ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Discriminantal Arrangements, Fiber Polytopes and Formality

Margaret M. Bayer and Keith A. Brandt

DOI: 10.1023/A:1008601810383

Abstract

Manin and Schechtman defined the discriminantal arrangement of a generic hyperplane arrangement as a generalization of the braid arrangement. This paper shows their construction is dual to the fiber zonotope construction of Billera and Sturmfels, and thus makes sense even when the base arrangement is not generic. The hyperplanes, face lattices and intersection lattices of discriminantal arrangements are studied. The discriminantal arrangement over a generic arrangement is shown to be formal (and in some cases 3-formal), though it is in general not free. An example of a free discriminantal arrangement over a generic arrangement is given.

Pages: 229–246

Keywords: discriminantal arrangement; hyperplane arrangement; polytope; free

Full Text: PDF

References

1. M. Bayer, “Face numbers and subdivisions of convex polytopes,” In: T. Bisztricsky, ed., Polytopes: Abstract, Convex and Computational, Kluwer Academic Publishers, Dordrecht, 1994.
2. L. Billera and B. Sturmfels, “Fiber polytopes,” Ann. of Math. 135 (1992), 527-549.
3. A. Bj\ddot orner, M. Las Vergnas, B. Sturmfels, N. White and G. Ziegler, “Oriented Matroids,” Encyclopedia of Mathematics and Its Applications 46, Cambridge University Press, Cambridge, 1993.
4. K. Brandt and H. Terao, “Free arrangements and relation spaces,” Disc. & Comp. Geometry 12 (1994), 49-63.
5. P. Edelman and V. Reiner, “Free arrangements and rhombic tilings,” Disc. & Comp. Geometry 15 (1996), 307-340.
6. M. Falk, “A note on discriminantal arrangements,” Proc. Amer. Math. Soc. 122 (1994), 1221-1227.
7. M. Falk and R. Randell, “On the homotopy theory of arrangements,” In: Complex Analytic Singularities, Advanced Studies in Pure Math. 8 (1986), 101-124.
8. Y.I. Manin and V.V. Schechtman, “Arrangements of hyperplanes, higher braid groups and higher Bruhat orders,” In: Algebraic Number Theory-in honor of K. Iwasawa, Advanced Studies in Pure Math. 17 (1989), 289-308.
9. P. Orlik and H. Terao, “Arrangements of Hyperplanes,” Grundlehren der Mathematischen Wissenschaften 300, Springer-Verlag, 1992.
10. S. Yuzvinsky, “First two obstructions to the freeness of arrangements,” Trans. Amer. Math. Soc. 335 (1993), 231-244.
11. G.M. Ziegler, “Higher Bruhat orders and cyclic hyperplane arrangements,” Topology 32 (1993), 259-279.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition