Partial Flocks of Quadratic Cones with a Point Vertex in PG($n, q)$, n Odd

CHRISTINE M. O'KEEFE*
cokeefe@maths.adelaide.edu.au
Department of Mathematics, The University of Adelaide, Adelaide, 5005, Australia

Abstract

J.A. THAS jat@cage.rug.ac.be

Department of Pure Mathematics and Computer Algebra, University of Gent, Krijgslaan 281, B-9000 Gent, Belgium

Received December 15, 1995; Revised June 24, 1996

Abstract

We generalise the definition and many properties of flocks of quadratic cones in $\mathrm{PG}(3, q)$ to partial flocks of quadratic cones with vertex a point in $\mathrm{PG}(n, q)$, for $n \geq 3$ odd.

Keywords: Galois geometry, flock, cone, ovoid, cap

1. Introduction

For information on the properties of quadrics in projective spaces, see [4, Section 5.1], [5, Chapter 16] and especially [8, Chapter 22]. In the following, we always assume that $n \geq 3$ is odd.

In $\operatorname{PG}(n, q), n \geq 3$ odd, let $\mathcal{K}=v \mathcal{Q}$ be a cone with vertex the point v and base \mathcal{Q}, where \mathcal{Q} is a non-singular (parabolic) quadric in a hyperplane $\mathrm{PG}(n-1, q)$ not on v.

A partial flock of \mathcal{K} of size k is a set of hyperplanes π_{1}, \ldots, π_{k} of $\operatorname{PG}(n, q)$, each not on v, such that for each $i, j \in\{1, \ldots, k\}$ with $i \neq j$ the $(n-2)$-dimensional space $\pi_{i} \cap \pi_{j}$ meets \mathcal{K} in a non-singular elliptic quadric. The set of (non-singular, parabolic) quadrics $\pi_{i} \cap \mathcal{K}$ for $i=1, \ldots, k$ is also called a partial flock of \mathcal{K}.

In the case $n=3$, since an elliptic quadric in $\operatorname{PG}(1, q)$ has no points, the above definition coincides with the existing definition of a partial flock of a quadratic cone in $\operatorname{PG}(3, q)$.

2. The size of a partial flock, q even

It is easy to see that a partial flock of a quadratic cone in $\operatorname{PG}(3, q), q$ odd or even, has size at most q, since the conics in the flock are disjoint. In this section we use Lemma 1 (a generalisation of $[12,1.5 .2]$) to show that this bound also holds for odd $n \geq 5$ and q even. Our proof is also valid in the case $n=3$.

[^0]Lemma 1 In $P G(n, q)$, where $n \geq 3$ is odd and q is even, let $\mathcal{F}=\left\{\pi_{1}, \ldots, \pi_{k}\right\}$ be a partial flock of the cone $\mathcal{K}=v \mathcal{Q}$. Let u be the nucleus of \mathcal{Q} in the subspace $P G(n-1, q)$ of $\operatorname{PG}(n, q)$. Then each space $\pi_{i} \cap \pi_{j}, i \neq j$, is disjoint from the line $v u$.

Proof: Suppose, to the contrary, that there exist $i \neq j$ such that $\pi_{i} \cap \pi_{j} \cap v u=u^{\prime}$, say. Then u^{\prime} is the nucleus of the (parabolic) quadric $\mathcal{K} \cap \pi_{i}$, so $\pi_{i} \cap \pi_{j} \cap \mathcal{K}$ is parabolic, a contradiction.

Theorem 2 In $P G(n, q)$, where $n \geq 3$ is odd and q is even, a partial flock of a quadratic cone has size at most q.

Proof: Let \mathcal{F} be a partial flock of the cone $\mathcal{K}=v \mathcal{Q}$. Let u be the nucleus of \mathcal{Q} in the subspace $\operatorname{PG}(n-1, q)$ of $\operatorname{PG}(n, q)$. By Lemma 1, no two elements of \mathcal{F} can meet on the line $v u$. Since each element of \mathcal{F} must meet $v u \backslash\{v\}$, we have $k \leq q$.

3. Generalising known results

In this section we generalise some results which are well-known for flocks of quadratic cones in $\operatorname{PG}(3, q)$. In particular, the dual setting for q even generalises [12, 1.5.3], the algebraic condition generalises [12,1.5.5], the existence of the partial ovoid of $\mathcal{Q}^{+}(n+2, q)$ generalises [12, 1.3], the process of derivation for q odd generalises [1] and the construction of herds of caps for q even generalises [2, Theorem 1] (see also [11, Theorem 2.1]).

4. The dual setting

Case (1) q odd: First suppose that q is odd. In $\operatorname{PG}(n, q)$, let $\mathcal{F}=\left\{\pi_{1}, \ldots, \pi_{k}\right\}$ be a partial flock of the cone $\mathcal{K}=v \mathcal{Q}$. We apply a duality to $\operatorname{PG}(n, q)$. The point v is mapped to a hyperplane V of $\operatorname{PG}(n, q)$ and the set of lines of \mathcal{K} on v is mapped to the set of all tangent hyperplanes to a non-singular quadric \mathcal{Q}^{\prime} of V. The hyperplanes π_{1}, \ldots, π_{k} of \mathcal{F} are mapped to points p_{1}, \ldots, p_{k} of $\operatorname{PG}(n, q) \backslash V$. For $i \neq j$ the $(n-2)$ dimensional space $\pi_{i} \cap \pi_{j}$ meets \mathcal{K} in the points of a non-singular elliptic quadric $\mathcal{Q}^{-}(n-2, q)$; so the hyperplane $\left\langle\pi_{i} \cap \pi_{j}, v\right\rangle$, generated by $\pi_{i} \cap \pi_{j}$ and v, contains exactly the lines of $v \mathcal{Q}$ on the cone $v \mathcal{Q}^{-}(n-2, q)$. It follows that the line $p_{i} p_{j}$ meets V in a point $p_{i j}$ on exactly the tangent hyperplanes of \mathcal{Q}^{\prime} which correspond under the duality to the lines of $v \mathcal{Q}^{-}(n-2, q)$; so the tangent points of these hyperplanes are the points of a non-singular elliptic quadric $\hat{\mathcal{Q}}^{-}(n-2, q)$ on \mathcal{Q}^{\prime}. Hence $p_{i j}$ is an interior point of \mathcal{Q}^{\prime}.

Thus, for n and q odd, a dual partial flock of a non-singular quadric \mathcal{Q}^{\prime} of a hyperplane $\operatorname{PG}(n-1, q)$ of $\operatorname{PG}(n, q)$ is a set of points of $\operatorname{PG}(n, q) \backslash \operatorname{PG}(n-1, q)$ such that the line joining any two of them meets $\operatorname{PG}(n-1, q)$ in a point interior to \mathcal{Q}^{\prime}. It is clear that a partial flock gives rise to a dual partial flock and conversely.
Case (2) q even: Now suppose that q is even.

We use the following notation, introduced in [7]. Let \mathcal{Q} be a non-singular quadric in $\operatorname{PG}(n, q)$, let $\operatorname{PG}(n-1, q)$ be a hyperplane and let Q be a point of $\operatorname{PG}(n, q) \backslash \operatorname{PG}(n-1, q)$ not lying on \mathcal{Q} and distinct from its nucleus. The projection of \mathcal{Q} from Q onto $\operatorname{PG}(n-1, q)$ is the set $\mathcal{R}=\{P Q \cap \operatorname{PG}(n-1, q): P \in \mathcal{Q}\}$. If n is odd and \mathcal{Q} is hyperbolic then we write $\mathcal{R}=\mathcal{R}^{+}$while if \mathcal{Q} is elliptic then we write $\mathcal{R}=\mathcal{R}^{-}$. We note, see [7], that a set \mathcal{R} has type $(1, q / 2+1, q+1)$ with respect to lines, that a set \mathcal{R}^{+}contains a unique hyperplane $\mathrm{PG}(n-2, q)$ such that $\left(\mathrm{PG}(n-1, q) \backslash \mathcal{R}^{+}\right) \cup \mathrm{PG}(n-2, q)$ is a set \mathcal{R}^{-}and that a set \mathcal{R}^{-} contains a unique hyperplane $\operatorname{PG}(n-2, q)$ such that $\left(\operatorname{PG}(n-1, q) \backslash \mathcal{R}^{-}\right) \cup \operatorname{PG}(n-2, q)$ is a set \mathcal{R}^{+}.

In $\operatorname{PG}(n, q)$, for odd $n \geq 5$, let $\mathcal{F}=\left\{\pi_{1}, \ldots, \pi_{k}\right\}$ be a partial flock of the cone $\mathcal{K}=v \mathcal{Q}$. Again, we apply a duality to $\operatorname{PG}(n, q)$. The point v is mapped to a hyperplane $V=\operatorname{PG}(n-$ $1, q)$ of $\operatorname{PG}(n, q)$. Let \mathcal{G} be the set of generators $(((n-3) / 2)$-dimensional subspaces) lying on \mathcal{Q}. A $((n-1) / 2)$-dimensional subspace $v G, G \in \mathcal{G}$, is mapped by the duality to an $((n-1) / 2)$-dimensional subspace of V, and we denote by \mathcal{R} the union of the points lying on such $((n-1) / 2)$-dimensional subspaces of V. The set \mathcal{R} contains the subspace $\operatorname{PG}(n-2, q)$ of V which is the dual of the line $u v$, with u the nucleus of \mathcal{Q}. It can be shown that \mathcal{R} has type $(1, q / 2+1, q+1)$ with respect to lines, by showing that an $(n-2)$-dimensional subspace of $\operatorname{PG}(n, q)$ on v lies in exactly $1, q / 2+1$ or $q+1$ hyperplanes containing an element $v G, G \in$ \mathcal{G}. Then, since \mathcal{R} contains ($(n-1) / 2)$-dimensional subspaces not in $\operatorname{PG}(n-2, q)$, it follows that \mathcal{R} is a set \mathcal{R}^{+}in V (this also follows from $|\mathcal{R}|=q^{n-1} / 2+q^{n-2}+\cdots+q+1+q^{(n-1) / 2} / 2$ and [7]). The hyperplanes π_{1}, \ldots, π_{k} of \mathcal{F} are mapped to points p_{1}, \ldots, p_{k} of $\operatorname{PG}(n, q) \backslash V$. For $i \neq j$ the ($n-2$)-dimensional space $\pi_{i} \cap \pi_{j}$ does not meet the line $u v$ and meets \mathcal{K} in exactly the points of a non-singular elliptic quadric $\mathcal{Q}^{-}(n-2, q)$; hence the hyperplane $\left\langle\pi_{i} \cap \pi_{j}, v\right\rangle$ does not contain any element of \mathcal{G}. So the line $p_{i} p_{j}$ meets V in a point of $V \backslash \mathcal{R}^{+}=\mathcal{R}^{-} \backslash \operatorname{PG}(n-2, q)$.

For n odd and q even a dual partial flock of a set \mathcal{R}^{+}of type $(1, q / 2+1, q+1)$ in a hyperplane $\operatorname{PG}(n-1, q)$ of $\operatorname{PG}(n, q)$ is a set of points of $\operatorname{PG}(n, q) \backslash \operatorname{PG}(n-1, q)$ such that the line joining any two of them meets $\operatorname{PG}(n-1, q)$ in a point of $\mathrm{PG}(n-1, q) \backslash \mathcal{R}^{+}$. It is clear that a partial flock gives rise to a dual partial flock and conversely.

We remark that the results of this last section also hold in the case $n=3$ (see [12]); here a set \mathcal{R}^{+}is the set of points of a dual regular hyperoval.

4.1. The algebraic conditions

For $q=2^{h}$, the map trace is defined by

$$
\text { trace: } \mathrm{GF}(q) \rightarrow \mathrm{GF}(2), \quad x \mapsto \sum_{i=0}^{h-1} x^{2^{i}}
$$

Theorem 3 In $\operatorname{PG}(n, q)$ for $n \geq 3$ odd, let $\mathcal{K}=v \mathcal{Q}$ be a quadratic cone with vertex the point v and base \mathcal{Q}, where \mathcal{Q} is a non-singular quadric in a hyperplane not on v, and let $\mathcal{F}=\left\{\pi_{1}, \ldots, \pi_{k}\right\}$ be a set of hyperplanes not on v. Without loss of generality, we can suppose that the quadratic cone $\mathcal{K}=v \mathcal{Q}$ has equation $x_{0} x_{1}+x_{2} x_{3}+\cdots+x_{n-3} x_{n-2}=x_{n-1}^{2}$, so that $v=(0, \ldots, 0,1)$ and \mathcal{Q} has equation $x_{0} x_{1}+x_{2} x_{3}+\cdots+x_{n-3} x_{n-2}=x_{n-1}^{2}$ in the
hyperplane $\operatorname{PG}(n-1, q)$ with equation $x_{n}=0$. For $i=1, \ldots, k$ the hyperplane π_{i} has equation $a_{0}^{(i)} x_{0}+\cdots+a_{n-1}^{(i)} x_{n-1}+x_{n}=0$ for some $a_{j}^{(i)} \in G F(q)$. If q is odd, \mathcal{F} is a partial flock of \mathcal{K} if and only if

$$
\begin{aligned}
& -4\left(a_{0}^{(i)}-a_{0}^{(j)}\right)\left(a_{1}^{(i)}-a_{1}^{(j)}\right)-\cdots \\
& \quad-4\left(a_{n-3}^{(i)}-a_{n-3}^{(j)}\right)\left(a_{n-2}^{(i)}-a_{n-2}^{(j)}\right)+\left(a_{n-1}^{(i)}-a_{n-1}^{(j)}\right)^{2}
\end{aligned}
$$

is a non-square in $G F(q)$ for all $i, j \in\{1, \ldots, k\}, i \neq j$. If q is even, \mathcal{F} is a partial flock of \mathcal{K} if and only if $a_{n-1}^{(i)}-a_{n-1}^{(j)} \neq 0$ and

$$
\operatorname{trace}\left(\frac{\left(a_{0}^{(i)}-a_{0}^{(j)}\right)\left(a_{1}^{(i)}-a_{1}^{(j)}\right)+\cdots+\left(a_{n-3}^{(i)}-a_{n-3}^{(j)}\right)\left(a_{n-2}^{(i)}-a_{n-2}^{(j)}\right)}{\left(a_{n-1}^{(i)}-a_{n-1}^{(j)}\right)^{2}}\right)=1
$$

for all $i, j \in\{1, \ldots, k\}, i \neq j$.
Proof: For $i, j \in\{1, \ldots, k\}, i \neq j$, the hyperplane $\left\langle\pi_{i} \cap \pi_{j}, v\right\rangle$ meets $\mathcal{K} \cap \operatorname{PG}(n-1, q)=$ \mathcal{Q} in the quadric \mathcal{Q}^{\prime} with equations

$$
\begin{align*}
\left(a_{0}^{(i)}-a_{0}^{(j)}\right) x_{0}+\cdots+\left(a_{n-1}^{(i)}-a_{n-1}^{(j)}\right) x_{n-1} & =0 \\
x_{0} x_{1}+x_{2} x_{3}+\cdots+x_{n-3} x_{n-2} & =x_{n-1}^{2} \tag{1}
\end{align*}
$$

At least one of $\left(a_{0}^{(i)}-a_{0}^{(j)}\right), \ldots,\left(a_{n-2}^{(i)}-a_{n-2}^{(j)}\right)$ is not zero, for otherwise $\left\langle\pi_{i} \cap \pi_{j}, v\right\rangle$ meets \mathcal{K} in a hyperbolic quadratic cone with vertex v, so $\pi_{i} \cap \pi_{j}$ meets \mathcal{K} in a hyperbolic quadric, contrary to the definition of partial flock. Therefore, without loss of generality, we suppose that $a_{0}^{(i)} \neq a_{0}^{(j)}$. The quadric \mathcal{Q}^{\prime} is the intersection of the cone

$$
\begin{aligned}
& \left(a_{0}^{(j)}-a_{0}^{(i)}\right)^{-1}\left(\left(a_{1}^{(i)}-a_{1}^{(j)}\right) x_{1}+\cdots+\left(a_{n-1}^{(i)}-a_{n-1}^{(j)}\right) x_{n-1}\right) x_{1} \\
& \quad+x_{2} x_{3}+\cdots+x_{n-3} x_{n-2}=x_{n-1}^{2}
\end{aligned}
$$

that is,

$$
\begin{align*}
& \left(a_{1}^{(i)}-a_{1}^{(j)}\right) x_{1}^{2}+\left(a_{0}^{(i)}-a_{0}^{(j)}\right) x_{n-1}^{2}+\left(a_{2}^{(i)}-a_{2}^{(j)}\right) x_{1} x_{2}+\cdots \\
& \quad+\left(a_{n-1}^{(i)}-a_{n-1}^{(j)}\right) x_{1} x_{n-1}+\left(a_{0}^{(j)}-a_{0}^{(i)}\right) x_{2} x_{3}+\left(a_{0}^{(j)}-a_{0}^{(i)}\right) x_{4} x_{5}+\cdots \\
& \quad+\left(a_{0}^{(j)}-a_{0}^{(i)}\right) x_{n-3} x_{n-2}=0 \tag{2}
\end{align*}
$$

with the hyperplane (1) not through its vertex. We determine exactly when the quadric \mathcal{Q}^{\prime} is non-singular and elliptic. Let the matrix $A=\left[a_{i j}\right]_{i, j=1, \ldots, n-1}$, where $a_{i i}$ is twice the coefficient of x_{i}^{2} in (2) and for $i<j \quad a_{i j}=a_{j i}$ is the coefficient of $x_{i} x_{j}$ in (2).

Then A is

with determinant (expanding by the last row; then expanding the two resulting subdeterminants by the last column and first row respectively)

$$
\begin{aligned}
|A|= & (-1)^{(n-3) / 2}\left(a_{0}^{(i)}-a_{0}^{(j)}\right)^{n-3}\left(4 \left(\left(a_{0}^{(i)}-a_{0}^{(j)}\right)\left(a_{1}^{(i)}-a_{1}^{(j)}\right)+\left(a_{2}^{(i)}-a_{2}^{(j)}\right)\right.\right. \\
& \left.\left.\times\left(a_{3}^{(i)}-a_{3}^{(j)}\right)+\cdots+\left(a_{n-3}^{(i)}-a_{n-3}^{(j)}\right)\left(a_{n-2}^{(i)}-a_{n-2}^{(j)}\right)\right)-\left(a_{n-1}^{(i)}-a_{n-1}^{(j)}\right)^{2}\right) .
\end{aligned}
$$

If q is odd, by [8, 22.2.1], the quadric \mathcal{Q}^{\prime} is non-singular and elliptic if and only if $(-1)^{(n-1) / 2}|A|$ is a non-square in $\operatorname{GF}(q)$, which is if and only if

$$
-4\left(a_{0}^{(i)}-a_{0}^{(j)}\right)\left(a_{1}^{(i)}-a_{1}^{(j)}\right)-\cdots-4\left(a_{n-3}^{(i)}-a_{n-3}^{(j)}\right)\left(a_{n-2}^{(i)}-a_{n-2}^{(j)}\right)+\left(a_{n-1}^{(i)}-a_{n-1}^{(j)}\right)^{2}
$$

is a non-square in $\operatorname{GF}(q)$.
For q even, by $[8,22.2 .1]$, the quadric \mathcal{Q}^{\prime} is non-singular if and only if $|A| \neq 0$, that is, if and only if $a_{n-1}^{(i)}-a_{n-1}^{(j)} \neq 0$. Further, the non-singular quadric \mathcal{Q}^{\prime} is elliptic if and only if $\operatorname{trace}\left(\left(|B|-(-1)^{(n-1) / 2}|A|\right) /(4|B|)\right)=1$, where the matrix $B=\left[b_{i j}\right]_{i, j=1, \ldots, n-1}$ has $b_{i i}=0$ and $b_{j i}=-b_{i j}=-a_{i j}$ for $i<j$. (The formula $\left(|B|-(-1)^{(n-1) / 2}|A|\right) /(4|B|)$ should be interpreted as follows: the terms $a_{i j}$ are replaced by indeterminates $z_{i j}$, the formula is evaluated as a rational function over the integers Z, and then $z_{i j}$ is specialized to $a_{i j}$ to give the result.) Thus B is
$\left(\begin{array}{cccccccc}0 & \left(a_{2}^{(i)}-a_{2}^{(j)}\right) & \left(a_{3}^{(i)}-a_{3}^{(j)}\right) & \ldots & \ldots & \left(a_{n-3}^{(i)}-a_{n-3}^{(j)}\right) & \left(a_{n-2}^{(i)}-a_{n-2}^{(j)}\right) & \left(a_{n-1}^{(i)}-a_{n-1}^{(j)}\right) \\ -\left(a_{2}^{(i)}-a_{2}^{(j)}\right) & 0 & \left(a_{0}^{(j)}-a_{0}^{(i)}\right) & 0 & \ldots & 0 & 0 & 0 \\ -\left(a_{3}^{(i)}-a_{3}^{(j)}\right) & -\left(a_{0}^{(j)}-a_{0}^{(i)}\right) & 0 & 0 & \ldots & 0 & 0 & 0 \\ -\left(a_{4}^{(i)}-a_{4}^{(j)}\right) & 0 & 0 & \ddots & \ddots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\ -\left(a_{n-3}^{(i)}-a_{n-3}^{(j)}\right) & 0 & 0 & 0 & \ldots & 0 & \left(a_{0}^{(j)}-a_{0}^{(i)}\right) & 0 \\ -\left(a_{n-2}^{(i)}-a_{n-2}^{(j)}\right) & 0 & 0 & 0 & \ldots & -\left(a_{0}^{(j)}-a_{0}^{(i)}\right) & 0 & 0 \\ -\left(a_{n-1}^{(i)}-a_{n-1}^{(j)}\right) & 0 & 0 & 0 & \ldots & 0 & 0 & 0\end{array}\right)$
and $|B|=\left(a_{0}^{(i)}-a_{0}^{(j)}\right)^{n-3}\left(a_{n-1}^{(i)}-a_{n-1}^{(j)}\right)^{2}$. Thus, the non-singular quadric \mathcal{Q}^{\prime} is elliptic if and only if

$$
\operatorname{trace}\left(\frac{\left(a_{0}^{(i)}-a_{0}^{(j)}\right)\left(a_{1}^{(i)}-a_{1}^{(j)}\right)+\cdots+\left(a_{n-3}^{(i)}-a_{n-3}^{(j)}\right)\left(a_{n-2}^{(i)}-a_{n-2}^{(j)}\right)}{\left(a_{n-1}^{(i)}-a_{n-1}^{(j)}\right)^{2}}\right)=1
$$

4.2. \quad The corresponding partial ovoid of $\mathcal{Q}^{+}(n+2, q)$

Theorem 4 In $P G(n, q), n \geq 3$ odd, let \mathcal{F} be a partial flock of size k of the quadratic cone $\mathcal{K}=v \mathcal{Q}$. Then there exists a partial ovoid of the non-singular hyperbolic quadric $\mathcal{Q}^{+}(n+2, q)$ of size $k q+1$ comprising k conics mutually tangent at a common point. Conversely, given any such partial ovoid there exists a partial flock \mathcal{F} of \mathcal{K}.

Proof: Embed \mathcal{K} in a non-singular hyperbolic quadric \mathcal{Q}^{+}in $\operatorname{PG}(n+2, q)$ and let \perp denote the polarity determined by \mathcal{Q}^{+}. Let $\mathcal{F}=\left\{\pi_{1}, \ldots, \pi_{k}\right\}$. First, since $\operatorname{PG}(n, q) \cap \mathcal{Q}^{+}=v \mathcal{Q}$, the line $L=\mathrm{PG}(n, q)^{\perp}$ meets \mathcal{Q}^{+}in the single point v. For $i=1, \ldots, k, \pi_{i}^{\perp}$ is a plane on L meeting \mathcal{Q}^{+}in a (non-singular) conic \mathcal{C}_{i} on v. Since, for $i, j \in\{1, \ldots, k\}, i \neq j, \pi_{i} \cap \pi_{j}$ meets \mathcal{K} and hence also \mathcal{Q}^{+}in a non-singular elliptic quadric, it follows that $\left\langle\pi_{i}^{\perp}, \pi_{j}^{\perp}\right\rangle$ also meets \mathcal{Q}^{+}in a non-singular elliptic quadric. Hence no two points of $\mathcal{C}_{i} \cup \mathcal{C}_{j}$ are collinear on \mathcal{Q}^{+}, so $\mathcal{C}_{1} \cup \cdots \cup \mathcal{C}_{k}$ is a partial ovoid of \mathcal{Q}^{+}of size $k q+1$. The converse is immediate as the polarity is bijective and involutory.

Corollary 5 Let q be even. A partial ovoid of $\mathcal{Q}^{+}(n+2, q)$ which is a union of conics mutually tangent at a common point has size at most $q^{2}+1$.

Proof: Theorems 2 and 4.

The construction in Theorem 4 gives a bound on the size of a partial flock. If $n>3$ and q is even, this is not as good as the bound in Theorem 2.

Theorem 6 In $P G(n, q), n \geq 3$ odd, let \mathcal{F} be a partial flock of size k of the quadratic cone $\mathcal{K}=v \mathcal{Q}$ in $P G(n, q)$. Then $k \leq q^{(n-1) / 2}$.

Proof: Given \mathcal{F}, by Theorem 4 there exists a partial ovoid \mathcal{O} of size $k q+1$ of $\mathcal{Q}^{+}(n+2, q)$. Thus $\mathcal{O} \leq q^{(n+1) / 2}+1([8, \mathrm{~A} \mathrm{VI]})$ and the result follows.

We remark that in the case $n=3$, the bound is best possible as there exist partial flocks of size q of a quadratic cone in $\operatorname{PG}(3, q)$, called flocks, associated with certain ovoids of $\mathcal{Q}^{+}(5, q)$.

Let $\mathcal{F}=\left\{\pi_{1}, \ldots, \pi_{k}\right\}$ be a partial flock of $\mathcal{K}=v \mathcal{Q}$ in $\operatorname{PG}(n, q), n$ odd. If the elements of the partial flock contain a common m-dimensional subspace ξ, then the corresponding partial ovoid of $\mathcal{Q}^{+}(n+2, q)$ is contained in an $(n+1-m)$-dimensional subspace. In particular, if $m=n-3$ and if $\xi \cap \mathcal{K}$ is non-singular then the corresponding partial ovoid is
contained in a quadric $\mathcal{Q}(4, q)$. If, further, q is odd then there corresponds a partial spread of size $k q+1$ of the generalized quadrangle $W(q)$. If $k=q$ then this is a spread and there arises a translation plane.

4.3. Derivation of a partial flock of \mathcal{K}, q odd

Let $\mathcal{Q}(n+1, q)$ be the non-singular quadric of $\operatorname{PG}(n+1, q)$ defined by the equation $x_{0} x_{1}+x_{2} x_{3}+\cdots+x_{n-3} x_{n-2}-x_{n-1}^{2}+x_{n} x_{n+1}=0$ and let \perp denote the polarity determined by $\mathcal{Q}(n+1, q)$. The tangent hyperplane H_{0} of $\mathcal{Q}(n+1, q)$ at the point $p_{0}=(0, \ldots, 0,1,0)$ has equation $x_{n+1}=0$ and intersects $\mathcal{Q}(n+1, q)$ in the quadratic cone \mathcal{K}_{0} with equation $x_{0} x_{1}+x_{2} x_{3}+\cdots+x_{n-3} x_{n-2}-x_{n-1}^{2}=x_{n+1}=0$ and vertex p_{0}.

Let \mathcal{F}_{0} be a partial flock of size k of \mathcal{K}_{0}, where for $i=1, \ldots, k$ the element π_{i} of \mathcal{F}_{0} has equations $a_{0}^{(i)} x_{0}+\cdots+a_{n-1}^{(i)} x_{n-1}+x_{n}=x_{n+1}=0$. For $i=1, \ldots, k$, we define the line $L_{i}=\pi_{i}^{\perp}$, and note that L_{i} meets $\mathcal{Q}(n+1, q)$ in p_{0} and the further point

$$
\begin{aligned}
p_{i}=(& a_{1}^{(i)}, a_{0}^{(i)}, a_{3}^{(i)}, a_{2}^{(i)}, \ldots, a_{n-2}^{(i)}, a_{n-3}^{(i)}, \frac{-1}{2} a_{n-1}^{(i)}, \frac{1}{4}\left(a_{n-1}^{(i)}\right)^{2}-a_{0}^{(i)} a_{1}^{(i)} \\
& \left.-a_{2}^{(i)} a_{3}^{(i)}-\cdots-a_{n-3}^{(i)} a_{n-2}^{(i)}, 1\right) .
\end{aligned}
$$

Since $p_{i} \in \mathcal{Q}(n+1, q)$, it follows that the hyperplane $H_{i}=p_{i}^{\perp}$ with equation

$$
a_{0}^{(i)} x_{0}+a_{1}^{(i)} x_{1}+\cdots+a_{n-1}^{(i)} x_{n-1}+x_{n}+a_{n+1}^{(i)} x_{n+1}=0,
$$

where

$$
\begin{equation*}
a_{n+1}^{(i)}=1 / 4\left(a_{n-1}^{(i)}\right)^{2}-a_{0}^{(i)} a_{1}^{(i)}-a_{2}^{(i)} a_{3}^{(i)}-\cdots-a_{n-3}^{(i)} a_{n-2}^{(i)} \tag{3}
\end{equation*}
$$

meets $\mathcal{Q}(n+1, q)$ in a quadratic cone \mathcal{K}_{i}. For each $i, j \in\{1, \ldots, k\}$ with $i \neq j$, define the $(n-1)$-dimensional space $\pi_{i j}=H_{i} \cap H_{j}$. For each $j \in\{1, \ldots, k\}$ let $\pi_{j j}$ be the ($n-1$)-dimensional space π_{j}.

Theorem 7 With the notation introduced above, for any $j \in\{1, \ldots, k\}$, the set $\mathcal{F}_{j}=$ $\left\{\pi_{i j}: i=1, \ldots, k\right\}$ is a partial flock of the quadratic cone \mathcal{K}_{j} in H_{j}.

Proof: We use the notation and definitions made in this subsection. Let the collineation σ of $\operatorname{PG}(n+1, q)$ be defined by

$$
\begin{aligned}
\sigma:\left(x_{0}, x_{1}, \ldots, x_{n+1}\right) \mapsto(& x_{0}-a_{1}^{(j)} x_{n+1}, x_{1}-a_{0}^{(j)} x_{n+1}, \ldots, x_{n-3}-a_{n-2}^{(j)} x_{n+1}, \\
& x_{n-2}-a_{n-3}^{(j)} x_{n+1}, x_{n-1}+\frac{1}{2} a_{n-1}^{(j)} x_{n+1}, x_{n}+a_{0}^{(j)} x_{0} \\
& \left.+a_{1}^{(j)} x_{1}+\cdots+a_{n-1}^{(j)} x_{n-1}+a_{n+1}^{(j)} x_{n+1}, x_{n+1}\right) .
\end{aligned}
$$

Then σ fixes $\mathcal{Q}(n+1, q)$ setwise and fixes the point p_{0} and the hyperplane H_{0}, hence also fixes \mathcal{K}_{0}. For $i=1, \ldots, k$ the $(n-1)$-dimensional space π_{i} is mapped to the space with equations

$$
A_{0}^{(i)} x_{0}+\cdots+A_{n-1}^{(i)} x_{n-1}+x_{n}=x_{n+1}=0
$$

where $A_{0}^{(i)}=a_{0}^{(i)}-a_{0}^{(j)}, \ldots, A_{n-1}^{(i)}=a_{n-1}^{(i)}-a_{n-1}^{(j)}$. Thus, without loss of generality we can suppose that $a_{0}^{(j)}=\cdots=a_{n-1}^{(j)}=0$; so $p_{j}=(0, \ldots, 0,1), H_{j}$ is the hyperplane with equation $x_{n}=0, \mathcal{K}_{j}$ is the cone with equations $x_{0} x_{1}+\cdots+x_{n-3} x_{n-2}-x_{n-1}^{2}=x_{n}=0$ and \mathcal{F}_{j} comprises the $k(n-1)$-dimensional spaces $x_{n}=x_{n+1}=0$ and $a_{0}^{(i)} x_{0}+a_{1}^{(i)} x_{1}+$ $\cdots+a_{n-1}^{(i)} x_{n-1}+a_{n+1}^{(i)} x_{n+1}=x_{n}=0$, for $i=1, \ldots, j-1, j+1, \ldots, k$.

We will use Theorem 3 to show that \mathcal{F}_{j} is a partial flock. First, let $i, \ell \in\{1,2, \ldots, k\}$, with $j \neq i \neq \ell \neq j$. We must prove that

$$
\begin{aligned}
& -4\left(\frac{a_{0}^{(i)}}{a_{n+1}^{(i)}}-\frac{a_{0}^{(\ell)}}{a_{n+1}^{(\ell)}}\right)\left(\frac{a_{1}^{(i)}}{a_{n+1}^{(i)}}-\frac{a_{1}^{(\ell)}}{a_{n+1}^{(\ell)}}\right)-\cdots-4\left(\frac{a_{n-3}^{(i)}}{a_{n+1}^{(i)}}-\frac{a_{n-3}^{(\ell)}}{a_{n+1}^{(\ell)}}\right)\left(\frac{a_{n-2}^{(i)}}{a_{n+1}^{(i)}}-\frac{a_{n-2}^{(\ell)}}{a_{n+1}^{(\ell)}}\right) \\
& \quad+\left(\frac{a_{n-1}^{(i)}}{a_{n+1}^{(i)}}-\frac{a_{n-1}^{(\ell)}}{a_{n+1}^{(\ell)}}\right)^{2}
\end{aligned}
$$

is a non-square in $\mathrm{GF}(q)$. Put $b_{j}=a_{j}^{(i)}$ and $c_{j}=a_{j}^{(\ell)}$. So we must prove that

$$
\begin{aligned}
& -4\left(\frac{b_{0}}{b_{n+1}}-\frac{c_{0}}{c_{n+1}}\right)\left(\frac{b_{1}}{b_{n+1}}-\frac{c_{1}}{c_{n+1}}\right)-\cdots-4\left(\frac{b_{n-3}}{b_{n+1}}-\frac{c_{n-3}}{c_{n+1}}\right)\left(\frac{b_{n-2}}{b_{n+1}}-\frac{c_{n-2}}{c_{n+1}}\right) \\
& \quad+\left(\frac{b_{n-1}}{b_{n+1}}-\frac{c_{n-1}}{c_{n+1}}\right)^{2}
\end{aligned}
$$

is a non-square in $\operatorname{GF}(q)$. Multiplying by $\left(b_{n+1}\right)^{2}\left(c_{n+1}\right)^{2}$, we see that this is equivalent to showing that

$$
\begin{aligned}
F(i, \ell)= & -4 b_{0} b_{1}\left(c_{n+1}\right)^{2}-4 c_{0} c_{1}\left(b_{n+1}\right)^{2}+4 b_{0} c_{1} b_{n+1} c_{n+1} \\
& +4 b_{1} c_{0} b_{n+1} c_{n+1}-\cdots-4 b_{n-3} b_{n-2}\left(c_{n+1}\right)^{2}-4 c_{n-3} c_{n-2}\left(b_{n+1}\right)^{2} \\
& +4 b_{n-3} c_{n-2} b_{n+1} c_{n+1}+4 b_{n-2} c_{n-3} b_{n+1} c_{n+1}+\left(b_{n-1}\right)^{2}\left(c_{n+1}\right)^{2} \\
& +\left(c_{n-1}\right)^{2}\left(b_{n+1}\right)^{2}-2 b_{n-1} c_{n-1} b_{n+1} c_{n+1}
\end{aligned}
$$

is a non-square. On rearranging this expression, we find that

$$
\begin{aligned}
F(i, \ell)= & \left(c_{n+1}\right)^{2}\left(\left(b_{n-1}\right)^{2}-4 b_{0} b_{1}-\cdots-4 b_{n-3} b_{n-2}\right) \\
& +\left(b_{n+1}\right)^{2}\left(\left(c_{n-1}\right)^{2}-4 c_{0} c_{1}-\cdots-4 c_{n-3} c_{n-2}\right)+b_{n+1} c_{n+1} \\
& \times\left(-2 b_{n-1} c_{n-1}+4 b_{0} c_{1}+4 b_{1} c_{0}+\cdots+4 b_{n-3} c_{n-2}+4 b_{n-2} c_{n-3}\right)
\end{aligned}
$$

and hence, taking account of (3), that

$$
\begin{aligned}
F(i, \ell)= & 4\left(c_{n+1}\right)^{2} b_{n+1}+4\left(b_{n+1}\right)^{2} c_{n+1} \\
& +b_{n+1} c_{n+1}\left(-2 b_{n-1} c_{n-1}+4 b_{0} c_{1}+4 b_{1} c_{0}+\cdots+4 b_{n-3} c_{n-2}+4 b_{n-2} c_{n-3}\right) \\
= & b_{n+1} c_{n+1}\left(4 c_{n+1}+4 b_{n+1}-2 b_{n-1} c_{n-1}+4 b_{0} c_{1}+4 b_{1} c_{0}+\cdots\right. \\
& \left.\quad+4 b_{n-3} c_{n-2}+4 b_{n-2} c_{n-3}\right) \\
= & b_{n+1} c_{n+1}\left(\left(c_{n-1}\right)^{2}-4 c_{0} c_{1}-\cdots-4 c_{n-3} c_{n-2}+\left(b_{n-1}\right)^{2}-4 b_{0} b_{1}-\cdots\right. \\
& \quad-4 b_{n-3} b_{n-2}-2 b_{n-1} c_{n-1}+4 b_{0} c_{1}+4 b_{1} c_{0}+\cdots \\
& \left.\quad+4 b_{n-3} c_{n-2}+4 b_{n-2} c_{n-3}\right) .
\end{aligned}
$$

Simplifying, we find that

$$
\begin{aligned}
F(i, \ell)= & c_{n+1} b_{n+1}\left(\left(c_{n-1}-b_{n-1}\right)^{2}-4\left(c_{0}-b_{0}\right)\left(c_{1}-b_{1}\right)-\cdots\right. \\
& \left.-4\left(c_{n-3}-b_{n-3}\right)\left(c_{n-2}-b_{n-2}\right)\right) .
\end{aligned}
$$

Applying Theorem 3 to the pairs π_{i}, π_{j} and π_{ℓ}, π_{j} of hyperplanes in the partial flock \mathcal{F}_{0} of \mathcal{K}_{0} shows that each of b_{n+1} and c_{n+1} is a non-square in $\operatorname{GF}(q)$. Similarly, applying Theorem 3 to the planes π_{i} and π_{ℓ} of the partial flock \mathcal{F}_{0} of \mathcal{K}_{0} shows that the third factor is a non-square in $\operatorname{GF}(q)$. Thus $F(i, \ell)$ is a non-square in $\operatorname{GF}(q)$.

Finally, let $i \in\{1, \ldots, k\}$ with $i \neq j$. We must prove that

$$
\left(\frac{a_{n-1}^{(i)}}{a_{n+1}^{(i)}}\right)^{2}-4\left(\frac{a_{0}^{(i)}}{a_{n+1}^{(i)}}\right)\left(\frac{a_{1}^{(i)}}{a_{n+1}^{(i)}}\right)-\cdots-4\left(\frac{a_{n-3}^{(i)}}{a_{n+1}^{(i)}}\right)\left(\frac{a_{n-2}^{(i)}}{a_{n+1}^{(i)}}\right)
$$

is a non-square in $\operatorname{GF}(q)$. But this expression is $4\left(a_{n+1}^{(i)}\right)^{-1}$ and the result follows, since $a_{n+1}^{(i)}$ is a non-square in $\mathrm{GF}(q)$ as above.

We say that the partial flocks $\mathcal{F}_{1}, \ldots, \mathcal{F}_{k}$ are derived from the partial flock \mathcal{F}_{0}.
For n and q odd, let $p_{0}, p_{1}, \ldots, p_{k}$ be $k+1$ points of the non-singular quadric $\mathcal{Q}(n+1$, q) and let $H_{0}, H_{1}, \ldots, H_{k}$ be the tangent hyperplanes to $\mathcal{Q}(n+1, q)$ at these points, respectively. The $k(n-1)$-dimensional spaces $H_{0} \cap H_{i}$ for $i=1, \ldots, k$ determine a partial flock of the cone $\mathcal{K}_{0}=H_{0} \cap \mathcal{Q}(n+1, q)$ if and only if the space $H_{0} \cap H_{i} \cap H_{j}$ meets $\mathcal{Q}(n+1, q)$ in a non-singular elliptic quadric for each $i, j \in\{1, \ldots, k\}$ with $i \neq j$.

Let \mathcal{F}_{0} be a partial flock of $\mathcal{K}_{0}=H_{0} \cap \mathcal{Q}(n+1, q)$ and let $p_{0}, p_{1}, \ldots, p_{k}$ be the $k+1$ points associated with \mathcal{F}_{0} as above. For any $j \in\{1, \ldots, k\}$ the ($n-1$)-dimensional spaces $H_{0} \cap H_{j}$ and $H_{i} \cap H_{j}$, for $i=1, \ldots, k$ with $i \neq j$, determine a partial flock of the cone $\mathcal{K}_{j}=H_{j} \cap \mathcal{Q}(n+1, q)$ by Theorem 7. Thus, any three distinct elements H_{i}, H_{j}, H_{ℓ} of $\left\{H_{0}, \ldots, H_{k}\right\}$ intersect in an $(n-2)$-dimensional space which meets $\mathcal{Q}(n+1, q)$ in a non-singular elliptic quadric, that is, the polar space $\left(p_{i} p_{j} p_{\ell}\right)^{\perp}$ meets $\mathcal{Q}(n+1, q)$ in a non-singular elliptic quadric.

Following the convention established in the case $n=3$, we refer to a set of points p_{0}, \ldots, p_{k} with the above properties as a partial BLT-set.

Let $\left\{p_{0}, p_{1}, \ldots, p_{k}\right\}$ be a partial BLT-set of the quadric $\mathcal{Q}(n+1, q)$. From $p_{i}, i \in$ $\{0,1, \ldots, k\}$, we project $\mathcal{Q}(n+1, q)$ onto a hyperplane $\operatorname{PG}(n, q)$ not containing p_{i}, thereby obtaining a well-known representation of $\mathcal{Q}(n+1, q)$ in $\operatorname{PG}(n, q)$ (see [10, 3.2.2, 3.2.4]). If H_{i} is the tangent hyperplane of $\mathcal{Q}(n+1, q)$ at p_{i}, then $H_{i} \cap \mathcal{Q}(n+1, q) \cap \operatorname{PG}(n, q)$ is a nonsingular quadric $\mathcal{Q}(n-1, q)$ in the $(n-1)$-dimensional space $H_{i} \cap \operatorname{PG}(n, q)=\operatorname{PG}(n-1, q)$. If $p_{i} p_{j} \cap \operatorname{PG}(n, q)=p_{j}^{\prime}$ for $j \in\{0,1, \ldots, k\}$ and $j \neq i$, then it is easy to see that $\left\{p_{0}^{\prime}, p_{1}^{\prime}, \ldots, p_{i-1}^{\prime}, p_{i+1}^{\prime}, \ldots, p_{k}^{\prime}\right\}$ is a dual partial flock \mathcal{F}_{i}^{\prime} of $\mathcal{Q}(n-1, q)$; it is also clear that \mathcal{F}_{i}^{\prime} is the dual of the flock \mathcal{F}_{i}. Conversely, if \mathcal{F}^{\prime} is any dual partial flock of $\mathcal{Q}(n-1, q)$ then p_{i} together with the points of $\mathcal{Q}(n+1, q)$ which correspond to the points of \mathcal{F}^{\prime} form a partial BLT-set of $\mathcal{Q}(n+1, q)$.

Further, we can construct a partial ovoid of size $k q+1$ of $\mathcal{Q}^{+}(n+2, q)$ directly from a partial BLT-set of $\mathcal{Q}(n+1, q)$ of size $k+1$, without going via the associated partial flock as in Section 4.2. Let $\left\{p_{0}, p_{1}, \ldots, p_{k}\right\}$ be a partial BLT-set of the quadric $\mathcal{Q}(n+1, q)$ in $\operatorname{PG}(n+1, q)$. Now embed $\operatorname{PG}(n+1, q)$ as a hyperplane in $\operatorname{PG}(n+2, q)$ so that $\mathcal{Q}(n+1, q)$ is embedded in a quadric $\mathcal{Q}^{+}(n+2, q)$ in $\operatorname{PG}(n+2, q)$. Let p be the pole of $\operatorname{PG}(n+1, q)$ under the polarity determined by $\mathcal{Q}^{+}(n+2, q)$. Each of the planes $\left\langle p, p_{0}, p_{i}\right\rangle$ for $i=$ $1, \ldots, k$ meets $\mathcal{Q}^{+}(n+2, q)$ in a conic, and the union of these conics is a partial ovoid of size $k q+1$ of $\mathcal{Q}^{+}(n+2, q)$.

4.4. Herds of caps, q even

Theorem 8 In $P G(n, q)$, for n odd and q even, for $i=1, \ldots, k$ and for $c \in G F(q)$, let

$$
\begin{aligned}
\pi_{i}: & a_{0}^{(i)} x_{0}+\cdots+a_{n-1}^{(i)} x_{n-1}+x_{n}=0, \\
\mathcal{C}_{\infty}= & \left\{\left(1, a_{1}^{(i)}, a_{3}^{(i)}, \ldots, a_{n-2}^{(i)},\left(a_{n-1}^{(i)}\right)^{2}\right): i=1, \ldots, k\right\} \cup\{(0, \ldots, 0,1)\} \text { and } \\
\mathcal{C}_{c}= & \left\{\left(1, a_{0}^{(i)}+c a_{1}^{(i)}+c^{1 / 2} a_{n-1}^{(i)}, a_{2}^{(i)}+c a_{3}^{(i)}+c^{1 / 2} a_{n-1}^{(i)}, \ldots, a_{n-3}^{(i)}+c a_{n-2}^{(i)}\right.\right. \\
& \left.\left.+c^{1 / 2} a_{n-1}^{(i)},\left(a_{n-1}^{(i)}\right)^{2}\right): i=1, \ldots, k\right\} \cup\{(0, \ldots, 0,1)\},
\end{aligned}
$$

for some $a_{j}^{(i)} \in G F(q)$. If the set $\mathcal{F}=\left\{\pi_{1}, \ldots, \pi_{k}\right\}$ of k hyperplanes is a partial flock of the quadratic cone $\mathcal{K}: x_{0} x_{1}+x_{2} x_{3}+\cdots+x_{n-3} x_{n-2}=x_{n-1}^{2}$ then each of \mathcal{C}_{∞} and \mathcal{C}_{c}, for all $c \in G F(q)$, is $a(k+1)$-cap in $P G((n+1) / 2, q)$ for $n>3$ and $a(k+1)$-arc in $P G(2, q)$ for $n=3$.

Proof: Suppose $\mathcal{F}=\left\{\pi_{1}, \ldots, \pi_{k}\right\}$ is a partial flock of the quadratic cone \mathcal{K}. We first show that no three points of $\mathcal{C}_{\infty} \backslash\{(0, \ldots, 0,1)\}$ are collinear. Suppose to the contrary that for some $i, j, \ell \in\{1, \ldots, k\}$ the matrix

$$
\left(\begin{array}{cccccc}
1 & a_{1}^{(i)} & a_{3}^{(i)} & \ldots & a_{n-2}^{(i)} & \left(a_{n-1}^{(i)}\right)^{2} \\
1 & a_{1}^{(j)} & a_{3}^{(j)} & \ldots & a_{n-2}^{(j)} & \left(a_{n-1}^{(j)}\right)^{2} \\
1 & a_{1}^{(\ell)} & a_{3}^{(\ell)} & \ldots & a_{n-2}^{(\ell)} & \left(a_{n-1}^{(\ell)}\right)^{2}
\end{array}\right)
$$

has rank 2. It follows easily that there exist elements $\alpha_{1}, \alpha_{3}, \ldots, \alpha_{n-2} \in \operatorname{GF}(q)$ such that

$$
\begin{gathered}
\frac{a_{1}^{(i)}+a_{1}^{(j)}}{\left(a_{n-1}^{(i)}\right)^{2}+\left(a_{n-1}^{(j)}\right)^{2}}=\frac{a_{1}^{(j)}+a_{1}^{(\ell)}}{\left(a_{n-1}^{(j)}\right)^{2}+\left(a_{n-1}^{(\ell)}\right)^{2}}=\frac{a_{1}^{(\ell)}+a_{1}^{(i)}}{\left(a_{n-1}^{(\ell)}\right)^{2}+\left(a_{n-1}^{(i)}\right)^{2}}=\alpha_{1}, \\
\vdots \\
\frac{a_{n-2}^{(i)}+a_{n-2}^{(j)}}{\left(a_{n-1}^{(i)}\right)^{2}+\left(a_{n-1}^{(j)}\right)^{2}}=\frac{a_{n-2}^{(j)}+a_{n-2}^{(\ell)}}{\left(a_{n-1}^{(j)}\right)^{2}+\left(a_{n-1}^{(\ell)}\right)^{2}}=\frac{a_{n-2}^{(\ell)}+a_{n-2}^{(i)}}{\left(a_{n-1}^{(\ell)}\right)^{2}+\left(a_{n-1}^{(i)}\right)^{2}}=\alpha_{n-2} .
\end{gathered}
$$

Using the algebraic condition in Theorem 3 we obtain:

$$
\begin{align*}
& \operatorname{trace}\left(\alpha_{1}\left(a_{0}^{(i)}+a_{0}^{(j)}\right)+\alpha_{3}\left(a_{2}^{(i)}+a_{2}^{(j)}\right)+\cdots+\alpha_{n-2}\left(a_{n-3}^{(i)}+a_{n-3}^{(j)}\right)\right)=1, \tag{4}\\
& \operatorname{trace}\left(\alpha_{1}\left(a_{0}^{(j)}+a_{0}^{(\ell)}\right)+\alpha_{3}\left(a_{2}^{(j)}+a_{2}^{(\ell)}\right)+\cdots+\alpha_{n-2}\left(a_{n-3}^{(j)}+a_{n-3}^{(\ell)}\right)\right)=1, \tag{5}\\
& \operatorname{trace}\left(\alpha_{1}\left(a_{0}^{(\ell)}+a_{0}^{(i)}\right)+\alpha_{3}\left(a_{2}^{(\ell)}+a_{2}^{(i)}\right)+\cdots+\alpha_{n-2}\left(a_{n-3}^{(\ell)}+a_{n-3}^{(i)}\right)\right)=1 . \tag{6}
\end{align*}
$$

Adding Eqs. (4), (5) and (6) implies that trace $(0)=1$, a contradiction. Thus $\mathcal{C}_{\infty} \backslash\{(0, \ldots$, $0,1)\}$ is a k-cap of $\mathrm{PG}((n+1) / 2, q)$. Finally, suppose that two points of \mathcal{C}_{∞} are collinear with $(0, \ldots, 0,1)$. Then there exist $i, j \in\{1, \ldots, k\}$ such that $a_{1}^{(i)}+a_{1}^{(j)}, a_{3}^{(i)}+a_{3}^{(j)}, \ldots, a_{n-2}^{(i)}+$ $a_{n-2}^{(j)}$ are all zero. But this contradicts the condition in Theorem 3. Thus \mathcal{C}_{∞} is a $(k+1)$-cap of $\operatorname{PG}((n+1) / 2, q)$.

Next, for $c \in \operatorname{GF}(q)$, we consider \mathcal{C}_{c}. For $r=0,2, \ldots, n-3$ and for $i, j \in\{1, \ldots, k\}$ let

$$
\alpha_{r}^{i j}=\frac{a_{r}^{(i)}+a_{r}^{(j)}}{\left(a_{n-1}^{(i)}\right)^{2}+\left(a_{n-1}^{(j)}\right)^{2}}+c \frac{a_{r+1}^{(i)}+a_{r+1}^{(j)}}{\left(a_{n-1}^{(i)}\right)^{2}+\left(a_{n-1}^{(j)}\right)^{2}}+c^{1 / 2} \frac{a_{n-1}^{(i)}+a_{n-1}^{(j)}}{\left(a_{n-1}^{(i)}\right)^{2}+\left(a_{n-1}^{(j)}\right)^{2}} .
$$

Suppose that some three points of $\mathcal{C}_{c} \backslash\{(0, \ldots, 0,1)\}$ are collinear; so for some $i, j, \ell \in$ $\{1, \ldots, k\}$ there exist $\alpha_{0}, \alpha_{2}, \ldots, \alpha_{n-3}$ such that

$$
\begin{gathered}
\alpha_{0}^{i j}=\alpha_{0}^{j \ell}=\alpha_{0}^{\ell i}=\alpha_{0}, \\
\alpha_{2}^{i j}=\alpha_{2}^{j \ell}=\alpha_{2}^{\ell i}=\alpha_{2}, \\
\vdots \\
\alpha_{n-3}^{i j}=\alpha_{n-3}^{j \ell}=\alpha_{n-3}^{\ell i}=\alpha_{n-3} .
\end{gathered}
$$

Consider

$$
\begin{aligned}
\alpha_{0}\left(a_{1}^{(i)}+a_{1}^{(j)}\right)= & \frac{a_{0}^{(i)}+a_{0}^{(j)}}{\left(a_{n-1}^{(i)}\right)^{2}+\left(a_{n-1}^{(j)}\right)^{2}}\left(a_{1}^{(i)}+a_{1}^{(j)}\right)+c \frac{a_{1}^{(i)}+a_{1}^{(j)}}{\left(a_{n-1}^{(i)}\right)^{2}+\left(a_{n-1}^{(j)}\right)^{2}}\left(a_{1}^{(i)}+a_{1}^{(j)}\right) \\
& +c^{1 / 2} \frac{a_{n-1}^{(i)}+a_{n-1}^{(j)}}{\left(a_{n-1}^{(i)}\right)^{2}+\left(a_{n-1}^{(j)}\right)^{2}}\left(a_{1}^{(i)}+a_{1}^{(j)}\right) \\
= & c_{0}^{i j}+b_{0}^{i j}
\end{aligned}
$$

where $c_{0}^{i j}=\left(a_{0}^{(i)}+a_{0}^{(j)}\right)\left(a_{1}^{(i)}+a_{1}^{(j)}\right) /\left(\left(a_{n-1}^{(i)}\right)^{2}+\left(a_{n-1}^{(j)}\right)^{2}\right)$ and trace $\left(b_{0}^{i j}\right)=0$, as $b_{0}^{i j}$ is of the form $t+t^{2}$ for some $t \in \operatorname{GF}(q)$. Analogously, we write

$$
\begin{aligned}
\alpha_{0}\left(a_{1}^{(j)}+a_{1}^{(\ell)}\right) & =c_{0}^{j \ell}+b_{0}^{j \ell}, \\
\alpha_{0}\left(a_{1}^{(\ell)}+a_{1}^{(i)}\right) & =c_{0}^{\ell i}+b_{0}^{\ell i},
\end{aligned}
$$

where $\operatorname{trace}\left(b_{0}^{j \ell}\right)=\operatorname{trace}\left(b_{0}^{\ell i}\right)=0$. On adding these three equations, we obtain $0=c_{0}^{i j}+$ $c_{0}^{j \ell}+c_{0}^{\ell i}+b_{0}$, where $b_{0}=b_{0}^{i j}+b_{0}^{j \ell}+b_{0}^{\ell i}$ satisfies trace $\left(b_{0}\right)=0$. Repeating these calculations with 0 replaced by r for $r=2,4, \ldots, n-3$, we obtain:

$$
\begin{aligned}
0 & =b_{2}+c_{2}^{i j}+c_{2}^{j \ell}+c_{2}^{\ell i} \\
& \vdots \\
0 & =b_{n-3}+c_{n-3}^{i j}+c_{n-3}^{j \ell}+c_{m-3}^{\ell i}
\end{aligned}
$$

for analogous expressions $b_{r}, c_{r}^{i j}, c_{r}^{j \ell}, c_{r}^{\ell i} \in \mathrm{GF}(q)$ satisfying trace $\left(b_{2}\right)=\cdots=\operatorname{trace}\left(b_{n-3}\right)$ $=0$. Adding these $(n-1) / 2$ equations shows that $0=b+c_{i j}+c_{j \ell}+c_{\ell i}$, where $b=b_{0}+b_{2}+\cdots+b_{n-3}, c_{i j}=c_{0}^{i j}+c_{2}^{i j}+\cdots+c_{n-3}^{i j}$ and $c_{j \ell}, c_{\ell i}$ are analogous. Further, $\operatorname{trace}(b)=0$, and by Theorem 3, we have trace $\left(c_{i j}\right)=\operatorname{trace}\left(c_{j \ell}\right)=\operatorname{trace}\left(c_{\ell i}\right)=1$, implying that trace $(0)=1$, a contradiction. Thus we have shown that $\mathcal{C}_{c} \backslash\{(0, \ldots, 0,1)\}$ is a k-cap. Finally, suppose that two points of \mathcal{C}_{c} are collinear with $(0, \ldots, 0,1)$. Then there exist $i, j \in\{1, \ldots, k\}$ such that $a_{0}^{(i)}+a_{0}^{(j)}+c\left(a_{1}^{(i)}+a_{1}^{(j)}\right)+c^{1 / 2}\left(a_{n-1}^{(i)}+a_{n-1}^{(j)}\right), \ldots, a_{n-3}^{(i)}+$ $a_{n-3}^{(j)}+c\left(a_{n-2}^{(i)}+a_{n-2}^{(j)}\right)+c^{1 / 2}\left(a_{n-1}^{(i)}+a_{n-1}^{(j)}\right)$ are all zero. Multiplying the first expression by $\left(a_{1}^{(i)}+a_{1}^{(j)}\right) /\left(\left(a_{n-1}^{(i)}\right)^{2}+\left(a_{n-1}^{(j)}\right)^{2}\right)$, we see that $0=c_{0}^{i j}+d$, where trace $(d)=0$. Thus trace $\left(c_{0}^{i j}\right)=0$, and analogously (multiplying the remaining expressions by $\left(a_{3}^{(i)}+\right.$ $\left.a_{3}^{(j)}\right) /\left(\left(a_{n-1}^{(i)}\right)^{2}+\left(a_{n-1}^{(j)}\right)^{2}\right), \ldots,\left(a_{n-2}^{(i)}+a_{n-2}^{(j)}\right) /\left(\left(a_{n-1}^{(i)}\right)^{2}+\left(a_{n-1}^{(j)}\right)^{2}\right)$ respectively), we find that $\operatorname{trace}\left(c_{2}^{i j}\right)=\cdots=\operatorname{trace}\left(c_{n-3}^{i j}\right)=0$. Thus trace $\left(c_{i j}\right)=\operatorname{trace}\left(c_{0}^{i j}+c_{2}^{i j}+\cdots+\right.$ $\left.c_{n-3}^{i j}\right)=0$, contradicting Theorem 3. Hence, for $c \in \operatorname{GF}(q), \mathcal{C}_{c}$ is a $(k+1)$-cap of $\operatorname{PG}((n+1) / 2, q)$.

Such a set of $(k+1)$-caps, of which there are $q+1$, is called a herd of $(k+1)$-caps. By Theorem 2, the caps have maximum size $q+1$.

Remarks:

(1) For $n=3$ we refer to [2] and [11]. In this case the $(k+1)$-arcs of Theorem 8 extend to $(k+2)$-arcs by adjoining the point $(0,1,0)$. Further, the converse of Theorem 8 holds.
(2) There are $2^{(n-1) / 2}$ herds of caps projectively equivalent to those arising in Theorem 8 and obtained by interchanging in turn each subset of the pairs of coordinates $\left(x_{0}, x_{1}\right),\left(x_{2}, x_{3}\right), \ldots,\left(x_{n-3}, x_{n-2}\right)$.

5. Examples and characterisations of partial flocks of \mathcal{K}

5.1. The linear partial flocks

Let $\mathcal{K}=v \mathcal{Q}$ be a quadratic cone in $\operatorname{PG}(n, q)$, where n is odd. Let $\operatorname{PG}(n-2, q)$ be an ($n-2$)-dimensional subspace of $\operatorname{PG}(n, q)$ such that $\operatorname{PG}(n-2, q) \cap \mathcal{K}$ is a non-singular elliptic quadric. Then k hyperplanes on $\operatorname{PG}(n-2, q)$ not containing v are a partial flock of \mathcal{K} of size k, called a linear partial flock; clearly $k \leq q$.

A partial flock is linear if and only if the corresponding dual partial flock is k points of a line.

Theorem 9 Let $\mathcal{F}=\left\{\pi_{1}, \ldots, \pi_{k}\right\}$ be a partial flock of size k of the quadratic cone $\mathcal{K}=v \mathcal{Q}$ in $\operatorname{PG}(n, q), n>3$ odd. Suppose that for some $i, j \in\{1, \ldots, k\}$ with $i \neq j$ the elements of \mathcal{F} cover the points of $\mathcal{K} \backslash v \mathcal{E}_{i j}$, where $\mathcal{E}_{i j}=\pi_{i} \cap \pi_{j} \cap \mathcal{K}$. Then $k \geq q$ and if $k=q$ then \mathcal{F} is linear.

Proof: Let $\mathcal{S}=\mathcal{K} \backslash v \mathcal{E}_{i j}$ and suppose the elements of \mathcal{F} cover the points of \mathcal{S}.
For $P \in \mathcal{S}$, let N_{P} denote the number of elements of \mathcal{F} on P. By hypothesis, $N_{P} \geq 1$ for $P \in \mathcal{S}$. Now count the ordered pairs $\left(P, \pi_{\ell}\right)$ where $P \in \mathcal{S}$, $\pi_{\ell} \in \mathcal{F}$ and $P \in \pi_{\ell}$. We obtain:

$$
q\left(|\mathcal{Q}|-\left|\mathcal{E}_{i j}\right|\right)=|\mathcal{S}| \leq \sum_{P \in \mathcal{S}} N_{P}=k\left(|\mathcal{Q}|-\left|\mathcal{E}_{i j}\right|\right)
$$

Thus $k \geq q$ and if $k=q$ then equality must hold throughout the expression, so $N_{P}=1$ for all $P \in \mathcal{S}$ and \mathcal{F} partitions $\mathcal{K} \backslash v \mathcal{E}_{i j}$. We note that $\pi_{i} \cap v \mathcal{E}_{i j}=\pi_{j} \cap v \mathcal{E}_{i j}=\mathcal{E}_{i j}$. Let $\ell, m \in\{1, \ldots, q\}, \ell \neq m$, and let $\mathcal{E}_{\ell m}=\pi_{\ell} \cap \pi_{m} \cap \mathcal{K}$. We have shown that $\mathcal{E}_{\ell m} \subseteq v \mathcal{E}_{i j}$; so $\pi_{\ell} \cap v \mathcal{E}_{i j}=\pi_{m} \cap v \mathcal{E}_{i j}=\mathcal{E}_{\ell m}$. We may assume that $i \neq \ell$. Then $\pi_{i} \cap \pi_{\ell} \cap \mathcal{K}=$ $\pi_{i} \cap \pi_{\ell} \cap v \mathcal{E}_{i j}=\mathcal{E}_{i j} \cap \mathcal{E}_{\ell m}$ is a non-singular elliptic quadric in some ($n-2$)-dimensional subspace of $\operatorname{PG}(n, q)$. Thus $\mathcal{E}_{i j}=\mathcal{E}_{\ell m}$, hence \mathcal{F} is linear.

The elements of a linear partial flock of size k have a common ($n-2$)-dimensional subspace; so the corresponding partial ovoid of size $k q+1$ lies in a 3-dimensional space. In fact this partial ovoid lies in an elliptic quadric.

5.2. Partial flocks with partial BLT-set a normal rational curve, q odd

These examples generalise the Fisher-Thas-Walker flocks in $\operatorname{PG}(3, q) q$ odd, [3, 13], since by [1] such a flock in $\operatorname{PG}(3, q)$ has BLT-set a normal rational curve on $\mathcal{Q}(4, q)$.

Theorem 10 In $P G(n, q)$ for $n \geq 3$ odd and q odd, let \mathcal{K} be the quadratic cone with equation $x_{0} x_{1}+\cdots+x_{n-3} x_{n-2}=x_{n-1}^{2}$. For $t \in G F(q)$, let π_{t} be the hyperplane with equation $a_{n} t^{n} x_{0}+a_{1} t x_{1}+a_{n-1} t^{n-1} x_{2}+a_{2} t^{2} x_{3}+\cdots+a_{(n+3) / 2} t^{(n+3) / 2} x_{n-3}+a_{(n-1) / 2} t^{(n-1) / 2} x_{n-2}+$
$a_{(n+1) / 2} t^{(n+1) / 2} x_{n-1}+x_{n}=0$ where for $i=1,2, \ldots,(n-1) / 2$ and for some element αa non-square in $G F(q)$, we have

$$
4 a_{n+1-i} a_{i}=(-1)^{i}\binom{n+1}{i} \alpha \quad \text { and } \quad a_{(n+1) / 2}^{2}=\frac{\alpha}{2}(-1)^{(n+3) / 2}\binom{n+1}{\frac{n+1}{2}} .
$$

Then the set $\mathcal{F}=\left\{\pi_{t}: t \in G F(q)\right\}$ is a partial flock of size q of \mathcal{K}, with BLT-set a normal rational curve of $P G(n+1, q)$ if and only if $a_{1} a_{2} \cdots a_{n} \neq 0$. (For a given non-square $\alpha \in G F(q)$, q odd, there exists such a partial flock if and only if $(1 / 2)(-1)^{(n+3) / 2}\binom{n+1}{\frac{n+1}{2}}$ is either zero or a non-square.)

Proof: We use Theorem 3. For $s, t \in \mathrm{GF}(q), s \neq t$, we have

$$
\begin{aligned}
-4 & \left(a_{n} t^{n}-a_{n} s^{n}\right)\left(a_{1} t-a_{1} s\right)-4\left(a_{n-1} t^{n-1}-a_{n-1} s^{n-1}\right)\left(a_{2} t^{2}-a_{2} s^{2}\right)-\cdots \\
& -4\left(a_{(n+3) / 2} t^{(n+3) / 2}-a_{(n+3) / 2} s^{(n+3) / 2}\right)\left(a_{(n-1) / 2} t^{(n-1) / 2}-a_{(n-1) / 2} s^{(n-1) / 2}\right) \\
& +\left(a_{(n+1) / 2} t^{(n+1) / 2}-a_{(n+1) / 2} s^{(n+1) / 2}\right)^{2} \\
= & \left(t^{n+1}+s^{n+1}\right)\left(-4 a_{n} a_{1}-4 a_{n-1} a_{2}-\cdots-4 a_{(n+3) / 2} a_{(n-1) / 2}+a_{(n+1) / 2}^{2}\right) \\
& +\left(t^{n} s+t s^{n}\right)\left(4 a_{n} a_{1}\right)+\left(t^{n-1} s^{2}+t^{2} s^{n-1}\right)\left(4 a_{n-1} a_{2}\right)+\cdots+\left(t^{(n+3) / 2} s^{(n-1) / 2}\right. \\
& \left.+t^{(n-1) / 2} s^{(n+3) / 2}\right)\left(4 a_{(n+3) / 2} a_{(n-1) / 2}\right)+t^{(n+1) / 2} s^{(n+1) / 2}\left(-2 a_{(n+1) / 2}^{2}\right) \\
=\alpha & \alpha(t-s)^{n+1},
\end{aligned}
$$

by the definition of a_{1}, \ldots, a_{n} and noting that the coefficient of $\left(t^{n+1}+s^{n+1}\right)$ in the expression is

$$
\alpha \sum_{i=1}^{(n-1) / 2}(-1)^{i+1}\binom{n+1}{i}+\frac{\alpha}{2}(-1)^{(n+3) / 2}\binom{n+1}{\frac{n+1}{2}}=\frac{\alpha}{2} \sum_{i=1}^{n}(-1)^{i+1}\binom{n+1}{i}=\alpha .
$$

By Theorem 3, \mathcal{F} is a partial flock of \mathcal{K} of size q. The associated BLT-set is the normal rational curve $\left\{\left(a_{1} t, a_{n} t^{n}, a_{2} t^{2}, a_{n-1} t^{n-1}, \ldots, a_{(n-1) / 2} t^{(n-1) / 2}, a_{(n+3) / 2} t^{(n+3) / 2}\right.\right.$, $\left.\left.(-1 / 2) a_{(n+1) / 2} t^{(n+1) / 2},(\alpha / 4) t^{n+1}, 1\right): t \in \mathrm{GF}(q)\right\} \cup\{(0, \ldots, 0,1,0)\}$.

5.3. Other non-linear partial flocks

The first examples generalise the Kantor flocks in $\operatorname{PG}(3, q)$, for q odd [9], see also [12, 1.5.6].

Theorem 11 For $t \in \mathcal{T} \subseteq G F(q)$, q odd, let π_{t} have equation $a_{0}^{(t)} x_{0}+a_{1}^{(t)} x_{1}+\cdots+$ $a_{n-1}^{(t)} x_{n-1}+x_{n}=0$, where $a_{j}^{(t)} \in G F(q)$. For each $t \in \mathcal{T}$, let $a_{1}^{(t)}+a_{3}^{(t)}+\cdots+a_{n-2}^{(t)}=-b t^{\sigma}$, where b is a non-square in $G F(q)$ and $\sigma \in \operatorname{AutGF}(q)$, let $a_{n-1}^{(t)}=0$ and for $j=2 i, i=$ $0,1, \ldots,(n-3) / 2$, let $a_{j}^{(t)}=t$. Then $\mathcal{F}=\left\{\pi_{t}: t \in \mathcal{T}\right\}$ is a partial flock of size $|\mathcal{T}|$ of the cone \mathcal{K} in $P G(n, q)$ with equation $x_{0} x_{1}+\cdots+x_{n-3} x_{n-2}=x_{n-1}^{2}$.

Proof: We use Theorem 3, noting that for $i, j \in \mathcal{T}, i \neq j$, we have

$$
\begin{aligned}
& -4\left(a_{0}^{(i)}-a_{0}^{(j)}\right)\left(a_{1}^{(i)}-a_{1}^{(j)}\right)-\cdots-4\left(a_{n-3}^{(i)}-a_{n-3}^{(j)}\right)\left(a_{n-2}^{(i)}-a_{n-2}^{(j)}\right)+\left(a_{n-1}^{(i)}-a_{n-1}^{(j)}\right)^{2} \\
& \quad=4 b(i-j)^{\sigma+1}
\end{aligned}
$$

which is a non-square in $\operatorname{GF}(q)$.

For example, let $a_{1}^{(t)}=-b t^{\sigma}$ and let all the terms $a_{2 i+1}^{(t)}$ be zero, $i=1, \ldots,(n-3) / 2$. Then π_{t} has equation $t x_{0}-b t^{\sigma} x_{1}+t x_{2}+t x_{4}+\cdots+t x_{n-3}+x_{n}=0$, so contains the subspace with equation $x_{0}=x_{1}=x_{2}=x_{4}=\cdots=x_{n-3}=x_{n}=0$. If $\mathcal{T}=\mathrm{GF}(q)$ then the above partial flock induces a Kantor flock of the cone $x_{0} x_{1}=x_{n-1}^{2}$ in the subspace with projective coordinates $\left(x_{0}, x_{1}, x_{n-1}, x_{n}\right)$.

In this example, for $\sigma \neq 1$, the hyperplanes of the partial flock intersect in the $(n-3)$ dimensional space $x_{1}=x_{n}=x_{0}+x_{2}+\cdots+x_{n-3}=0$. So for $\sigma \neq 1$ we have a partial ovoid of $\mathcal{Q}^{+}(n+2, q)$ of size $q^{2}+1$ and lying in a 4-dimensional space $\operatorname{PG}(4, q)$. As $\operatorname{PG}(4, q)$ intersects $\mathcal{Q}^{+}(n+2, q)$ in a non-singular quadric $\mathcal{Q}(4, q)$, we obtain an ovoid of $\mathcal{Q}(4, q)$ (which is, in fact, a Kantor ovoid of $\mathcal{Q}(4, q)$ [9]).

Now, let \mathcal{F} be a partial flock of size k of a quadratic cone \mathcal{K} in $\operatorname{PG}(m, q)$, for some odd $m \geq 3$, and suppose that all the hyperplanes in \mathcal{F} intersect in a common r-dimensional subspace. By Theorem 4, there is associated a partial ovoid \mathcal{O} of size $k q+1$ of $\mathcal{Q}^{+}(m+2, q)$ such that the points of \mathcal{O} generate an $(m-r+1)$-dimensional subspace. Now embed $\mathcal{Q}^{+}(m+2, q)$ in $\mathcal{Q}^{+}(n+2, q)$ where n is odd and $n \geq m$. Then \mathcal{O} is a partial ovoid of size $k q+1$ of $\mathcal{Q}^{+}(n+2, q)$ consisting of k mutually tangent conics, so by Theorem 4 there is associated a partial flock of size k of a quadratic cone in $\operatorname{PG}(n, q)$ such that the hyperplanes of the partial flock intersect in a common $(n-m+r)$-dimensional subspace.

For example, let $m=3$ and $k=q$ and let \mathcal{F} be a linear flock of \mathcal{K} (so $r=1$). Then there exists a partial flock of size q of a quadratic cone in $\operatorname{PG}(n, q)$ for each odd $n \geq 3$ such that the hyperplanes in the partial flock intersect in a common $(n-2)$-dimensional subspace, that is, the partial flock is linear.

More generally, let \mathcal{O} be a partial ovoid of size $k q+1$ of a (singular or non-singular) quadric \mathcal{Q} in $\operatorname{PG}(m, q)$ (where m is odd or even), and suppose that \mathcal{O} comprises k mutually tangent conics. Embed \mathcal{Q} in $\mathcal{Q}^{+}(n+2, q)$ where $n+2 \geq m$ and n is odd (the smallest possible value for n will depend on the type of $\mathcal{Q})$. Then \mathcal{O} is a partial ovoid of $\mathcal{Q}^{+}(n+2, q)$ comprising k mutually tangent conics, hence determines a partial flock of size k of a quadratic cone in $\operatorname{PG}(n, q)$. If the points of \mathcal{O} generate an l-dimensional space then the hyperplanes in the partial flock intersect in a common $(n-\ell+1)$-dimensional subspace.

For example, let $m=6$ and let $\mathcal{Q}=L \mathcal{Q}^{\prime}$ be the singular quadric with vertex a line L and base a non-singular quadric \mathcal{Q}^{\prime} in $\operatorname{PG}(4, q)$. Let \mathcal{O} be an ovoid of \mathcal{Q} consisting of q mutually tangent conics (from an ovoid \mathcal{O}^{\prime} of \mathcal{Q}^{\prime} consisting of q mutually tangent conics many such ovoids \mathcal{O} can be constructed). Embed \mathcal{Q} in a $\mathcal{Q}^{+}(n+2, q), n$ odd and $n \geq 7$. Then there arises a partial flock of size q of a quadratic cone in $\operatorname{PG}(n, q)$, the hyperplanes of which intersect in at least an $(n-5)$-dimensional space (if \mathcal{O}^{\prime} is an elliptic quadric, then they intersect in at least an $(n-4)$-dimensional space).

6. Partial flocks for small q

In $\operatorname{PG}(n, 2)$, a partial flock of a quadratic cone $\mathcal{K}=v \mathcal{Q}$ with vertex v has size at most two. Further, every partial flock of \mathcal{K} of cardinality 2 is linear.

In $\operatorname{PG}(5,3)$, let $\mathcal{K}=v \mathcal{Q}$ be the quadratic cone with equation $x_{0} x_{1}+x_{2} x_{3}=x_{4}^{2}$. Using the notation $\left[a_{0}, a_{1}, \ldots, a_{5}\right]$ for the hyperplane $a_{0} x_{0}+a_{1} x_{1}+\cdots+a_{5} x_{5}=0$, a partial flock of \mathcal{K} of size six in $\operatorname{PG}(5,3)$ is $\mathcal{F}=\{[0,0,0,0,0,1],[0,0,1,1,0,1],[0,1,2,2,0,1],[2,0,2,2$, $0,1],[2,1,0,1,1,1],[2,1,1,0,2,1]\}$. Thus for $n>3$ and q odd, there exist partial flocks of size greater than q.

It is an open problem to determine the maximum size of a partial flock of a quadratic cone in $\operatorname{PG}(n, q)$ for q odd.

Acknowledgment

We thank our friend and colleague Tim Penttila for pointing out to us the construction of a partial ovoid of $\mathcal{Q}^{+}(n+2, q)$ directly from a partial BLT-set of $\mathcal{Q}(n+1, q)$.

References

1. L. Bader, G. Lunardon, and J.A. Thas, "Derivation of flocks of quadratic cones," Forum Math. 2 (1990), 163-174.
2. W.E. Cherowitzo, T. Penttila, I. Pinneri, and G.F. Royle, "Flocks and ovals," Geom. Dedicata 60 (1996), 17-37.
3. J.C. Fisher and J.A. Thas, "Flocks in PG(3, q)," Math. Z. 169 (1979), 1-11.
4. J.W.P. Hirschfeld, Projective Geometries Over Finite Fields, Oxford University Press, Oxford, 1979.
5. J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford University Press, Oxford, 1985.
6. J.W.P. Hirschfeld and J.A. Thas, "Sets of type $(1, n, q+1)$ in PG (d, q)," Proc. London Math. Soc. (3) 41 (1980), 254-278.
7. J.W.P. Hirschfeld and J.A. Thas, "The characterization of projections of quadrics over finite fields of even order," J. London Math. Soc. (2) 22 (1980), 226-238.
8. J.W.P. Hirschfeld and J.A. Thas, General Galois Geometries, Oxford University Press, Oxford, 1991.
9. W.M. Kantor, "Ovoids and translation planes," Canad. J. Math. 34 (1982), 1195-1207.
10. S.E. Payne and J.A. Thas, Finite Generalized Quadrangles, Pitman, London, 1984.
11. L. Storme and J.A. Thas, " k-arcs and partial flocks," Linear Algebra and Its Applications 226-228 (1995), 33-45.
12. J.A. Thas, "Generalized quadrangles and flocks of cones," European J. Combin. 8 (1987), 441-452.
13. M. Walker, "A class of translation planes," Geometriae Dedicata 5 (1976), 135-146.

[^0]: *This work was supported by the Australian Research Council, Department of Pure Mathematics and Computer Algebra of the University of Gent and the National Fund for Scientific Research of Belgium.

