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Abstract. We characterize the distance-regular graphs with diameter three by giving an expression for the number
of vertices at distance two from each given vertex, in terms of the spectrum of the graph.
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1. Introduction

It was proven by the second author [6] that if a graphG has the spectrum of a distance-
regular graph with diameter three, and has the right number of vertices at distance two from
each given vertex, thenG is itself distance-regular. Here we drop the assumption thatG
has the spectrum of a distance-regular graph. We only assume thatG is regular with four
distinct eigenvalues and prove thatG is distance-regular if and only if the number of vertices
at distance two from each given vertex satisfies an expression in terms of the spectrum ofG.

To obtain our results we use quotient matrices of the adjacency matrix of the graph with
respect to some partition of the vertices. Theneighbourhood partitionof some vertexx is the
partition of the vertices into{x}, the set of neighbours ofx, and the set of all other vertices.
Thedistance partitionof x is the partition of the vertices intoXi , i = 0, 1, . . . , whereXi

is the set of vertices at distancei from x. The quotient matrixof the adjacency matrix
with respect to some partition of the vertices is obtained by symmetrically partitioning
the adjacency matrix according to the partition of the vertices and then taking the average
row sums in the blocks of the partition. The partition is calledregular if every block has
constant row sum. We shall use the fact that the eigenvalues of the quotient matrix interlace
the eigenvalues of the adjacency matrix. If the interlacing is tight then the partition is regular
(cf. [5] or [1]).

As general reference for distance-regular graphs we use the book of Brouwer et al. [1].

2. The characterization

To prove the main result we first need a characterization of strongly regular graphs.

Lemma Let G be a connected regular graph onv vertices with eigenvalues k> λ2 ≥
· · · ≥ λv. Let B be the quotient matrix with respect to the neighbourhood partition of an
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arbitrary vertex x. Suppose B has eigenvalues k≥ µ2 ≥ µ3. If for every vertex x one of
the equalitiesλ2 = µ2 andλv = µ3 holds, then G is strongly regular.

Proof: Let G have adjacency matrixA. Fix an arbitrary vertexx and suppose one of the
equalities holds, sayµi is also an eigenvalue ofA. Let V be the 3-dimensional subspace of
Rv of vectors that are constant over the parts of the neighbourhood partition ofx. ThenA
has an eigenvectoru = (u0, u1, . . . ,u1, u2, . . . ,u2)

T with eigenvalueµi in V (cf. [5, Thm.
2.1.ii] or [1, Section 3.3]). Also the all-one vectorj is an eigenvector (with eigenvaluek)
of A in V . FurthermoreA(1, 0, . . . ,0)T = (0, 1, . . . ,1, 0, . . . ,0)T ∈ V . Sinceu, j and
(1, 0, . . . ,0)T are linearly independent vectors inV (otherwiseu1 = u2, and applyingA
givesu0 = u2, which gives a contradiction), we have thatAV ⊆ V . So we have three
linearly independent eigenvectors ofA in V , and it follows that the neighbourhood partition
of x is regular. So the number of common neighbours ofx and a vertexy adjacent tox
is independent ofy. This holds for everyx and sinceG is connected, it follows that this
number is also independent ofx, and so for every vertex the neighbourhood partition is
regular with the same quotient matrix, proving thatG is strongly regular. 2

Theorem Let G be a connected regular graph onv vertices with four distinct eigenvalues,
say with spectrum6 = {[k]1, [λ2]m2, [λ3]m3, [λ4]m4}. Let p be the polynomial given by
p(x) = (x − λ2)(x − λ3)(x − λ4) = x3 + p2x2 + p1x + p0 and let λ be given by
λ = (k3 +m2λ

3
2 +m3λ

3
3 +m4λ

3
4)/vk. Then G is distance-regular if and only if for every

vertex x the number of vertices k2 at distance two from x equals

f (6) = k(k− 1− λ)2
(k− λ)(λ+ p2)− k− p1+ p0

.

Proof: Suppose thatG is distance-regular. Consider the quotient matrixC with respect
to the distance partition of some arbitrary vertexx. Then

C =


0 k 0 0
1 λ k− 1− λ 0
0 c k− c− b b
0 0 k− a a

,
for somea, b andc. Note thatλ = trace(A3)/vk equals the number of common neighbours
of two adjacent vertices. SinceC has eigenvaluesk, λ2, λ3 andλ4, it follows that the
characteristic polynomial ofC equals

(x − k)p(x) = det(x I − C) = det


x −k x− k 0
−1 x − λ x − k 0
0 −c x− k −b
0 0 x − k x− a


= (x − k)(x3+ (b+ c− λ− a)x2+ (λa− ca− bλ− k+ c)x + ka− ca− bk).
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Now it follows that

c = (k− λ)(λ+ p2)− k− p1+ p0

k− 1− λ ,

and sincek2c = k(k− 1− λ), we have thatk2 = f (6).
Suppose now thatk2 = f (6) for every vertexx. Let a, b and c be given byc =

k(k− 1− λ)/ f (6),a = k− (λk+ p2k+ p0)/c andb = a+ λ− c+ p2. Then the matrix
C as given above has eigenvaluesk, λ2, λ3 andλ4 (again, this follows by inspecting the
characteristic polynomial).

First suppose thatf (6) < v − 1− k, i.e.,G has diameter three. We shall prove that the
quotient matrixB with respect to the distance partition ofx equalsC, thus proving thatG
is distance-regular aroundx. Without loss of generality we assume thatk > λ2 > λ3 > λ4.
Suppose thatB has eigenvaluesk ≥ µ2 ≥ µ3 ≥ µ4. Since the eigenvalues ofB interlace
the eigenvalues of the adjacency matrixA of G, it follows thatλ2 ≥ µ2 andµ4 ≥ λ4.

Since G is a connected regular graph with four distinct eigenvalues, the number of
triangles throughx equals1 = 1

2kλ (cf. [2]). From this it follows thatB22 = λ, and
consequentlyB23 = k− 1− λ andB32 = c. SoB = C + E, whereE equals

E =


0 0 0 0
0 0 0 0
0 0 ε −ε
0 0 −δ δ


for someε andδ. To use inequalities for eigenvalues we want symmetric matrices. Therefore
we multiply B,C and E from the left byK 1/2 and from the right byK−1/2, whereK =
diag(1, k, f (6), v−1− k− f (6)), to getB̃, C̃ andẼ, respectively. Now the eigenvalues
have not changed and̃B is symmetric, but to show that̃C (and consequentlỹE) is symmetric,
we have to prove that(v − 1− k− f (6))(k− a) = f (6)b. This follows since

((v − 1− k− f (6))(k− a)− f (6)b)c

= (v − 1− k)(k− a)c− f (6)c(k− a+ b)

= (v − 1− k)(λk+ p2k+ p0)− k(k− 1− λ)(k+ λ+ p2)

+ k((k− λ)(λ+ p2)− k− p1+ p0)

= v(λk+ p2k+ p0)− (k3+ p2k2+ p1k+ p0) = 0.

The last equation follows by taking the trace of the equationp(A) = (p(k)/v)J, whereA
is the adjacency matrix ofG, andJ is the all-one matrix (cf. [2, 7]).

Letw1 = K 1/2(1, 1, 1, 1)T , then it is an eigenvector of both̃B andC̃ with eigenvaluek.
Letwi be an eigenvector of̃C with eigenvalueλi , i = 2, 3, 4, such that{w1, w2, w3, w4} is
orthogonal. Letvi = K−1/2wi , thenvi is eigenvector ofC with eigenvalueλi , i = 1, 2, 3, 4.
Now we shall prove that̃E = O or, equivalently, thatε = 0. Suppose thatε > 0. Now Ẽ
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is positive semidefinite, and so

µ2 ≥ w
T
2 B̃w2

wT
2w2

= λ2+ w
T
2 Ẽw2

wT
2w2

≥ λ2,

and sinceλ2 ≥ µ2 it follows thatµ2 = λ2 and Ẽw2 = o. Then alsoEv2 = o, and so
v23 = v24. Using thatv2 is eigenvector ofC with eigenvalueλ2, we find thatv2 = o, which
is a contradiction. Similarly we find thatv4 = o by assuming thatε < 0. Soε = 0 and
B = C. Thus the distance partition is regular, and since this holds for every vertex, we find
thatG is distance-regular.

Next suppose thatf (6) = v − 1− k, i.e.,G has diameter two. We shall show that this
cannot occur. Again, consider the matrixC as given above. From the equation(v − 1−
k− f (6))(k−a) = f (6)b it follows thatb = 0. LetB be the quotient matrix with respect
to the neighbourhood partition of an arbitrary vertexx, then

B =
0 k 0

1 λ k− 1− λ
0 c k− c

 .
Let B have eigenvaluesk, µ2 andµ3, then on one hand the eigenvalues ofC arek, µ2, µ3

anda, and on the other hand they arek, λ2, λ3 andλ4 and so we have one of the equalities
needed to apply our lemma. SoG is strongly regular, which is a contradiction with the fact
thatG has four distinct eigenvalues. 2

This theorem proves a conjecture by the second author [6]. Although he uses a different
expression forf (6), it is easily proven that the expressions are the same for any regular
graph with four eigenvalues (cf. [4]), that is,

f (6) = k(k− 1− λ)2
θ4− λ2− k

, whereθ4 = 1

vk

(
k4+m2λ

4
2+m3λ

4
3+m4λ

4
4

)
.

Proposition With the hypothesis of the previous theorem, if f (6) is integral and f(6) ≤
v − 1− k, then k2 ≥ f (6).

Proof: Suppose for some vertexx we havek2 < f (6). Consider the distance partition of
x and change this partition by movingf (6)−k2 vertices from the set of vertices at distance
three to the set of vertices at distance two. By repeating the second part of the proof of the
previous theorem, we find that the partition is regular, which is a contradiction. 2

In a distance-regular graphµ is the number of common neighbours of two vertices at
distance two. Here we find an easy way to see from the spectrum of a graph that it is
distance-regular with diameter three andµ = 1.

Corollary With the hypothesis of the theorem, G is distance-regular withµ = 1 if and
only if k− 1− λ = (k− λ)(λ+ p2)− k− p1+ p0 ≤ (v − 1− k)/k.
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Proof: If G is distance-regular withµ = 1, thenc = 1 in the proof of the theorem, and
the equation follows andk(k − 1− λ) = k2 ≤ v − 1− k. On the other hand, ifc = 1
then f (6) = k(k− 1− λ), which is integral and by assumption at mostv − 1− k. So the
proposition states thatk2 ≥ f (6). Since every vertex at distance two from a given vertex
has at least one common neighbour with that vertex, we have thatk2 ≤ k(k − 1− λ). So
k2 = f (6) and it follows from the theorem thatG is distance-regular, and nowµ = c = 1.

2

We conjecture that the proposition is also true without the conditions forf (6), i.e., that
for every connected regular graph with four distinct eigenvalues we have that the number
of verticesk2 at distance two from a given vertex is at leastf (6).

More evidence for the conjecture is given by a bound by the first author [3], which for
some cases coincides withf (6), and in many other cases is just slightly worse. IfG is
a connected regular graph with four distinct eigenvaluesk > λ2 > λ3 > λ4 then for the
number of verticesk2 at distance two from a given vertexx we have that

k2 ≥ v − 1− k− v

1+ γ 2

v−1

, whereγ =
∑
j 6=1

∏
i 6=1, j

|k− λi |
|λ j − λi | .

The bound is tight for every vertex if and only ifG is distance-regular such that the distance
three graphG3 of G is a strongly regular(v, k3, λ

∗, λ∗) graph for someλ∗.
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