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Abstract. This paper provides new exponent and rank conditions for the existence of abelian ¢gfatig@, p?,
pa*b)-difference sets. Itis also shown that no splitting relat®?, 2d 22 p2e-d)_difference set exists i > ¢

and the forbidden subgroup is abelian. Furthermore, abelian relative (16, 4, 16, 4)-difference sets are studied in
detail; in particular, it is shown that a relative (16, 4, 16, 4)-difference set in an abelian@rguds x Z4 x Z3

exists if and only if expG) < 4 orG = Zg x (Z2)3 with N = Z;, x Z.
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1. Introduction

A relative (m, n, k, 1)-difference set (RDS) in a finite group of ordermn relative to a
normal subgroupN of ordern is ak-subsetR of G such that every element gfe G\N
has exactly. representationg = rlrgl with r1,ro € R and no nonidentity element of
has such a representation. The notion of relative difference sets was introduced by Bose
[2] and Elliott and Butson [9]. For a detailed survey on RDSs, see [19]. The investigation
of relative difference sets is of great interest because of their connection to design theory:
Relative difference sets are equivalent to certain divisible designs with point regular au-
tomorphism group, see [1]; in particular, certain types of projective planes correspond to
relative difference sets (see [19]).

Furthermore, relative difference sets can be used to construct generalized Hadamarc
matrices and sequences with good autocorrelation properties (see [8] and [19]).

Recently, the research concentrated on RDSs with parangetensk, 1) = (p?, p°, p?,
p2~P) [3-8, 15, 16]. In his above mentioned survey, Pott says that in his opinion, the
existence problem ofp?, p°, p?, p2°)-RDSs is one of the most interesting questions
about RDSs. In this paper, we will focus on this problem.

In order to describe RDSs effectively we will use the notation of the groupZiag A
subsetR of G is a relative(m, n, k, 1)-difference set irG relative toN if and only if the
equation

RR™Y =kes + (G = N)
holds inZG, where we identify a subsét of G with the eIemenEgGA gin ZG and write
RED ={r~1:r e R}.

Two RDSsR, R’ in G are called equivalent if there is an automorphisrof G and an
elementy of G such thafu(r)g:r € R} = R



280 SCHMIDT

Itis well-known that, ifG is abelian, &-subseR of G is a relativam, n, k, 1)-difference
set relative taN if and only if

k if x € G\N*
x(Rx(R) =1 k—an if x € N*\{xo}
k? if x = xo

for every characteg of G, whereN+ = {x € G* : x is principal onN} and xo is the
principal character of.

In the following, we list some results which will be needed in the further sections.
Throughout this paper, group homomorphisms will be extendend to the group rings in the
natural way. We begin with a well-known lemma.

Lemma 1.1 Let G be a finite group of order miet U be a normal subgroup of order u
of G andletp: G — G/U be the canonical epimorhism. If R is &m, n, k, 1)-RDS in G
relative to a normal subgroup N of,Ghen

p(R)p(RY = k+ur(G/U) — INNU|A(NU/U).

In particular, if U < N thenp(R) is a(m, n/u, k, ur)-RDS in GU relative to NU (in
this situation we say that R isldting of p(R)).

Before we can state a very useful result of Turyn we need a definition.
Definition 1.2 Let p be a prime and letn be a positive integer. We writen = p?m’
with (m', p) = 1). We call p selfconjugate mod miff there exists a positive integemwith
p' = —1 modm'.

Remark In particular,p is selfconjugate mog® for everyb > 0.

Result 1.3 [21] Let ¢ be a complex mth root of unity and let p be a prime which is
selfconjugatenodm. If X € Z[£] satisfies

XX = 0 mod p®?
then we have
X = 0 mod p?.

Result 1.3 is frequently used in connection with Ma’s Lemma, which is one of the most
important tools in the theory of difference sets and relative difference sets.

Lemma 1.4 (Ma's Lemma[l4]) Letp be aprime and let G be a finite abelian group with
a cyclic Sylow p-subgroup. If ¥ ZG satisfies

x (Y) = 0 modp?
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for all nontrivial charactersy of G then there exist X X, € ZG such that
Y = paxl + P Xy,
where P is the unique subgroup of order p of G.
Furthermore if Y has only nonnegative coefficients thenafd X, can be chosen to

have nonnegative coefficients only.

The following lemma due to Ma and Pott [15] has the same goal as Ma’s Lemma:
Conversion of character equations into equatiors@

Lemma 1.5
(a) Let P be a cyclic group of ordertpvhere p is a prime. Let;e the unique subgroup
oforder g of P(0 <i <t). If A € ZP satisfies
X (A)x(A) = p*

for all x € P*\P;- wherel < n <t and n< a, then we have

n-1
A= Z em(P* " P — P* ™ Ppni1)Om + PoY
m=0

withem =+1, gne Pand Ye ZP.
(b) Let G = (g) be a cyclic group of orde?' and let G be the unique subgroup of order
2ofGO<i <t). If Ae ZG satisfies
X(A)x(A) = 2%+

forall x € G*\G+, wherel <n <t —1andn< a+ 1, then we have

[N

n—

A=) XnGmdm+ GnY

i
o

with gy, € G,
Xm=22"""1(1+ g2 M2 9?2 " gs»ztfmfz)
form<a—1and
Xa=1—g22
Finally, we recall a well-known theorem of Kronecker.

Result 1.6 (Kronecker) Let& be a complex mth root of unity. If& Z[£] has modulud
then x= +£' for a suitable rational integer i.
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2. Existence results
In this section we summarize the known existence resultggdrp®, p?, p*°)-RDS. It
should be mentioned that for= 1 there are more constructions than in the general case.
We refer the reader to Ma and Schmidt [16] where the bas€l is studied in detalil.
Result 2.1 [9]
(a) Let p be an odd prime and let & be positive integers with & b. Then there is a
(p%, p°, p?, p*°)-RDS in E Ap**P).
(b) Let ¢ be a positive integer. Let & (Z4)° and let N be the unique subgroup of G
isomorphic to(Z,)¢. Then there is &2, 2°, 2°, 1)-RDS in G relative to N.
Result2.2[5] Letp be aprime and let G be an abelian group of ord&pwhere k< c.
Furthermore we assume rarG) > p°*k. Let N be an arbitrary subgroup of G isomorphic
to (Zp)¥. Then G contains ap%, pX, p?®, p*~*)-RDS relative to N.
Result2.3[13] Letsd,r,t be positive integerswithg sandt< d. We write s= ar+b
where aand b are nonnegative integers with . Letp be a prime and let N be an arbitrary
(possibly nonabeliangroup of order p. Then there is &p?9, pt, p%9, p=41)-RDS in
(Zpa1)® P x (Zp)2 P x N
relative to N.
The following product construction essentially goes back to Davis [4].
Result 2.4 Let G be a group of order samyn. Let H be a subgroup of G and let3&nd
N be normal subgroups of G withi;| = myn, |Hz| = mpn, [IN| =nand H N Hy = N.
If Rj isan(m;, n, m;, m;/n)-RDS in H relativeto N i = 1, 2, then

RiR> = {rirz:ry € Ry, 12 € Ry}

is an(mymy, n, MMy, Mymy,/Nn)-RDS in G relative to N.

3. Exponent bounds

Using the arguments of Turyn [21] one can prove the validity of following the exponent
bound.

Result 3.1 [6, 18] Let G be an abelian group of order*p® and let N be a subgroup of
order p° of G. A(p?, p®, p?, p*®)-RDS in G relative to N can only exist if

exp(G) < paT+1 exp(N).
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This bound is not entirely satisfactory as it ignores the positioN @fi the underlying
group which sometimes is relevant. With a more detailed analysis we can prove a slightly
stronger result.

Theorem 3.2 Let G be an abelian group of ordep® and let N be a subgroup of order
p? of G. We write N as direct product of cyclic groups

N = (n1) x (n2) x --- x (Ny).
Let Z be a cyclic subgroup of G. If b= Z N N # 1, then we write U= (u), [U| = pY,

u= lj(nipXia)

with (a;, p) = 1and we set m=min{x; :i = 1,2,...,t}. If G contains a(p?, p°, p?,
p3~°)-RDS relative to N then

(@ |zl < p ifZNN =1and

(b) |1Z| < p=HYHMif ZAN # 1.

Proof: Let Rbe a(p?, p°, p?, p??)-RDS inG relative toN.

(@) LetZzNn N = 1. By elementary character theory we can choose a charactfe with
Kerx|z = 1 and|Kerx|n| = [N|/p. We writeK = Kery. Letp : g - G/K be
the canonical epimorphism. The coefficientso@R) are obviously<|K|/|[K N N| <
p?+1/1Z|. Now the assertion follows from Result 1.3 and Ma’s Lemma.

(b) LetZN N 1. We choose a characterof G with |Ker x’|z| = pY~*and|Ker x'|n| =
IN|/p™?. The assertion follows as in (a). O

Example By Theorem 3.2(a) there is n@*, p°, p*, p)-RDS inZy x N relative toN
whereN is cyclic of orderp®. This RDS can not be excluded by Result 3.1.

Another exponent bound is due to Pott [18] who generalized an ad-hoc argument of
Hoffmann [11]:

Result 3.3 Let G be an abelian group of orde?f° and let N be a subgroup of ordef p
of G. If G contains & p?, p°, p?, p?°)-RDS relative to N then

exp(G) < p?
orp=2a=b=1
Ma and Pott [15] were able to prove the following strong bounds.

Result 3.4 Letp be a prime.
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(a) Let G be an abelian group of order’d 1 and let N be a subgroup of ordef pf G.
If there exists g p2*1, p°, p2*+!, p22-"+1)-RDS in G relative to N then

exp(G) < p**t
if pis odd and

exp(N) < 22+1
if p=2.

(b) Let G be an abelian group of ordep™ and let N be a subgroup of G of ordeP.plf
there exists @p?, p®, p?, p®~P)-RDS in G relative to N then

exp(N) < p2.

Using the method of Ma and Pott [15] and some additional arguments we can improve
Result 3.4(a) fop = 2.

Theorem 3.5 Let G be an abelian group of ord@f**+"+1 and let N be a subgroup of order
2b of G. If G contains g22+1, 2b 22+l 22a-b+1y RDS relative to N then

exp(G) < 222,
Furthermore if exp(N) < exp(G) then
exp(N) < 28,
Proof: Let Rbe a(2?a+1, 2b 22a+1 22a-b+1y.RDS relative toN. We write exgG) = 2.

(a) By Result 3.4(a) we have edg) < 22+1. We will show that the assumption exXy) =
22+1 - 2! leads to a contradiction proving the second assertion of the Theorem 3.5.
Let G’ be a cyclic group of ordert2and letp : G — G’ be an epimorphism with
lp(N)| = 28+,
Application of Lemma 1.5(b) yields

a—1

pP(R) = GmXmGn + €aGa(l— % " *)0a + GasrY

m=0

using the notation of 1.5(b). Without loss of generality we assgme 1. Lety be a
character of5’/G,,;. If we viewY as an element & (G'/ G, 1) we get

22 if x = xo
x(Y)=10 if2<o(x) <2232
~1 ifo(y) = 2t
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(b)

Hence the coefficient of 1 iV is

2—t+a+1(2a _ 2{—&1—2) — 22&+l—t _ }

Y4
2¢’

a contradiction.

We have to show exf) < 22*2. By Result 3.4(a) and part (a) of the proof we can
assume expN) =: 2" < 22, Let G’ be a cyclic group of ordertzand letp : G — G’

be an epimorphism withp (N)| = 2". By Lemma 1.5(b) we get (using the notation of
this lemma)

n-1
p(R) = Z €EmGmXmOm + GnY
m=0
with

Xm _ 23_1_'“(]_ + gzt—m—Z _ gz_zt—m—z _ g3_21—m—2)

for all m. Sincey (Y) = 0 for all characterg of G’ which are nonprincipal oG, we
infer

G,Y = D2atl-t(y/

Without loss of generality legg = 1. We write
p(RR=A+B~+C

with

A= 2a—1(1 + g2172 _ g2-2‘72 _ 93'2172)

+ 2a—2(1 + 92‘*3 _ 9242‘*3 _ g3-21*3)
n—1

B= Z Gmxmgm,
m=2

C = 2,
Itis easy to see that we always can find an eleme@t @fhose coefficient irA is less or
equal—22-1, The coefficients oB are less or equaP23 + 224 ... 423N < 2a-2,
This implies

_2a—l + 23—2 + 22a+l—t -0

hencet < a+ 3. O
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4. Further exponent and rank conditions

In this section we prove two new nonexistence theorems using the techniges developed by
Ma and Schmidt [16, 17]. To this end we will need the following lemmas contained in
[16, 17].

Lemma 4.1 Let p be a primelet G be a finite abelian group with Sylow p-subgroup
P and let g € G be an element of ordezxp(P). We write § = |P|/exp(P) and
P={U < P:|Ul=p%Un(gp =1and P/U is cycli¢. Furthermore we set
U’ ={g:g” € U} forU e P where s is a positive integer with® g exp(P).

Moreover we assume that there is a subset D of G such that for evexyRJand ge G
either
(1) IDNUh| > § and|D N (U'\U)h| < ¢ for a suitable he U’g or
(2) IDNU'g| < ¢
whereé, €, €', § > ¢ are fixed positive integers not depending on U. Furthermore
assume that there is at least one coség Watisfying conditiorf1).

We write t = rank(P), P = (go) x (g1) x --- x (g_1) where dgg) = exp(P) and
o(g)=p&fori =12 ...,t —1 We setpb=min(s, a}. Then

5 —me < pSXimib
form=12...,t—1
Lemma4.2 Letpbeaprimeandlet G Ax Bx H beanabelian group with A= (Z )%,
B = (B1) X (B2) x --- x (B), 0(Bj) = p? < p*forl<j <tand(p, |H|) =1 We set
e=a(s—-1D+Y b,
P={W<A:|W|=p*SDand AW is cyclig
and
R={W x (1) x --- x (Brn) : W € P.yj € A o(y)) < p7).
If a subset D of G satisfies
x (D) = 0 mod p®
for all nonprincipal characterg; of G then D can be written as

D=ZUXU+KY
UeR

with Xy, Y C G, where K is the unique maximal elementary abelian subgroup of A.

Now we are ready to prove our main theorems.
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Theorem 4.3 Let p be an odd primdet G be an abelian group of order?p® and let N
be a subgroup of G of order®p Let R be ap?, p°, p®, p?~°)-RDS in G relative to N.
Furthermore we assume that G contains an elemenoforder #*+'+2 (r > 0). We write
G as a direct product of cyclic groups

G = (o) x (d1) X --+ x (Gt-1)
witho(g) = p% fori =1,2,...,t — 1. We set
b® = min(a;, s}

fors=12,...,r+1i=12...,t—1and

N
INI U <G, |U|l= pa+b—r—2’ UnN{gy =1G/U= Zpa+r+2}

Y = max: :
P {|UﬂN|

(note that by ResuB.4(b) p¥ < exp(N) < p?). Then
p? — m(pS — 1)(pa7r72 —pAY) < paerfer—Zim:1 b®
fors=1,2,...,r+1landm=1,2,...,t — 1.

Proof: LetU be an arbitrary subgroup of ordpft?~"=2 of G such thatG/U is cyclic
andU N (go) = 1. From Theorem 3.2(a) it is clear thht£ U. Letp:G — G/U be
the canonical epimorphism. By Result 1.3 and Ma’s LemmiR) must have at least one
coefficient greater or equgP. On the other hand, the coefficients@fR) are obviously
less or equalU|/|U N N|. This impliesp? < |U|/|U N N|, and hence we have

NI PINI_ e

N)| =
lp(N)I UAN > U]

We write |[p(N)| = p* with x > r +2. By Result 3.4(b) we can assume< a. By
Lemma 1.5(a) we get (using the notation of this lemma)

x—1

p(R) = me pa_m_l(ppm — Py Om + pa—r—z Payry2. (1)
m=0
We claim
eg=€e1=---=¢41=1 and Pg=PRg (2

fori =0,1,...,r + 1.
We prove (2) by induction. Fag € G/U let C(g) be the coefficient ofj in p(R).
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(a) We assumey = —1. Then by (1) (recall thap # 2)

(b)

C(go) < —p*+ pa‘l + pa‘l — pa_2 + p"j‘_2 F— pa—x+1 P pa—r—2
=—p*+2p" - p* X pt 2 <0,
a contradiction. Hencey = 1.

Letl<l<r+1l,¢=€1=---=¢_1=1andPgo=PRg fori =0,1,...,1 — 1.
We have to show;, = 1 andP go = R g. From (1) we have
x—1
p(R) = (P — P 'A)go+ Y emP* ™ H(PPn — Pni1)Gm + P *Patria.

m=I

Letg € Pgo\{go}. If ¢ = =1 0orRgo # R g, then

C(g/) < _pa—l + pa—l—l + pa—l—l _ pa—I—2 4t pa—x+1 _ pa—x + pa—r—Z
— _pafl + 2paflfl _ pafx + pafr—z <0

a contradiction. Thus we have proved (2). Hence we get

x—1
p(R) = (p* — p* "R 42)00 + Z emP* ™ (PPn = Prsn)Om + P Pagr 2
m=r+2
from (1). We infer
C(go) > pa _ pafrfz + pa7r73 _ pafrf?: = pa7><+1 + pafx

— pa _ pa—r—z + pa—x7

C(h) < _pa—r—2 + pa—r—2 _ pa—r—3 4t pa—x+1 _ pa_x + pa_r_z
— pafrfz _ pafx

for h € P;200\{go} and

C(h/) < pa—r—2 _ pa—r—3 + pa—r—3 4t pa—x+1 _ pa—x + pa—r—2
— 2pa7r72 o pafx

forh’ € (G/U)\Pr1200. As p(R) has at least one coefficient greater or equadtave
getC(go) > p?. Now we apply Lemma 4.1 with

5 = p?,
€= (p°—D(p*" 2 - p*Y),
6/ — pS(zpa—r—Z _ pa—y)

proving the theorem. ]
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The following theorem deals with an extreme case of Theorem 3.2.

Theorem 4.4 Let G be an abelian group of order3™® and let N be a subgroup of order
p° of G. We write N as a direct product of cyclic groups

N = (n1) x (n2) x --- x (Ns).

Let Z be a cyclic subgroup of G with &= Z N N # 1. We write U= (u), |U| = pY,

t

1—[ x'a

i=1

with (g, p) = 1 and we set m= min{x; : o(nipx') > pY}l.
If G contains a(p?, p°, p?, p?2~°)-RDS relative to N and if

|Z| — pa+y+m7
then y=1and m= 0.

Proof: Withoutloss of generality let > 2. By elementary character theory we can choose
a charactey of G with Kerny |z = 1 and|Kerny|n| = pP~Y~™. We setk = Kerny|y.
Letp : G — G/K be the canonical epimorphism. We wri = p(R), G = p(G),

Z = p(Z) andN = p(N). ThenRis a(p®, p¥*™, p%, p2Y-™)-RDS in G relative

to N. We write

G = (Qo) X (Q1) x -~ x (q).

with o(go) = patY*™, (go) = Z ando(g) = p® fori = 1,2,...,t. By Result 1.3 and
Lemma 4.2 we get

B pi—1p2—1 pt—1 t  Caryima it
= D <®< 0" )) Xivioii + (08|
i1=0 i2=0 i

=1

;=0

(& denotes the internal direct product) for suitalleX;, i,...i, C G. Lety be a primitive
complexp®tY*™Mth root of unity. Lety;, i,....i, be the characters defined by

Xiviz..ir(d0) =1

and

_il pa+y+m—a|

Xiviz,...i (@) =1

a+y+

sinceN ¢ @!_, (@™ " ') we have

P* = [Xivis..it (R = PPl Xinsinsic Kivsin i) - €))
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This implies| Xi, i,.i.| = 1 foralliy, i, ..., i andY = 0. Hence we have
_ pi1—-1p2-1 p-1 t i paty+m—g .
R= Z Z ce <® <gl ggp >) ggl.lz ..... it (4)
i1=0 i,=0 ii=0 \I=1

with suitable integers;, i, ..
Let xjo.jr....j. € the characters defined by

Xio.jv.....jt (Go) = PP

and

jl pa+y+m—a|

Xiojn it (@) =1

for jo = 0,1,..., pay*m-1 _ 1 andj = 0,1,...,p* — 1. Obviously, we have
Xio.jn,... ;s (R = 0, if (ji, p) = 1 for at least oné > 1. Hence

|NJ_| — p2a -~ pa+y+m—l(p -1 pa71 =(p— 1) p2a+y+m—2 (5)

if t > 1. Ift =1, then there surely exists a characteapart from the characteyg, j,....j;
with x(R) = 0 (recalla > 1). Thus (5) holds in every case. Henge- m = 1 which
impliesy = 1 andm = 0. m|

Corollary4.5 A(p?, p®, p?, p??)-RDS in an abelian group G of exponerit'p exists
if and only if b= 1.

Proof: Forb > 1the assertion follows from Theorem 3.2 and Theorem 4.4, arinlfof.
it is contained in Theorem 2.4 of Ma and Schmidt [16]. |

5. (23, 2b, 2% 222-b).RDSs with b> a are special

By Result 2.2 a(2?8, 20, 222 222-b)_RDS in an abelian grou exists ifb < a and
rankG) > 22*P_ et us compare this with the following remarkable result is due to Ganley
[10] (for a short proof we refer the reader to Jungnickel [12]).

Result 5.1 Let G be an abelian group of ord@® and let N be a subgroup of ordéf of
G.A(25 2°,2° 1)-RDS in G relative to N exists if and only if G is isomorphi¢Zq)© and
N is isomorphic taZ,)°®.

Something must have happened with tB&, 2°, 222 22a-b)_RDS “on the way” from
b = atob = 2a. Our next theorem shows what happens and where it happens.
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Theorem 5.2 Let H be an arbitrary( possibly nonabeliangroup of order2® and let
N be an abelian group of orde2®*!. Then the group G= H x N cannot contain a
(228, 2a+1 22a 2a-1y_RDS relative to N.

Proof: LetRbe a(2?, 22t 222 22-1).RDS inG relative toN. We write exgN) = 2°.
Letp : G — G/H the canonical epimorphism. We wrife= p(R) andN = p(N). Let
& a primitive complex 2th root of unity. By Result 1.3 and Result 1.6 we have

x(R e{2e:i=0,1,...,2°—1

forall x € N*\{xo}, whereyq is the principal character dfi. Furthermoreyo(R) = 2%,
We set

T={xeN": xR ¢2Z}.

Since the minimum polynomial df is x*' +1and

Y xR ez,

XGN*

we concludgT| = 0 mod 2 anozxeT x (R) = 0. This implies

Yo xR =22+ > x(R

XEN* xeN¥\T
XFX0

= 22 mod 2*1.

However, by the Fourier inversion formula this is impossible as the coefficient oRlisn
an integer. ]

6. (164, 16,4)-RDSs: An unimaginative approach

This section is designed to stress our ignorance alywytp®, p?, p>—°)-RDS withb > 1.
We will see that even the smallest interesting case,p.es,2,a = 4 andb = 2, requires
a lot of work. First of all, we summarize what we know ab@Lé, 4, 16, 4)-RDS from the
previous sections.

Theorem 6.1

(a) There is na(16, 4, 16, 4)-RDS in any abelian group of exponentl6.

(b) The groupsZ,)® andZ, x (Z,)* contain(16, 4, 16, 4)-RDS for all possible N.

(c) Thegroup$Zs)?x(Zz)?andZgx (Z,)3contain(16, 4, 16, 4)-RDSforall N= Z,x Z.

Proof: Part (a) follows from Result 3.1 and Corollary 4.5.
The parts (b) and (c) follow from the Results 2.2 and 2.3. |
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There is one further result due to Davis and Seghal [7]:
Result 6.2 There is a(16, 4, 16, 4)-RDS in(Z4)3 forall N = Z, x Z.

Nevertheless, it is clear that we are still far away from having a necessary and sufficient
condition for the existence of abeli@h6, 4, 16, 4)-RDSs. In the following we will prove
some interesting new results on these RDSs using the “lifting-method”: By the results
of Ma and Schmidt [16] we can determine the structurél® 2, 16, 4)-RDSs in abelian
groups of exponent 8 completely; using some character arguments we will decide if a lifting
of such an RDS to 16, 4, 16, 4)-RDS is possible. In the case (6, 4, 16, 4)-RDSs in
abelian groups of exponent 8 which caot be projected down to €6, 2, 16, 4)-RDS in
an abelian group of exponent 8, we will have to use Lemma 1.5.

We begin with the characterisation of sortiks, 2, 16, 4)-RDSs. For the proof of
Theorem 6.3 and Theorem 6.4 see Example 3.7 and Example 3.10 of Ma and Schmidt
[16].

Theorem 6.3 Let R be a(16, 2, 16, 8)-RDS in G= Zg x Z4 relative to N = ((0, 2)).
Then(up to equivalence

R=((2 D)1 0) + (6 1)3,0 + ((4 0)[(0,i1) + (2,i1) + (0,i2) + (2,i2 + 2)]

where(iq, i») € {(0, 1), (0, 3), (1, 0), (1, 2), (2, 1), (2, 3), (3,0), (3, 2)}.
Converselyeach of the sets R defined above {48 2, 16, 8)-RDS in G relative to N.

Theorem 6.4 Let R be a(16, 2, 16, 8)-RDS in G= Zg x Z4 relative to N = ((4, 0)).
Then(up to equivalence

R=((0, D)+ (2 D)(s1, 0 + (4 D)(2,0) + ((6,1))(s2, 0)

where(sy, ) € {(1,3),(1,7), (3,1), (3,5}
Converselyeach of the sets R defined above (48 2, 16, 8)-RDS in G relative to N.

Theorem 6.5 Let R be a(16, 2,16, 8)-RDS in G = Zg x Z, x Z, relative to N =
{((0, 1, 0)). Then(up to equivalence

R=((4,1,0),(0,0,1)) + ((4,1,0), (4,0,1))(y,0,0) + ((4,0,0)) Ry
where either y= 1 and

Ro=01(2,0,0) + 92(2,0, 1) + g3(3,0,0) + 94(3,0, 1)
ory=2and

Ro=0:1(1,0,0) + 92(1,0,1) + 93(3,0,0) + 94(3,0, 1)
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with g € N, where exactly one element or exactly three elements of the m{dtisgs, gs,
04} are equal to(0, 0, 0).
Converselyeach of the sets R defined above 48, 2, 16, 8)-RDS in G relative to N.

Proof: By Theorem 3.9 of Ma and Schmidt [16] we have
R=1((4,10),(0,0,1)(x,0,0 +((4,1,0), (4 0,1))(y, 0,0 + ((40,0)Ro,
wherex andy are integers an@, is a 4-element subset @. Considering some auto-

morphisms and translates, we obviously can assxume0 andy € {1, 2}. If y = 1 then
w.l.o.g.

Ro=01(2,0,0) + 02(2,0,1) + 93(3,0,0) + 94(3,0, 1)

whereg; € N, and it is easy to see th&is a(16, 2, 16, 8)-RDS inG relative toN if and
only if the condition given in the theorem is satisfied.
Similarly we settle the casg= 2. |

Theorem 6.6 Let R be a(16, 2,16, 8)-RDS in G= Zg x Z, x Z, relative to N =
((4,0,0)). Then(up to equivalence

R=((0,1,0),(0,0,1)) + (0, 1,0, (4 1,0))(x1, 0, 0)
+((4,1,0), (0,0,1))(x2,0,0) 4+ ((4,1,0), (4,0, 1))(x3, 0, 0)

where(xq, Xo, X3) is from
{(1,2,3),(1,2,7,(1,3,6),(1,6,7),(2,1,3),(2,1,7),(2,3,5), (2,5 7)}.
Converselyeach of the sets R defined above 48, 2, 16, 8)-RDS in G relative to N.
Proof: The assertion follows easily from Theorem 3.6 of Ma and Schmidt [16]. O
Using these characterizations as described above we get the following theorem.

Theorem 6.7
(&) A (16,4, 16,4)-RDS in an abelian group G¥ Zg x Z4 x Z; exists if and only if
eXF(G) <4o0rG=2Zgx (22)3 with N = Z, x Z,.
(b) Let G=2Zg x Z4 x Z5.
(i) Thereis a(16, 4, 16, 4)-RDS in G relative tq(4, 0, 0), (0, 2, 0)).
(i) There is no(16, 4, 16, 4)-RDS in G relative to{(2, 0, 0)), ((0, 1, 0)), ((4, 0, 0),
(0,0, 1)) or ((0, 2, 0), (0, 0, 1)).

The existence part of Theorem 6.7 follows from Theorem 6.1, Result 6.2 and the following
theorem that gives some new RDSs. These were constructed (by hand) by lifting suitable
(16, 2, 16, 8)-RDSs which can be found in Ma and Schmidt [16], Theorem 2.1.
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Theorem 6.8

(@) There is a(16, 4, 16, 4)-RDS in(Z4)? x (Z,)? relative to((1, 0, 0, 0)).

(b) There is a(16, 4, 16, 4)-RDS inZg x Z4 x Z, relative to((4, 0, 0), (0, 2, 0)).
(c) There is a(16, 4, 16, 4)-RDS in(Z,)? relative to((1, 0, 0)).

Proof:
(a) We set

R=1((0,2,0,0),(0,0,1,0)(0,1,0,0 +(2,0,0,0)+ (0,0,1,0 + (1,2,0,0)
+@3,2,1,0)+[(2,0,0,0) +(1,0,1,0) + (0,2,0,0) + (3,2,1,0)](0, 3,0, 1)
+[(0,0,0,0)+(3,0,1,00+(1,2,0,0) + (2,2,1,0)(0, 0,0, 1).

(b) We set

R =(0,0,0)+(0,1,0) + (0,0,1) + (0,3,1) +[(0,0,0) + (4,3,0) + (0,0, 1)
+(4,1,1](,0,00+[(0,0,0) + (0,3,0) + (4,0,1) + (4,1, 1)](2,0, 0
+1(0,2,0) + (4,3,0) + (4,2, 1) + (0,1, 1](3,0,0).

(c) We set

R"=((0,2,0),(0,0,2)+ (0,100 +(3,3,00+ (21,2 +(1,3,2 + (0,0, 1)
+2,22D)+(1,0,3+@3,2,3)+0,1L,D+@G3 3D+ 11,3+ (23,3).

Using characters it is easily seen tligtR and R” are the required RDS. o
Now we turn to the nonexistence part of Theorem 6.7. Since this requires lenghty proofs

with lots of case distinctions we only give some examples for the nonexistence proofs; all
other proofs are similar. The complete proof of Theorem 6.7 can be found in Schmidt [20].

Theorem 6.9 There is na16, 4, 16, 4)-RDS in G=Zg x Zg relative to N= {(2, 0)).
Proof: Let Rbe such an RDS. By Theorem 4.3 it is clear that we can assume

R=0,D0:+ 1,30+ 250+ @3, N0+ (0,3)gs + (1, Dgs + (2, Ny
+ (3,508 + (i1, 0009 + (i1, D910+ (i2, 0011+ (2 + 2, 2)g12+ (i1, D013
+(1,6)014+ (i2, D015+ (i2 + 2, 2) 016

whereg; € ((4,0)) for j =1,2,...,16 and(is, i2) € {(0,1), (0,3), (1,0), (1, 2), (2, 1),
(2,3),(3,0), (3,2)}. Wesetj = 1if g; = (0,0), ande; = —1if g; = (4, 0). We define
the charactergo, x1, x2, x3 of G by xx(1,0) = £ fork = 0,1, 2, 3, x0(0,1) = 1 and
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xx(0, 1) = EXfor k = 1, 2, 3, wheret is a complex eighth root of unity. We put theinto
a matrix:

€1 €2 €3 €4
€5 € €7 €8
€9 €10 €11 €12
€13 €14 €15 €16

In the following matrices we write am in the position ofe; if the character value of the
term of R belonging toe; is §™. We get forxo, x1, x2. xa:

0o 1 2 3
0o 1 2 3
S . (6)
i1 iy i (242
i1 iy iz (242
1 4 7 2
3 2 1 0
: . ) . (7)
11 (i1+2 o (i, +4
(i1+4) (i1+6) (2+4 i2
2 7 4 1
6 3 0 5
. . o (8)
i1 (1+4) iz (i2+6)
iT (I1+4) i (i2+6)
3 2 1 0
1 4 7 2
) . ) . )
I (i1 +6) P I2

(i1+4) (242 (@244 (249

If for examplei; = 0 andi, = 1, then we get (using Result 1.3 and Result #36F —e7
from (6),e3 = e5from (7),e1 = €5 from (8) ande; = €7 from (9), a contradiction. Similarly
we get contradictions for all other valuesigfandis,. O

Theorem 6.10 There is no(16, 4, 16,4)-RDS in G = Zg x (Z,)® relative to N =
((2,0,0,0).

Proof: Let R be such an RDS. We writé = (g) x H andN = (g?) with o(g) = 8.
Letp; : G — G = G/(g* andp, : G — G/p1(H) be the canonical epimorphisms. By
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Result 1.3 and Lemma 1.5(a) we have (using the notation of Lemma 1.5)
p2(p1(R) = £(4 — 2P1) Qo + 4P

W.l.o.g. we can assume
p2(p1(R) = 2+ 6h* + 4(h + h®)

with p2(p1(G)) = (h). This implies
R=A+9¢g’B+gC+g°D

with A, B,C, D c (gYH, |A| =2,|B| =6,|C| = |[D| = 4 andpi(A+ B) = pi(H).
W.l.o.g we assumé\ = {1, a} with a € (g*)H\{1}. Let x be the character d& defined
by x(g) = £ andy € H'. Hencea = g*h’ for a suitableh’ € H\{1}. Lett be a character
of H with t(h’) = —1. Obviously, we havéx ® t(R)| # 4, a contradiction. O

We conclude our paper with some remarks on Theorem 6.7.

1) Note that Theorem 6.7 settles the existence problem of abelian (16, 4, 16, 4)-RDS
completely.

2) Theorem 6.7 implies that—contrary to the céise- 1—in general the necessary and
sufficient condition for the existence of abeligo?, p°, p?, p?~)-RDSs can not be an
exponent bound.

3) It seems to be very difficult to extend the lifting method used in Theorem 6.7 to attack
the general case of abeligp?, p°, p?, p*?)-RDSs. Despite the results of this paper,

a really satisfactory method is still missing.
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