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Abstract. In [3] Cameron et al. classified strongly regular graphs with strongly regular subconstituents. Here
we prove a theorem which implies that distance-regular graphs with strongly regular subconstituents are precisely
the Taylor graphs and graphs wilh = 0 anda; € {0, 1} fori =2,..., d.

Keywords: distance-regular graph, strongly regular graph, association scheme

1. Introduction

LetI" be a connected graph without loops and multiple eddes,d(I") be the diameter
of I', V(I') be the set of vertices and= |V (I')|. Fori =1, ..., d letTj(u) be the set of
vertices at distandefrom u (‘subconstituent’) an#t; = |I'j (u)|. We use the same notation
[ (u) for the subgraph of induced by the vertices if; (u). Distance between vertices
andv in I" will be denoted byd (u, v).

Recall that a connected graph is said tallsance regulaif it is regular and for each=
1,...,dthenumbers; = I (U)NT1()], by = [T 1 (W NT1W)], G = [Ti_1(U)NT1(v)]
are independent of the particular choicauandv with v € T (u). It is well known that in
this case all numbersi',j = | (u) N T'j(v)| do not depend on the choice of the pajr
with v € T'|(u). The valency of a distance regular grapl is- k; = by.

A regular graph is callegdtrongly regularif there exist nonnegative integeksand u
such thail'; (u) N T1(v)| = A or u depending on whethéu, v} is an edge or a non-edge.
Connected strongly regular graph is a distance-regular graph of diameter 2; disconnecte:
strongly regular graph is a disjoint union of equal cliques. For a strongly regular graph we
use notation si@, K, A, ().

A distance-regular graph in which y € T'q(u) with x # y impliesx € I'q(y) is called
antipodal. Distance-regular graphof diameter 3 such thaf's(u)| = 1 is called araylor
graph it is an antipodal 2-cover of a complete graphlkant 1 vertices. In a Taylor graph
I'1(u) andI'(u) are two copies of a strongly regular graphwith parameter& = 2u
(these aré and . of A). Vice versa, given a strongly regular graphwith k = 2u one
can construct a Taylor graph with subconstituents isomorphit on Taylor graphs see
[1, 4-6]).

We prove the following theorem.
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Theorem 1.1 LetT be a distance-regular graph of diameter= 3. Suppose that for
some vertex u for every i the subgraphu) is either a disjoint union of cliques or else
all vertices oflj (u) are at distance at mog&from each other insid€ (not necessarily so
insideT; (u)).

If T'1(v) is a(possibly disconnectedstrongly-regular graph for every vertaxthen one
of the following holds

() aa=0andg <1fori =2,...,dor
(i) T is a Taylor graph.

In terms of structure constants the first part of the hypothesis says{;hat 0 for all
j > 3 whenever; (u) is not a disjoint union of cliques.

Note that ifT" is a distance-regular graph of diameter at least 3 in which for every vertex
u the subconstituentB; (u), ..., I'q(u) are strongly regular (possibly disconnected) then
I" obviously satisfies hypothesis of Theorem 1.1. In this sense our theorem is similar to the
result of Cameron et al. [3] who classified strongly regular graphs with strongly regular
subconstituents.

Note also that all graphs in (i) and (i) clearly satisfy the assumptions. In (i) we have
all bipartite distance-regular graphs (case= O for alli). Classification of Taylor graphs
and bipartite distance-regular graphs are well known open probleras=fl for somei
thenI; (u) is a matching. Besides odd cycles there are three such graphs in (i) known to the
author: the dodecahedron, the Coxeter graph and the Biggs-Smith graph. Their parametel
arev = 20,k = 3 and girth 5 for the dodecahedran= 28,k = 3 and girth 7 for the
Coxeter graph and = 102,k = 3 and girth 9 for the Biggs-Smith graph. We were not
able to show completeness of this list nor to find other examples.

The problem was formulated for me by Andrei V. Ivanov. | am grateful to him and to
Dmitrii V. Pasechnik for his interest in my work. | am also grateful to the referee who
suggested a significant improvement of the paper.

2. Proof of Theorem 1.1

We prove Theorem 1.1 by way of contradiction. Using Proposition 2.2, Lemma 2.3 and
Lemma 2.4 we show first that if a counter-example exists it has to have parametef
g <1fori =2,...,d—1anday > 2. Then we eliminate this possibility with the help
of Lemma 2.5. We give complete proofs of all results for the convinience of the reader
although some of them are known or are quite easy to prove.

The following lemma is needed in the proof of Proposition 2.2.

Lemma 2.1 LetT be a distance-regular graph of diameter d. Ifjrfj = 0 for some
1<j<dthena =a; andg; =0.

Proof: By Lemma 4.1.7 of [1]c; péjl = Cj+1(8j + aj41 — ar). If p{,jl = 0 then
a; + aj41 = a1. If a; = 0 the assertion is obvious.
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On the other hand, i&; > 0 we can apply Proposition 5.5.1(i) of [1] which says that
23 > ay+1fori =1,...,d— 1toobtainj = d — 1. Thus we have3,_, = 0 and
-1+ ad = &.

Let u be a vertex of” and pickv € T'q(u). Sincepgyd_l = 0, every vertex of"1(v) N
[g_1(u) is adjacent to every vertex o (v) N Tgq(u). If '1(v) N Tg(u) is non-empty, then
complement of"1(v) is disconnected. Then Lemma 1.1.7 of [1] implies thas complete
multipartite, in particulaey = 0, a contradiction. HencEq(u) N I'1(v) is empty, that is
ag = 0. Thena; = a4_;. (Argument of this paragraph follows the proof of Proposition
5.5.1(ii) of [1].) O

Proposition 2.2 LetI" be a distance-regular graph of diameter d. Suppose that for some
i pi'!j = 0forall j > 3. Then one of the following holds

@i i=0,1lord,
(i) i =d —1andr is an antipodal-cover, thatis ky = 1, or
(i) i =2,d=3andTl is bipartite.

Proof: Suppose X i <d—2. Letu, vandw be vertices of" suchthad(u, w) =i +2,
d(u,v) =i andad(v, w) = 2. Then one can find a vertexsuch thatd (v, x) = i and
d(w,X) =i — 2. Butthend(x, v) = a(u,v) =i anda(x,u) > a(u, w) — I(X, w) = 4.
This contradicts the hypothesis. Hence 0, 1,d — 1 ord.

It remains only to consider the case= d — 1. First we claim thalpgjl # 0 implies
j =1ord = j = 3, thatis for every all vertices ofl'4(u) are at distance 1 or 3 from the
vertices ofl"y_;(u) and distance 3 can occur only when= 3.

Suppose there are verticasv andw such thato(u,v) = d — 1, 9(u, w) = d and
(v, w) = j > 2. Weneedtoshowthgt= d = 3. Pickavertex suchthab (v, x) = d—1
ando(w,x) =1|d—1—j|.

If j <d-—1thend(x,u) > d(u, w) —3d(X,w) = j +1> 3, acontradiction. Iff =d
thend(u, x) > d—1. Hence, we musthavk— 1 < 2 (i.e.,d = 3) to avoid a contradiction.
Thus we have proved our claim.

Supposel > 4. In this case, by the claim we just proveduifs a vertex ofl", then all
vertices ofl'4(u) are at distance 1 from the verticesIgf_;(u). Letv be a vertex of'g4(u).
ThenTg(u) € {v} UT1(v) UT'2(v), F'g-1(U) C I'1(v), Tg—2(u) € T2(v), ..., T1(u) €
Ig_1(v). Sou is the only vertex of" at distanced from v. Henceky = 1 andT is an
antipodal 2-cover.

Now supposel = 3. Theni = 2. By the claim abovepg2 = 0. Applying Lemma 2.1
we obtainaz = 0 anda; = a,.

Letu be a vertex of” andv € I'q(u). Sincepg'_2 = 0, we havd™>(v) C I'1(u) U T'z(u).
Suppose first thdt,(v) N T'3(u) # @. Pick a vertexw € I'x(v) NT'3(u). Asaz = 0, thisw
has no neighbours if,(v) N T'3(u), hence no neighbours i (v) at all. This implies that
a; = 0 and, agy = ay, alsoa; = 0. Hencel is bipartite in this case.

If T2(v) NT'3(u) = @ thenl2(v) C I'1(u). Since every vertex df3(v) lies at distance
1 from some vertex of">(v), we obtainI'3(v) N I's(u) = @. Sincel'1(v) N I'3(u) is
also empty (asz = 0), we have in fact's3(u) = {v}. This means thal is an antipodal
2-cover. m]
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Lemma 2.3 LetTI be a distance-regular graph of diameter>d 3 and suppose that for
everyv subgraphr; (v) is strongly regular.

If there exists u such thdit,(u) is a disjoint union of at least two cliques th&a(v) is a
disjoint union of cliques for every.

Proof: Suppose first that there is a vertesuch thaf"; (x) is a disjoint union of cliques.
Then connectedness of and our assumption that; (v) is strongly regular for every
imply thatI";(v) is a disjoint union of cliques for eveny.

Assume now thalf'; (v) is connected for every. We are going to show that this assump-
tion leads to a contradiction.

Let u be as in the hypothesis, € I'1(u) and A = TI';(v). Sincel’ has diameter at
least 3, it can not be complete multipartite. Therefore Lemma 1.1.7 of [1] implies that the
complement ofA, denote it®, is connected. Thu® is a connected strongly regular graph
and we can apply toitLemma 1.1.7 of [1] to obtain that either{19 complete multipartite
(in this case is a disjoint union of cliques) or (2P, (u) is coconnected (in this cagae (u)
is connected).

Since we know that\ is connected, (2) is the only possibility. L&t, ..., S, be the
complete set of cliques af,(u) and suppose thdt; (v) N g # @. SinceAy(u) = IM'1(v) N
I'>(u) is connected, we obtain thBt (v) N T'2(u) € §. This shows that we can partition
I'1(u) into disjoint subset€;, . .., C, such thaix € C;j ifand only if 'y (X) N2 (u) C S.
Note that eveng; is non-empty.

We claimthaCy, . . ., C, disconnect 1 (u) contrary to our assumption. Indeed, suppose
there arex € Cj andy € Cj,i # j, such tha{x, y} is an edge and |&f = I'1(x). AsX is
a connected strongly regular grafp(u) N Z1(y) = I'2(u) NT(y) NT1(X) is non-empty.
This contradicts our choice of andy. HenceC,, ..., C, disconnect";(u). This is a
contradiction, since we assumed tiatv) is connected for every. O

Lemma 2.4 LetI be a distance-regular graph with,a- 0 and suppose that for evety
subgraph;(v) is a disjoint union of cliques. Letr be the index such tfiat ¢y, a3, b)) =
cooo= (Cr,a, b)) # (Ga1, &1, 0r41). ThenTy(v), ..., v (v) are disjoint unions of
cligues and; ;1 (v) is not a disjoint union of cliques for every

Proof: Letv be any vertex of*. We use induction to show thBRt (v), ..., I'; (v) are dis-
jointunions of cliques. The statementis obvious# 1. So assume th&it (v), ..., T'h(v)
are disjoint unions of cliques and pick € T'h 1(v). Lety € T1(X) N Th(v), Z €
r1(y) NTho1(v) and S = I'1(y) N Th(v). Sincea; > 0, subgraph’;(y) consists of
cliques of cardinality at least 2. Therefar@nd S must form a clique of"1(y). All other
cliques of'1(y) have to lie entirely inTh1(v). In particularx lies in such a cliqudr .
Since|T| = a; + 1 anda,,; = a;, we obtain thafl is in fact a connected component of
a1(v). Sincex was arbitrary vertex of'n 1 (v), we have proved that,, ;(v) is a disjoint
union of cliques.

We need to show now th&tt , 1 (v) is not a disjoint union of cliques. Assume the contrary
and letx € I'r;1(v) andy € I'1(X) NIt (v). Same argument as above shows théies
inside a complete subgraph C I'1(y) N [r41(v), |T| = a1 + 1. Sincea; > 0, we
can findx’ € T such thatx’ # x. ThenT'y(X) N T1(X") 2 {y} U (T — {X,X'}). Since
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IT1(X) NT1(X)| = a; and|{y} U (T — {x, x'})| = a1, we obtain thaf is in fact a maximal
clique of 'y ;1 (v). This impliesa,; ;1 = a.

Let nowy’ be any vertex of"1(x) N I’y (v). Then again same argument as in the first
paragraph shows thgt is adjacent to all o . If y’ were different fromy then the number
of triangles on the eddge, x’} would be at leagfy} U{y'} U(T —{x, x'})| = a; + 1 which
is impossible. Hence’ = y. Thusc,,1 = 1=1¢;. Thenb, ;1 = ki — 11— a1 =
ki — ¢ —a; = by, i.e., we obtain thatc,, 1, a1, bry1) = (€1, a1, by) contrary to the
choice ofr. Hencel', 1 (v) is not a disjoint union of cliques. O

Lemma 2.5 LetI" be a distance-regular graph and suppose that there is an index i such
thata = 0butg,; #0. Then ¢,1 < @41.

Proof: Pickverticesu, vandv’ suchthab, v’ € Tj,1(u) andv’ € T'1(v). Letu’ be avertex
in C1(u) NTj (V). The distance betweean andv is not greater thaa(u’, v') + d(v', v) =
i + 1 but not less than asu’ € I'1(u) andv € Iy 1 (u). If (U, v) werei then bothw and
v would lie in T () in contradiction witha; = 0. Henced (U, v) =i + 1.

Thus we havel'1(u) N T (v') C Tjpa(v). This is equivalent td';(u) N T (v') <
r1(u) NTj41(v). Sinced(v’, u) = (v, u) =i + 1 the cardinality of the set on the left is
Ci;+1 and cardinality of the set on the rightas, ;. Henceci;1 < &j41. O

Proof of Theorem 1.1: LetI be a counter-example. Throughout the proof vettéxas
in the hypothesis.

First observe thdt,(u) is a disjoint union of cliques. Indeed,Iib(u) were not a disjoint
union of more than one clique, then Proposition 2.2(ii) or (iii) would holdfand in either
casel” would not be a counter-example. Lemma 2.3 implies now that for avenjpgraph
I'1(v) is a disjoint union of cliques.

Next we are going to show thay = 0. Assume the contrary, that is assume> 0.
Then, ad"1(v) is a disjoint union of cliques for eveny, we can apply Lemma 2.4 to obtain
thatc; = ¢, = --- = ¢ =1, subgraph$'1(v), ..., It (v) are disjoint unions of cliques of
sizea; + 1 andI;1(v) is not a disjoint union of cliques (heres as in Lemma 2.4). Note
that this holds for every and that by the above paragrapk 2.

Pick three verticeg, y andzin I'r ;1 (u) suchthat € I'>(x) andy € I'1(X)NT'1(2). Such
a triple exists, a§';;1(u) is not a disjoint union of cliques. By hypothesis of the theorem
[rp1(u) C {x} UT1(X) UTZ(x). Recall thatl";(x) andT"z(x) are both disjoint unions of
cliques and, moreover, all neighbourszdh I'; (x) U T'2(x) lie in the clique througlz and
y (c.f. proof of Lemma 2.4). This implies th@t(z) NT+1(U) — {y} S T1(y) Ny 41 (U)
—{z}. Sincex is adjacent toy but not toz the inclusion is proper, contradiction with
regularity ofI"y .1 (u). Hencea; = 0.

Thus we have shown that = 0. In this case; < 0 whenever; (u) is a disjoint union
of cliques. So, if alll';(u), i = 1,...,d, were disjoint unions of cliques, then part (i) of
the theorem would hold far. Therefore, ag" is a counter-example, there must be some
i such thafl"j (u) is not a disjoint union of cliques. By Proposition 2.2= 1,d ord — 1.
We proved at the very beginning thatt 1, 2. Ifi =d — 1,i > 2, then, by Proposition
2.2,T is an antipodal 2-cover aray_; = a;. This is a contradiction, sinag = 0 forces
y_1(u) to be a disjoint union of cliques. Hence= d.
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Thus the only possibility for a counter-exampleais= 0,8 < 1fori =2,...,d -1
anday > 2. We are going to show now that in feggt = 2.

Let v andw be vertices such that(u, v) = d(u,w) = d andd(v, w) = 2. Since
pa‘,s = 0, we obtaireg = [I'1(w) NTq(U)| = [T'1(w) NTqU) NT1(v)| + 1 (w) N Tg(u) N
I'2(v)| < ¢+ @. Thusay < ¢ + a.

We have two possibilitiess, = 0 oray = 1. If a, = 0, thenay < ¢, which implies
C2 > 2. Letr be the first index such tha # 0. Then by Lemma 2.5 we have 2
C2 < ¢ < & (the sequencey, ..., ¢y is non-decreasing for every distance-regular graph).
Hence = d. Combiningc, < ¢y < ag andayg < ¢, we obtaincy = ¢,. Thisis impossible,
ascy must be strictly greater thas oncec, > 1 (see Theorem 5.4.1 of [1]).

Thusa, = 1. An application of Lemma 2.5 gives = a, = 1. Thenay = 2.

We have shown that, = a, = 1 andag = 2. In this casd 4(u) is a disjoint union of
circuits. Pickx e I'q(u) and letC be the unique circuit of 4 (u) throughx. Sincepgyj =0
wheneverj > 3, we havel'g(u) C {x} UT'1(X) UT'2(x). Thereforec, = a, = 1 implies
thatC is a pentagon. Moreover, @' # C were another circuit ifi'g(u), it would have to
lie entirely in"2(x) in contradiction witha, = 1. Hencel'y(u) = C is a pentagon.

Counting in two ways all triples of vertices with distandes d, 1} and {d, d, 2} we
obtaink; pj 4 = kep{4 = 10 andkzp 4 = kep34 = 10. This means that both andk
divide 10. Sincec, = 1 anda; = 0, we obtaink, = ki(k; — 1). This leaves the only
possibility,k; = ko = 2. In this casd" is a circuit and cannot hawag = 2. O
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