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Abstract. The parameters of metric, cometric, symmetric association schemes withq 6= ±1 (the same as the
parameters of the underlying orthogonal polynomials) can be given in general by evaluating a single rational
function of degree(4, 4) in the complex variableq j . But in all known examples, save the simplen-gons, these
reduce to polynomials of degree at most 2 inq j with q an integer. One reason this occurs is that the rational
function can have singularities at points which would determine some of the parameters. This paper deals with the
case in which not all of the singularities are removable, thus giving some reason why then-gons might naturally
be the only exceptions to schemes with parameters being polynomials of degree at most 2 inq j , except possibly
for schemes of very small diameter.
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0. Introduction

Association schemes withd (non-trivial) relationsRi in general have(d + 1)3 connection
parameters

pi, j,k := |{z: (x, z) ∈ Ri , (z, y) ∈ Rj }| for (x, y) ∈ Rk.

While these are not all independent, there are stillO(d3) independent parameters. Even
symmetric, metric (P-polynomial) schemes, for which there is a distance function deter-
mining these would seem to have 2d parameters

bj := p1, j+1, j and cj := p1, j−1, j .

In the early 80’s it was proposed that a classification of all metric, cometric, (that is,P- and
Q-polynomial) symmetric association schemes should be possible. [For a reasonable back-
ground to this material, the reader is referred to either Bannai and Ito [1] (Chapter III) or
Brouwer et al. [2] (Chapter 8).] Part of this classification scheme, namely the determination
of the parameters, was settled in some sense in Leonard [3], in that the parametersbj and
cj of the underlying discrete orthogonal polynomials (and hence, the same parameters of
the schemes) were given as rational functions of degree(4, 4) in the complex variableq j .
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This, in turn, means that said parameters are described by a fixed number of variables,
independent of the diameterd.

However, in all known examplesexceptthe commonn-gons, this rational function actu-
ally degenerates to a polynomial of degree 2 inq j , with q an integer. In fact, it is conjectured
that this must be the case. Proving this conjecture may depend only the condition that the
parameters of the scheme must be non-negative integers (rather than just complex numbers)
andnot on any other properties of the scheme. [It should be noted that, in this paper, very
little about the scheme itself is used. In fact, so little about such a scheme is used, that
we choose not to even define it here. The proof is entirely in terms of a rational function
having certain integer values at ceratin prescribed points. So even though the assumption
in the theorems is that a metric, cometric, symmetric association scheme exists, the only
use made of that assumption is that there are two sequences of parameters,bj andcj , which
are non-negative integers, that they have a known form (given in the literature but revised
immediately below), thatc0 = 0 < c1 = 1 < · · · < cd ≤ b0 > b1 > · · · > bd = 0,
and that the dual eigenvaluesθ∗j are real and distinct. Given these as ground rules, it is
possible to read this paper as a paper about rational functions with such integer values at
ceratin prescribed points, though the results will be of little import unless applied to metric,
cometric, symmetric association schemes, studied in either reference [1] or [2] mentioned
above.]

We shall assume that the parameters in question satisfy the equations (in complex vari-
ables):

(σ ∗0 − σ ∗3 q2 j )(σ ∗0 − σ ∗3 q2 j−1)bj−1 = (σ ∗0 − σ ∗3 q j )

× (σ ∗0σ0− δ1q
j + δ2q

2 j − σ ∗3σ3q
3 j )

(σ ∗0 − σ ∗3 q2 j )(σ ∗0 − σ ∗3 q2 j+1)cj = q(1− q j )

× (σ ∗20 σ3− σ ∗0 δ2q
j + σ ∗3 δ1q

2 j − σ ∗23 σ0q
3 j
)

θ∗j − θ∗0 = q− j (1− q j )(σ ∗0 − σ ∗3 q j+1),

(with the θ∗j ’s, real and distinct) as do the same parameters of the underlying orthogonal
polynomials. [The form in Bannai and Ito (Case(I), page 264) can be gotten by the change
of variablesσ0 := h, δ1 := hh∗(r1 + r2 + r3), δ2 := hh∗(r1r2 + r1r3 + r2r3), σ3 := hs,
σ ∗0 := h∗, σ ∗3 := h∗s∗; or these can be derived directly from Leonard (Eq. (2.11)), given
the form ofθ∗j (and duallyθ j ). It is advisable not to divide yet to solve forbj−1 andcj .
This is done in Bannai and Ito (Theorem 5.1), wherein some attention is paid to separating
the casesc0 = 0, b0, bd = 0, cd. But the special form forb0 given there is unnecessary for
their s∗ 6= q−1, and doesn’t follow from what is given whens∗ = q−1. Also in this form
it is more natural to replace Bannai and Ito (Case(I),s∗ 6= 0) with the above withσ ∗3 6= 0,
(Case(I),s∗ = 0)with the above withσ ∗3 = 0, and treat (IA) and (IB) as unnecessary special
cases of the latter.]

For metric, cometric, symmetric association schemes, the parametersbj andcj have
one obviousextracondition that, since they count something, they must be non-negative
integers rather than just complex numbers.
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In most known examples of such schemes,σ ∗3 = 0 (that is,s∗ = 0 in Bannai and
Ito notation), in which case (withσ1 := δ1/σ

∗
0 andσ2 := δ2/σ

∗
0 ) the equations for the

parameters reduce tobj−1 = σ0− σ1q j + σ2q2 j andcj = q(1− q j )(σ3− σ2q j ). The only
known examples for whichq 6= ±1 andσ ∗3 6= 0 are the simplen-gons. In fact, the conjecture
of Bannai and Ito (page 366) alluded to above is thats∗ = 0 in Case (I), except for these
n-gons.

Forq 6= ±1, there is, given in Theorem 3 a common function

h(z) := q(1− z)
(
σ ∗23 σ0− σ ∗0σ ∗3σ1z+ σ ∗20 σ2z2− σ ∗20 σ3z3

)
(σ ∗3 q − σ ∗0 z2)(σ ∗3 − σ ∗0 z2)

,

which generates (most of ) both parameter sequences in a natural way, namelybj =
h(q j+1σ ∗3 /σ

∗
0 ) and cj = h(q− j ) for 0 ≤ j ≤ d. The cases in whichc0 = 0 cannot

be solved for in this function (or equivalently in the equations above) are special, and will
be treated in this paper (by using rational functions and monic Tchebyshev polynomials).
The results, summarized in Theorems 5 and 6, are that in these cases the only possible
sequences of parameters are those for then-gons, except possibly for some schemes of very
small diameter.

1. Monic Tchebyshev polynomials

Let ω := q + q−1,q 6= ±1. [Whenσ ∗0σ
∗
3 6= 0, ω is a much better parameter thanq in

the sense that the dual eigenvalues (or the eigenvalues) being real, forcesω to be real, as
opposed to forcingq to be real or to lie on the complex unit circle. [It is also like preferring
cosθ or coshθ instead ofei θ .] Also the parameters can be given in terms of eitherq or q−1,
but both reduce to the same equations in terms ofω.]

Consider the polynomials inω defined by

p2m+1 = p2m+1(ω) := q−m(q2m+1− 1)/(q − 1) and

p2m+2 = p2m+2(ω) := q−m(q2m+2− 1)/(q2− 1),

normally used for writing sin( 1
2(2m+ 1)θ)/ sin( 1

2θ) and sin((m+ 1)θ)/ sinθ in terms of
ω := 2 cosθ . Both are monic of degreem for m≥ 0. The following simply deduced facts
about these polynomials are useful.

Lemma 1
1. ωpk(ω) = pk+2(ω)+ pk−2(ω),

2. p2k+1(ω) = p2k+2(ω)+ p2k(ω),

3. gcd(pa(ω), pb(ω)) = pgcd(a,b)(ω).

Proof: Straightforward from the definition. 2

If ω is rational, write it asα/β with α, β ∈ Z and gcd(α, β) = 1. Then defineP2m+1

(α, β) := βm p2m+1(ω) andP2m+2(α, β) := βm p2m+2(ω).
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2. Rational functions for association scheme parameters

The dual eigenvaluesθ∗j , 0 ≤ j ≤ d, are assumed to be distinct and real. Assume as well
thatq 6= ±1 andσ ∗0σ

∗
3 6= 0.

Lemma 2 qm 6= 1 for 1≤ m≤ d and qm 6= σ ∗0 /σ ∗3 for 2≤ m≤ 2d.

Proof: For 0≤ j < k ≤ d, θ∗k − θ∗j = q−k(1− qk− j )(σ ∗0 − σ ∗3 qk+ j+1) 6= 0. 2

Theorem 3 Let

h(z) := q(1− z)
(
σ ∗23 σ0− σ ∗0σ ∗3σ1z+ σ ∗20 σ2z2− σ ∗20 σ3z3

)
(σ ∗3 q − σ ∗0 z2)(σ ∗3 − σ ∗0 z2)

.

Then bj = h(q j+1σ ∗3 /σ
∗
0 )and cj = h(q− j ) for 0≤ j ≤ d,unless h(z) is undefined because

the denominator is zero, which happens for b0 if σ ∗0 /σ
∗
3 = q, for c0 = 0 if σ ∗0 /σ

∗
3 = q, 1,

for bd = 0 if σ0/σ
∗
3 = q2d+1,q2d+2, and for cd if σ ∗0 /σ

∗
3 = q2d+1.

Proof: Immediate. 2

[The importance of noting the exceptions here is that the simplen-gons occur forq =
σ ∗0 /σ

∗
3 = q2d+1,q2d+2 andh(z) ≡ 1 for thosez for which the denominator is not zero.]

Lemma 4 If qn = 1 andω := q + q−1 is rational, then n≤ 6.

Proof: [This is undoubtedly folklore attributable to many, but the proof is short enough
to give here.] Ifqn = 1, thenpn(ω) is an algebraic integer. Sinceω is rational,ω must be
an integer. Since|q| = 1, it follows that|ω| ≤ 2. If ω = −2, thenq2 = 1. If ω = −1,
thenq3= 1. If ω= 0, thenq4= 1. If ω= 1, thenq6= 1. And if ω= 2, thenq1= 1. 2

The remainder of this paper treats the exceptional cases in whichc0 = 0 is not given by
h(q−0) because the latter is undefined becauseσ ∗0 /σ

∗
3 = 1,q. Sinceσ ∗0 may be assumed

to be nonzero, letσ1 := δ1/σ
∗
0 andσ2 := δ2/σ

∗
0 .

3. The caseσ∗0/σ
∗
3 = 1

In this case, the formula forh(z) (for z 6= 1) reduces to

h(z) = q(σ0− σ1z+ σ2z2− σ3z3)

(q − z2)(1+ z)
.

Sincec0 = 0 is not given byh(q−0), considerc1 = 1 = h(q−1) andd ≥ 2. Then f (z) :=
h(z)− 1 is given by

f (z) = (qz− 1)(−(1+ σ1)q3+ (1+ σ2q)q(qz+ 1)− (1+ σ3q)(q2z2+ qz+ 1))

q3(q − z2)(1+ z)
.
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If f j := f (q j ), then ford ≥ 3, use Lagrange interpolation onf (z)(q−1z2− 1)(z+ 1)/
(qz− 1) to get

f (z)
(z+ 1)(q−1z2− 1)

(qz− 1)
= f1

(z− q2)(z− q3)

(q − q2)(q − q3)
+ f2(1+ q2)

(z− q)(z− q3)

(q2− q)(q2− q3)

+ f3
(1+ q3)(q5− 1)(z− q)(z− q2)

(q4− 1)(q3− q)(q3− q2)

In terms ofω and the monic Tchebyshev polynomials of Section 1, this becomes

f jωp2 j p2 j−1 = pj+1 pj ( f1ωpj−2 pj−3− f2ω
2εpj−1 pj−3+ f3(ω − 1)p5 pj−1 pj−2),

with ε being 1 if j is even andω + 2 if j is odd.

Theorem 5 Suppose that q6= ±1 andω := q + q−1. LetX be a metric, cometric,
symmetric association scheme with parameters given as in Theorem3.Suppose further that
σ ∗0 /σ

∗
3 = 1.

1. If ω is rational, then d≤ 2.
2. If ω is not rational, butσ0+ σ1+ σ2+ σ3 = 0, then d≤ 4.
3. If ω is not rational andσ0+ σ1+ σ2+ σ3 6= 0, then d≤ 4.

Proof: [This is proven as three separate cases.]

Case 1. Suppose thatd ≥ 3 andω is rational. Then from Lemma 4,q2d+1 6= 1 and
q2d+2 6= 1. So fd+1 = bd − 1 = −1. From Lemma 2.1, gcd(p2 j , pj+1) = 1,
gcd(p2 j−1, pj+1) = pgcd(3, j+1), and gcd(ω, pj+1) = pgcd(4, j+1). With e := gcd(12, d+
2), we havePe | Pd+2 |Pgcd(3,d+2)Pgcd(4,d+2)| Pe. But thenPe = ±Pd+2, which forces
pe = pd+2, so that eitherqd+2+e = 1 or qd+2−e = 1. But d + 1 ≤ e| d + 2, so
5≤ e= d+2 | 12. Hence eithere= 6 ore= 12. If e= 6, thenP6(α, β)=±P3(α, β),
soα − β = ±β, ω = 0, orω = 2, q4 = 1 or q = 1. And if e= 12, thenP12(α, β) =
±P3(α, β) P4(α, β), so(α2− 3β2)(α − β) = ±β3, and henceω = 2,q = 1.

Case 2.If ω is not rational, butσ0+ σ1+ σ2+ σ3 = 0, then forz 6= ±1,

h(z) = q(−σ1+ σ2(z− 1)− σ3(z2− z+ 1))

(q − z2)
.

Sincec1 = 1= h(q−1),

f (z) := h(z)− 1= (qz− 1)((qz+ 1)(1− σ3q)+ q2(σ2+ σ3))

q2(q − z2)
.

Use Lagrange interpolation on the functionf (z)(q−1z2− 1)/(qz− 1) to get

f (z)

(
q−1z2− 1

qz− 1

)
= f2

(
q−1z− 1

q − 1

)
− f1q

(
q−2z− 1

q2− 1

)
,
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and hence

f j

(
q2 j−1− 1

q − 1

)
=
(

q j+1− 1

q − 1

)(
f2

(
q j−1− 1

q − 1

)
− q f1

(
q j−2− 1

q2− 1

))
.

Again usingω and the monic Tchebyshev polynomials above,

f j p2 j−1 = pj+1( f2 pj−1ε − f1 pj−2)

with ε = 1 if j is even andε = ω + 2 if j is odd. Ifd ≥ 4, then

( f2− f3)ω
2+ (− f1+ 2 f2− f3)ω + f3 = 0,

and

( f2− f4)ω
3+ (− f1+ 2 f2− f4)ω

2+ (2 f4− f1)ω + f4− f2+ f1 = 0.

From these,

ω
(
( f2− f4)

(
f 2
1 − 3 f1 f2+ f1 f3+ 2 f2 f3− f 2

3

)
+ ( f2− f3)

(− f2 f3− f 2
1 + 2 f1 f2

))+ (−( f2− f4)(( f1− f2) f3

+ ( f2− f3)
2)+ ( f2− f3) f2( f1− f3)) = 0.

Clearlyω is rational unless both

( f2− f4)
(

f 2
1 − 3 f1 f2+ f1 f3+ 2 f2 f3− f 2

3

)
+ ( f2− f3)

(− f2 f3− f 2
1 + 2 f1 f2

) = 0

and

−( f2− f4)(( f1− f2) f3+ ( f2− f3)
2)+ ( f2− f3) f2( f1− f3) = 0.

If f2− f3 = 0, thenb1 = b2. So f2− f3 6= 0, and( f2− f3)(( f1− f2)
2+3 f2( f1− f2)+

f 2
2 ) = ( f1 − f2)

3. From the equation above involvingf2 − f3, (( f1 − f2)
2ω + f 2

1 −
4 f1 f2 + 2 f 2

2 )(( f1 − f2)ω − f1) = 0. Soω is rational unlessf1 − f2 = 0 and f2 = 0,
which would mean thatb0 = b1 = 1.

Case 3.Suppose thatω is not rational and thatσ0+ σ1+ σ2+ σ3 6= 0. Let

e(z) := h(qz)+ h(z−1) = (σ0+ σ3q)− qz(σ0+ σ1+ σ2+ σ3)

(1+ z)(1+ qz)
,

and

ε(z) := e(qz)− e(z) = qz(σ0+ σ1+ σ2+ σ3)(1− q)(1− qz)

(1+ z)(1+ qz)(1+ q2z)
,
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with

ε j := ε(q j ), 1≤ j ≤ d − 1.

Then in this case,ε j 6= 0. If d ≥ 4, thenε2(ω
2− 2)− ε1(ω+ 1) = 0 andε3(ω

3− 2ω−
1)− ε2ω

2 = 0. From these,(ω+ 1)ε1(ε2ε3− ε2
2 + ε1ε3) = ε2(ε2ε3+ 2ε2

2 − ε1ε3), soω
would be rational unless bothε2ε3−ε2

2+ε1ε3 = 0 andε2ε3+2ε2
2−ε1ε3 = 0. This forces

ε1 = 6ε3, ε2 = −2ε3, andω2 + 3ω + 1 = 0. But f2ω = f1ω − f2ωp3 + f3(ω − 1)p3,
which means thatω(−2 f2+ 3 f3+ f−2− f1)− f2+ 2 f3 = 0. So f2 = 2 f3 and f−2 =
f1+ f3, b1 = 2b2− 1, andc2 = b0+ b2− 1≥ b0 > c2. 2

4. The caseσ∗0/σ
∗
3 = q

In this case, forz 6= 1, h(z) is given by

h(z) = (σ0− σ1qz+ σ2q2z2− σ3q2z3)

(1− qz2)(1+ z)
.

Again c0 = 0 is not given byh(q−0), but c1 = 1 = h(q−1) whend ≥ 2. So forz 6= 1,
f (z) := h(z)− 1 is given by

f (z) = (qz− 1)(q2(z− σ1)+ σ2q2(qz+ 1)+ (1− σ3q)(q2z2+ qz+ 1))

(1− qz2)(1+ z)
.

If f j := f (q j ), then Lagrange interpolation on the functionf (z)(z+1)(qz2−1)/(qz−1),
gives

f (z)
(z+ 1)(qz2− 1)

qz− 1
= f1

(q3− 1)(z− q2)(z− q3)

(q − 1)(q − q2)(q − q3)

+ f2
(1+ q2)(q5− 1)(z− q)(z− q3)

(q3− 1)(q2− q)(q2− q3)

+ f3
(1+ q3)(q7− 1)(z− q)(z− q2)

(q4− 1)(q3− q)(q3− q2)
.

In terms ofω and the monic Tchebyshev polynomials, this becomes

f jωp3 p2 j p2 j+1 = pj+1 pj
(

f1ωp2
3 pj−2 pj−3− f2ω

2εp5 pj−1 pj−3+ f3 p6 p7 pj−1 pj−2
)
.

Theorem 6 Suppose that q6= ±1 andω := q + q−1. LetX be a metric, cometric,
symmetric association scheme with parameters as in Theorem3. Suppose further that
σ ∗0 /σ

∗
3 = q.

1. If ω is rational, then d≤ 3.
2. If ω is not rational, butσ0 + qσ1 + q2σ2 + q2σ3 = 0, then d≤ 3, unless bj = 1 = cj

for 1≤ j ≤ d − 1 and q2d+1 = 1 or q2d+2 = 1.
3. If ω is not rational andσ0+ qσ1+ q2σ2+ q2σ3 6= 0, then d≤ 4.
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Proof: [This, too, is proven in cases.]

Case 1.Supposeω is rational andd ≥ 4. Thenq2d+1 6= 1 andq2d 6= 1. So fd + 1 =
bd − 1 = −1. Since gcd(p2 j , pj+1) = 1, gcd(p2 j+1, pj+1) = 1, and gcd(ω, pj+1) =
pgcd(4, j+1), then withe := gcd(12, d+ 1), Pe | Pd+1 |Pgcd(3,d+1)Pgcd(4,d+1)| Pe. But Pe=
±Pd+1 meanspe = ±pd+1, soqd+1+e = 1 or qd+1−e = 1. But d + 1 ≤ e| d + 1, so
5≤ d + 1= e| 12. This leads to the same contradictions as before.

Case 2. If ω is not rational andσ0 + qσ1 + q2σ2 + q2σ3 = 0, then forz 6= ±1, h(z) is
given by

h(z) = q(−σ1+ σ2q(z− 1)− σ3q(z2− z+ 1))

1− qz2
.

Sincec1 = 1= h(q−1), for z 6= ±1,

f (z) := h(z)− 1= (qz− 1)((qz+ 1)(1− qσ3)+ q2(σ2+ σ3))

q(1− qz2)
,

Use Lagrange interpolation on the functionf (z)(qz2− 1)/(qz− 1) to get

f (z)

(
qz2− 1

qz− 1

)
= f2

(
q−1z− 1

q−1− 1

)
+ f1

(
q2z− 1

q2− 1

)
,

and hence

f j

(
q2 j+1− 1

q − 1

)
=
(

q j+1− 1

q − 1

)(
f2

(
q j−1− 1

q−1− 1

)
+ f1

(
q j+2− 1

q2− 1

))
.

In terms ofω and the monic Tchebyshev polynomials above,

f j p2 j+1 = pj+1( f1 pj+2− f−2 pj−1ε)

again withε = 1 for j even andε = ω + 2 for j odd. But then

f2(ω
2+ ω − 1)− (ω + 1)( f1ω − f−2) = 0

f3(ω
3+ ω2− 2ω − 1)− ω( f1(ω

2+ ω − 1)− f−2(ω + 2)) = 0.

From these,

ω
(
( f3− f2)

(
f 2
−2− 2 f 2

1 + 3 f1 f2− f 2
2

)+ ( f1− f2)
2( f1− f2+ f−2)

)
+ ( f3− f2)

(
f 2
−2− f2 f−2− ( f1− f2)

2
) = 0.

Soω is rational unless both( f3− f2)( f 2
−2− 2 f 2

1 + 3 f1 f2− f 2
2 )+ ( f1− f2)

2( f1− f2

+ f−2) = 0 and( f3 − f2)( f 2
−2 − f2 f−2 − ( f1 − f2)

2) = 0. Then( f 2
1 + f1 f−2 − f 2

−2)
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f2 = ( f1 + f−2)
2( f1 − f−2), so f 3

−2ω
2 + f−2( f−2 − f1)(2 f−2 + f1)ω + f1( f 2

1 −
2 f 2
−2) = ( f 2

−2ω + 2 f 2
−2 − f 2

1 )( f−2ω − f1) = 0. Soω is rational unlessf−2 = 0. Then
f2 = f1 = 0, meaning thatf (z) ≡ 0 where it is defined. This gives then-gon case since
it means thatbj = 1= cj except forc0, bd.

Case 3.Suppose thatω is not rational and thatσ0+ qσ1+ q2σ2+ q2σ3 6= 0. Let

g(z) := h(q−1z)+ h(z−1) = σ0+ qσ3− z(σ0+ qσ1+ q2σ2+ q2σ3)

(1+ z)(q + z)

and

γ (z) := g(qz)− g(z) = z(σ0+ qσ1+ q2σ2+ q2σ3)(1− q)(1− z)

(1+ z)(q + z)(1+ qz)
.

Let γ j := γ (q j ). Thenγ j 6= 0. If d ≥ 5, thenγ3(ω
2 − 2) − γ2(ω + 1) = 0 and

γ4(ω
3−2ω−1)−γ3ω

2 = 0. So(ω+1)γ2(γ3γ4−γ 2
3 +γ2γ4) = γ3(γ3γ4+2γ 2

3 −γ2γ4).
Sinceω is not rational, this forcesγ3γ4 − γ 2

3 + γ2γ4 = 0 andγ3γ4 + 2γ 2
3 − γ2γ4 = 0.

This in turn forcesγ2 = 6γ4, γ3 = −2γ4, andω2+ 3ω + 1= 0. But then

− f−2ω(ω + 1)+ f1ω(ω + 1)(ω2+ ω − 1)− f2ω(ω
2+ ω − 1)2

+ f3(ω
2− 1)(ω3+ ω2− 2ω − 1) = 0.

So 2ω( f−2−3 f1−6 f2+9 f3)+( f−2−2 f1−4 f2+7 f3) = 0. Becauseω is not rational,
this means thatf−2 = 3( f1+2 f2−3 f3) = 2 f1+4 f2−7 f3. So 0< f1+2( f2− f3) = 0.
Hence f1 = f2 = f3 = f−2 = 0. 2
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