddots & & \\
& & & H \uparrow \sigma_{l} & \\
& & & & \\
& & & &
\end{array}\right)
$$

where D consists of $m-n$ copies of H_{00} if $m \geq n$, or $n-m$ copies of H_{11} if $n \geq m$.
A similar result holds when G is directed, but we cannot use the singular value decomposition because the eigenvalues of G might not be real and the elementary divisors of $\lambda I-G$ might not be linear. The following lemma can be used in place of the singular value decomposition in such cases.

Lemma Let A and B be arbitrary matrices of complex numbers, where A is $m \times n$ and B is $n \times m$. Then we can write

$$
A=Q S R^{-1}, \quad B=R T Q^{-1}
$$

where Q is a nonsingular $m \times m$ matrix, R is a nonsingular $n \times n$ matrix, S is an $m \times n$ matrix, T is an $n \times m$ matrix, and the matrices (S, T) are triangular with consistent diagonals:

$$
\begin{aligned}
& S_{i j}=T_{i j}=0 \quad \text { for } i>j ; \\
& S_{j j}=T_{j j} \quad \text { or } \quad S_{j j} T_{j j}=0 \quad \text { for } 1 \leq j \leq \min (m, n) .
\end{aligned}
$$

Proof: We may assume that $m \leq n$. If $A B$ has a nonzero eigenvalue λ, let σ be any square root of λ and let x be a nonzero m-vector such that $A B x=\sigma^{2} x$. Then the n-vector $y=B x / \sigma$ is nonzero, and we have

$$
A y=\sigma x, \quad B x=\sigma y .
$$

On the other hand, if all eigenvalues of $A B$ are zero, let x be a nonzero vector such that $A B x=0$. Then if $B x \neq 0$, let $y=B x$. If $B x=0$, let y be any nonzero vector such that
$A y=0$; this is possible unless all n columns of A are linearly independent, in which case we must have $m=n$ and we can find y such that $A y=x$. In all cases we have therefore demonstrated the existence of nonzero vectors x and y such that

$$
A y=\sigma x, \quad B x=\tau y, \quad \sigma=\tau \quad \text { or } \quad \sigma \tau=0
$$

Let X be a nonsingular $m \times m$ matrix whose first column is x, and let Y be a nonsingular $n \times n$ matrix whose first column is y. Then

$$
X^{-1} A Y=\left(\begin{array}{cc}
\sigma & a \\
0 & A_{1}
\end{array}\right), \quad Y^{-1} B X=\left(\begin{array}{cc}
\tau & b \\
0 & B_{1}
\end{array}\right)
$$

where A_{1} is $(m-1) \times(n-1)$ and B_{1} is $(n-1) \times(m-1)$. If $m=1$, let $Q=X, R=Y$, $S=(\sigma a)$, and $T=\binom{\tau}{0}$. Otherwise we have $A_{1}=Q_{1} S_{1} R_{1}^{-1}$ and $B_{1}=R_{1} T_{1} Q_{1}^{-1}$ by induction, and we can let

$$
Q=X\left(\begin{array}{cc}
1 & 0 \\
0 & Q_{1}
\end{array}\right), \quad R=Y\left(\begin{array}{cc}
1 & 0 \\
0 & R_{1}
\end{array}\right), \quad S=\left(\begin{array}{cc}
\sigma & a R_{1} \\
0 & S_{1}
\end{array}\right), \quad T=\left(\begin{array}{cc}
\tau & B Q_{1} \\
0 & T_{1}
\end{array}\right) .
$$

All conditions are now fulfilled.

Theorem 2 Let G be an arbitrary graph, and let $\left(\sigma_{1}, \ldots, \sigma_{l}\right)$ be such that $\sigma_{j}=S_{j j}=T_{j j}$ or $\sigma_{j}=0=S_{j j} T_{j j}$ when $G_{01}=Q S R^{-1}$ and $G_{10}=R T Q^{-1}$ as in the lemma, where $l=\min \left(\left|U_{0}\right|,\left|U_{1}\right|\right)$. Then $p(G \times H)$ satisfies the identities of Theorem 1 .

Proof: Proceeding as in the proof of Theorem 1, we have

$$
\left(\begin{array}{cc}
Q^{-1} \otimes I_{\left|V_{0}\right|} & O \\
O & R^{-1} \otimes I_{\left|V_{1}\right|}
\end{array}\right) G \underline{\times} H\left(\begin{array}{cc}
Q \otimes I_{\left|V_{0}\right|} & O \\
O & R \otimes I_{\left|V_{1}\right|}
\end{array}\right)=\left(\begin{array}{cc}
I_{\left|U_{0}\right|} \otimes H_{00} & S \otimes H_{01} \\
T \otimes H_{10} & I_{\left|U_{1}\right|} \otimes H_{11}
\end{array}\right) .
$$

This time a row and column permutation converts the right-hand matrix to a block triangular form, with zeroes below the diagonal blocks. Each block on the diagonal is either $H \uparrow \sigma_{j}$ or H_{00} or H_{11}, or of the form

$$
\left(\begin{array}{cc}
H_{00} & \sigma H_{01} \\
\tau H_{10} & H_{11}
\end{array}\right), \quad \sigma \tau=0 .
$$

In the latter case the characteristic polynomial is clearly $p\left(H_{00}\right) p\left(H_{11}\right)=p(H \uparrow 0)$, so the remainder of the proof of Theorem 1 carries over in general.

The proof of the lemma shows that the numbers $\sigma_{1}^{2}, \ldots, \sigma_{p}^{2}$ are the characteristic roots of $G_{01} G_{10}$, when $\left|U_{0}\right| \leq\left|U_{1}\right|$, otherwise they are the characteristic roots of $G_{10} G_{01}$. Either square root of σ_{j}^{2} can be chosen, since the matrix $H \uparrow \sigma$ is similar to $H \uparrow(-\sigma)$.

We have now reduced the problem of computing $p(G \times H)$ to the problem of computing the characteristic polynomial of the graphs $H \uparrow \sigma$. The latter is easy when $\sigma=0$, and
some graphs G have only a few nonzero singular values. For example, if G is the complete bipartite graph having parts U_{0} and U_{1} of sizes m and n, all singular values vanish except for $\sigma=\sqrt{m n}$.

If H is small, and if only a few nonzero σ need to be considered, the computation of $p(H \uparrow \sigma)$ can be carried out directly. For example, it turns out that

$$
\left(\begin{array}{ccccc}
\lambda & -1 & -\sigma & 0 & 0 \\
-1 & \lambda & 0 & 0 & -\sigma \\
-\sigma & 0 & \lambda & -1 & 0 \\
0 & 0 & -1 & \lambda & -1 \\
0 & -\sigma & 0 & -1 & \lambda
\end{array}\right)=\left(\lambda^{2}+\lambda-\sigma^{2}\right)\left(\lambda^{3}-\lambda^{2}-\left(2+\sigma^{2}\right) \lambda+2\right) ;
$$

so we can compute the spectrum of $G \underline{\times} H$ by solving a few quadratic and cubic equations, when H is this particular 5-vertex graph (a partitioned 5-cycle). But it is interesting to look for large families of graphs for which simple formulas yield $p(H \uparrow \sigma)$ as a function of σ.

One such family consists of graphs that have only one edge crossing the partition. Let H_{00} and H_{11} be graphs on V_{0} and V_{1}, and form the graph $H=H_{00} \bullet H_{11}$ by adding a single edge between designated vertices $x_{0} \in V_{0}$ and $x_{1} \in V_{1}$. Then a glance at the adjacency matrix of H shows that

$$
p(H \uparrow \sigma)=p\left(H_{00}\right) p\left(H_{11}\right)-\sigma^{2} p\left(H_{00} \mid V_{0} \backslash x_{0}\right) p\left(H_{11} \mid V_{1} \backslash x_{1}\right) .
$$

(The special case $\sigma=1$ of this formula is Theorem 4.2(ii) of [5].)
Another case where $p(H \uparrow \sigma)$ has a simple form arises when the matrices

$$
H_{0}=\left(\begin{array}{cc}
H_{00} & 0 \\
0 & H_{11}
\end{array}\right) \quad \text { and } \quad H_{1}=\left(\begin{array}{cc}
0 & H_{01} \\
H_{10} & 0
\end{array}\right)
$$

commute with each other. Then it is well known [2] that the eigenvalues of $H_{0}+\sigma H_{1}$ are $\lambda_{j}+\sigma \mu_{j}$, for some ordering of the eigenvalues λ_{j} of H_{0} and μ_{j} of H_{1}. Let us say that (V_{0}, V_{1}) is a compatible partition of H if $H_{0} H_{1}=H_{1} H_{0}$, i.e., if

$$
H_{00} H_{01}=H_{01} H_{11} \quad \text { and } \quad H_{11} H_{10}=H_{10} H_{00}
$$

When H is undirected, so that $H_{00}=H_{00}^{T}$ and $H_{11}=H_{11}^{T}$ and $H_{10}=H_{01}^{T}$, the compatibility condition boils down to the single relation

$$
\begin{equation*}
H_{00} H_{01}=H_{01} H_{11} . \tag{*}
\end{equation*}
$$

Let $m=\left|V_{0}\right|$ and $n=\left|V_{1}\right|$, so that H_{00} is $m \times m, H_{01}$ is $m \times n$, and H_{11} is $n \times n$. One obvious way to satisfy $(*)$ is to let H_{00} and H_{11} both be zero, so that H is bipartite as well as G. Then $H \uparrow \sigma$ is simply σH, the σ-fold repetition of the arcs of H, and its eigenvalues are just those of H multiplied by σ. For example, if G is the M-cube P_{2}^{M} and H is a path P_{N} on N points, and if U_{0} consists of the vertices of even parity in G while V_{0} is one

Figure 3. $\quad P_{2}^{3} \times P_{3}$.
of H 's bipartite parts, the characteristic polynomial of $G \times H$ is

$$
\prod_{\substack{1 \leq j \leq M \\ 1 \leq k \leq N}}\left(\lambda-(2 N-4 j) \cos \frac{k \pi}{N+1}\right)^{\binom{M}{j} / 2}
$$

because of the well-known eigenvalues of G and H [1]. Figure 3 illustrates this construction in the special case $M=N=3$. The smallest pair of cospectral graphs, X and \boxminus, is obtained in a similar way by considering the eigenvalues of $P_{3} \times P_{3}$ and $P_{3}^{T} \times P_{3}$ [4].

Another simple way to satisfy the compatibility condition $(*)$ with symmetric matrices H_{00} and H_{11} is to let H_{01} consist entirely of 1 s , and to let H_{00} and H_{11} both be regular graphs of the same degree d. Then the eigenvalues of H_{0} are $\left(\lambda_{1}, \ldots, \lambda_{m}, \lambda_{1}^{\prime}, \ldots, \lambda_{n}^{\prime}\right)$, where $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ belong to H_{00} and $\left(\lambda_{2}^{\prime}, \ldots, \lambda_{n}^{\prime}\right)$ belong to H_{11} and $\lambda_{1}=\lambda_{1}^{\prime}=d$. The eigenvalues of H_{1} are $(\sqrt{m n},-\sqrt{m n}, 0, \ldots, 0)$. We can match the eigenvalues of H_{0} properly with those of H_{1} by looking at the common eigenvectors $(1, \ldots, 1)^{T}$ and $(1, \ldots, 1,-1, \ldots,-1)^{T}$ that correspond to d in H_{0} and $\pm \sqrt{m n}$ in H_{1}; the eigenvalues of $H \uparrow \sigma$ are therefore

$$
\left(d+\sigma \sqrt{m n}, \lambda_{2}, \ldots, \lambda_{m}, d-\sigma \sqrt{m n}, \lambda_{2}^{\prime}, \ldots, \lambda_{n}^{\prime}\right)
$$

Yet another easy way to satisfy $(*)$ is to assume that $m=n$ and to let $H_{00}=H_{11}$ commute with H_{01}. One general construction of this kind arises when the vertices of V_{0} and V_{1} are the elements of a group, and when $H_{00}=H_{11}$ is a Cayley graph on that group. In other words, two elements α and β are adjacent in H_{00} iff $\alpha \beta^{-1} \in X$, where X is an arbitrary set of group elements closed under inverses. And we can let $\alpha \in V_{0}$ be adjacent to $\beta \in V_{1}$ iff $\alpha \beta^{-1} \in Y$, where Y is any normal subgroup. Then H_{00} commutes with H_{01}. The effect is to make the cosets of Y fully interconnected between V_{0} and V_{1}, while retaining a more interesting Cayley graph structure inside V_{0} and V_{1}. If Y is the trivial subgroup, so that H_{01} is simply the identity matrix, our partitioned tensor product $G \times H$ becomes simply the ordinary Cartesian product $G \oplus H=I_{|U|} \otimes H+G \otimes I_{|V|}$. But in many other cases this construction gives something more general.

A fourth family of compatible partitions is illustrated by the following graph H in which $m=6$ and $n=12$:

$$
\left(\begin{array}{llllllllllllllllll}
0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

In general, let $C_{2 k}$ be the matrix of a cyclic permutation on $2 k$ elements, and let $m=2 k$, $n=4 k$. Then we obtain a compatible partition if

$$
H_{00}=\left(C_{2 k}^{j}+C_{2 k}^{k}+C_{2 k}^{-j}\right), \quad H_{01}=\left(\begin{array}{ll}
I_{2 k} & C_{2 k}
\end{array}\right), \quad H_{11}=\left(\begin{array}{cc}
C_{2 k}^{j}+C_{2 k}^{-j} & C_{2 k}^{k+1} \\
C_{2 k}^{k-1} & C_{2 k}^{j}+C_{2 k}^{-j}
\end{array}\right) .
$$

The 18×18 example matrix is the special case $j=2, k=3$. The eigenvalues of $H \uparrow \sigma$ in general are

$$
\omega^{j l}+\omega^{-j l}+1, \quad \omega^{j l}+\omega^{-j l}-1+\sqrt{2} \sigma, \quad \omega^{j l}+\omega^{-j l}-1-\sqrt{2} \sigma
$$

for $0 \leq l<2 k$, where $\omega=e^{\pi i / k}$.
Compatible partitionings of digraphs are not difficult to construct. But it would be interesting to find further examples of undirected graphs, without multiple edges, that have a compatible partition.

References

1. Dragoš M. Cvetković, Michael Doob, and Horst Sachs, Spectra of Graphs, Academic Press, New York, 1980.
2. G. Frobenius, "Über vertauschbare Matrizen," Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, 1896, pp. 601-614. Reprinted in his Gesammelte Abhandlungen, Springer, Berlin, 1968, Vol. 2, pp. 705-718.
3. C. Godsil and B. McKay, "Products of graphs and their spectra," in Combinatorial Mathematics IV, A. Dold and B. Eckmann (Eds.), Lecture Notes in Mathematics, Vol. 560, pp. 61-72, 1975.
4. C. Godsil and B. McKay, "Some computational results on the spectra of graphs," in Combinatorial Mathematics IV, A. Dold and B. Eckmann (Eds.), Lecture Notes in Mathematics, Vol. 560, pp. 73-82, 1975.
5. C.D. Godsil and B.D. McKay, "Constructing cospectral graphs," Equationes Mathematica 25 (1982), 257268.
6. Gene H. Golub and Charles F. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, 1983.
7. Marvin Marcus and Henrik Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Boston, 1964.
