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Abstract. We present representation theoretical interpretations of quasi-symmetric functions and noncommu-
tative symmetric functions in terms of quantum linear groups and Hecke algebras atq = 0. We obtain in this
way a noncommutative realization of quasi-symmetric functions analogous to the plactic symmetric functions of
Lascoux and Sch¨utzenberger. The generic case leads to a notion of quantum Schur function.
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1. Introduction

This paper, which is intended as a sequel to [6, 9, 21], is devoted to the representation
theoretical interpretation of noncommutative symmetric functions and quasi-symmetric
functions. These objects, which are two different generalizations of ordinary symmetric
functions [9, 10], build up two Hopf algebras dual to each other, and have been shown
to provide a Frobenius type theory for Hecke algebras of typeA at q = 0, playing the
same rˆole as the classical correspondence between symmetric functions and characters of
symmetric groups [7] (which extends to the case of the generic Hecke algebra).

In the classical case, the interpretation of symmetric functions in terms of representations
of symmetric groups is equivalent, via Schur-Weyl duality, to the fact that Schur functions
are the characters of the irreducible polynomial representations of general linear groups.
Equivalently, instead of working with polynomial representations ofGL(n), one can use
comodules over the Hopf algebra of polynomial functions overGL(n) [11]. This Hopf
algebra is known to admit interestingq-deformations (quantized function algebras; see [8]
for instance) to which Schur-Weyl duality can be extended for generic values ofq, the
symmetric group being replaced by the Hecke algebra.

The standard version of the quantum linear group is not defined forq = 0. The theory of
crystal bases [16], which allows to “take the limitq → 0” in certain modules by working
with renormalized operators modulo a lattice, describes the combinatorial aspects of the
generic case, and provides illuminating interpretations of classical constructions such as
the Robinson-Schensted correspondence, the Littlewood-Richardson rule and the plactic
monoid [3, 17, 24, 26].
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However, another version exists [4] which plays an equivalent rˆole for generic values of
q, but in which one can specializeq to 0. This specialization is quite different of what is
obtained with crystal bases, and leads to an new interpretation of quasi-symmetric functions
and noncommutative symmetric functions analogous to the interpretation of ordinary sym-
metric functions as polynomial characters ofGL(n). Moreover, this interpretation allows
to give a realization of quasi-symmetric functions similar to the plactic interpretation of
symmetric functions (see Section 6.2). The plactic algebra is here replaced by one of its
quotients, and instead of ordinary Young tableaux one has to use skew tableaux of ribbon
shape, and dual objects called quasi-ribbons, for which Schensted type algorithms can be
constructed. In fact, most aspects of the classical theory can be adapted to this highly
degenerate case. As this is an example of a non-semisimple case for which everything can
be worked out explicitely, one can expect that this treatment could serve as a guide for
understanding the more complicated degeneracies at roots of unity.

This paper is structured as follows. We first recall the basic definitions concerning non-
commutative symmetric functions and quasisymmetric functions (Section 2) and review the
Frobenius correspondence for the generic Hecke algebras (Section 3). Next we introduce
the Dipper-Donkin version of the quantized function algebra of the space ofn×n matrices
(Section 4). We describe some interesting subspaces (Sections 4.5 and 4.6), and prove that
the q = 0 specialization of the diagonal subalgebra is a quotient of the plactic algebra,
which we call the hypoplactic algebra (Section 4.7). Next, we review the representation
theory of the 0-Hecke algebra and its interpretation in terms of quasi-symmetric functions
and noncommutative symmetric functions, providing the details which were omitted in [7].
In Section 6, we introduce a notion of noncommutative character forAq(n)-comodules, and
prove that these characters live in the diagonal subalgebra. For genericq, the characters of
irreducible comodules are quantum analogues of Schur functions. Forq = 0, we show that
hypoplactic analogues of the fundamental quasi-symmetric functionsFI (quasi-ribbons)
can be obtained as the characters of irreducibleA0(n) comodules, and give a similar con-
struction for the ribbon Schur functions. These constructions lead to degenerate versions
of the Robinson-Schensted correspondence, which are discussed in Section 7.

2. Noncommutative symmetric functions and quasi-symmetric functions

2.1. Noncommutative symmetric functions

The algebra ofnoncommutative symmetric functions[9] is the free associative algebra
Sym = Q〈S1, S2, . . .〉 generated by an infinite sequence of noncommutative indetermi-
natesSk, called thecompletesymmetric functions. One definesSI = Si1 Si2 · · · Sir for any
compositionI = (i1, i2, . . . , i r ) ∈ (N∗)r . The family(SI ) is a linear basis ofSym. Although
it is convenient to defineSym as an abstract algebra, a useful realisation can be obtained
by taking an infinite alphabetA = {a1,a2, . . .} and defining its complete homogeneous
symmetric functions by

−→∏
i≥1

(1− tai )
−1 =

∑
n≥0

tnSn(A) (1)
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Although these elements are not symmetric for the usual action of permutations on the
free algebra, they are invariant under the Lascoux-Sch¨utzenberger action of the symmetric
group [23], which can now be interpreted as a particular case of Kashiwara’s action of the
Weyl group on theUq(sln)-crystal graph of the tensor algebra [24].

The set of all compositions of a given integern is equipped with thereverse refinement
order, denoted¹. For instance, the compositionsJ of 4 such thatJ¹ (1, 2, 1) are exactly
(1, 2, 1), (3, 1), (1, 3) and (4). Theribbon Schur functions(RI ) can then be defined by

SI =
∑
J¹I

RJ or RI =
∑
J¹I

(−1)`(I )−`(J)SJ,

where`(I ) denotes thelengthof I . The family(RI ) is another homogeneous basis ofSym.
The commutative image of a noncommutative symmetric functionF is the ordinary

symmetric functionf obtained by applying toF the algebra morphism which mapsSn to
the complete homogeneous functionhn (our notations for commutative symmetric functions
will be those of [28]). The ribbon Schur functionRI is then mapped to the corresponding
ordinary ribbon Schur function, which will be denoted byr I .

Ordinary symmetric functions are endowed with an extra product∗, called the internal
product, which corresponds to the multiplication of central functions on the symmetric
group. A noncommutative analog of this product can be defined, the character ring ofSn

being replaced by its descent algebra [35] (see also below) .
Recall thati is said to be adescentof σ ∈Sn if σ(i ) > σ(i + 1). The set Des(σ ) of

these integers is called thedescent setof σ . If I = (i1, . . . , i r ) is a composition ofn, one
associates with it the subsetD(I ) = {d1, . . . ,dr−1}of [1, n−1] defined bydk= i1+ · · ·+ i k

for k ∈ [1, r − 1]. Let DI be the sum inZ[Sn] of all permutations with descent setD(I ).
As shown by Solomon [35], theDI form a basis of a subalgebra ofZ[Sn] called thedescent
algebraof Sn and denoted by6n. One can define an isomorphism of graded vector spaces

α : Sym=
⊕
n≥0

Symn→ 6 =
⊕
n≥0

6n

by settingα(RI ) = DI . Observe thatα(SI ) is then equal toD⊆I , i.e., to the sum of all
permutations ofSn whose descent set is contained inD(I ).

2.2. Quasi-symmetric functions

As proved in [29] (see also [9]), the algebra of noncommutative symmetric functions is
in natural duality with the algebra of quasi-symmetric functions, introduced by Gessel in
[10]. Let X = {x1, x2, . . . , xn · · ·} be a totally ordered set of commutative indeterminates.
An element f ∈ C[X] is said to be aquasi-symmetric functionif for each composition
K = (k1, . . . , km) all the monomialsxk1

i1
xk2

i2
· · · xkm

im
with i1 < i2 < · · · < im have the same

coefficient in f . The quasi-symmetric functions form a subalgebraQSymof C[X].
One associates with a compositionI = (i1, . . . , im) thequasi-monomial function

MI =
∑

j1<···< jm

xi1
j1
· · · xim

jm
.
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The family of quasi-monomial functions is clearly a basis ofQSym. Another important
basis ofQSymis formed byquasi-ribbon functionswhich are defined by

FI =
∑
I¹J

MJ,

e.g.,F122 = M122+ M1112+ M1211+ M11111. The pairing〈·, ·〉 betweenSym andQSym
[29] is then defined by〈SI ,MJ〉 = δIJ or equivalently by〈RI , FJ〉 = δIJ. This duality is
essentially equivalent to the noncommutative Cauchy identity

−→∏
i≥1

( −→∏
j≥1

(1− xi aj )
−1

)
=
∑

I

FI (X)RI (A), (2)

and can also be interpreted as the canonical duality between Grothendieck groups asociated
to 0-Hecke algebras [7] (see Section 5).

3. Hecke algebras and their representations

3.1. Hecke algebras

The Hecke algebraHN(q) of type AN−1 is theC(q)-algebra generated byN − 1 elements
(Ti )i=1,N−1 with relationsT2

i = (q − 1)Ti + q for i ∈ [1, N − 1],
Ti Ti+1Ti = Ti+1Ti Ti+1 for i ∈ [1, N − 2],
Ti Tj = Tj Ti for |i − j | > 1.

The Hecke algebraHN(q) is a deformation of theC-algebra of the symmetric groupSN

(obtained forq = 1). For generic complex values ofq, it is isomorphic toC[SN ] (and
hence semi-simple) except whenq = 0 or whenq is a root of unity. The first relation is
often replaced by

T2
i = (q − q−1)Ti + 1 (3)

which is invariant under the substitutionq → −q−1 and is more convenient for working
with Kazhdan-Lusztig polynomials and canonical bases. However the convention adopted
here, i.e.,

T2
i = (q − 1)Ti + q, (4)

is the natural one whenq is interpreted as the cardinality of a finite field andHN(q) as
the endomorphism algebra of the permutation representation ofGLN(Fq) on the set on
complete flags [14]. Moreover one can specializeq = 0 in relation (4). In the modular
representation theory ofGLN(Fq), the Hecke algebra corresponding to this specialization
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occurs whenq is a power of the characteristic of the ground field. For this reason, among
others, it is interesting to consider the 0-Hecke algebraHN(0) which is theC-algebra
obtained by specialization of the generic Hecke algebraHN(q) at q = 0. This algebra is
therefore presented byT2

i = −Ti for i ∈ [1, N − 1],
Ti Ti+1Ti = Ti+1Ti Ti+1 for i ∈ [1, N − 2],
Ti Tj = Tj Ti for |i − j | > 1.

The representation theory ofHN(0) was investigated by Norton who obtained a fairly
complete picture [31]. Important specific features of the typeA are described by Carter
in [1]. The 0-Hecke algebra can also be realized as an algebra of operators acting on the
equivariant Grothendieck ring of the flag manifold [22].

3.2. The Frobenius correspondence

We will see that the 0-Hecke algebra is the right object for giving a representation theoretical
interpretation of noncommutative symmetric functions and of quasi-symmetric functions.
To emphasize the parallel with the well-known correspondence between representations of
the symmetric group and symmetric functions, we first recall the main points of the classical
theory.

Let Symbe the ring of symmetric functions and let

R[S] =
⊕
N≥0

R[SN ]

be the ring of equivalence classes of finitely generatedC[SN ]-modules (with sum and
product corresponding to direct sum and induction product). We know from the work of
Frobenius that the character theory of the symmetric groupSN can be described in terms
of thecharacteristic mapF : R[S] → Symwhich sends the class of a Specht moduleVλ
to the Schur functionsλ. The first point is thatF is a ring homomorphism. That is,

F
(
[U ⊗ V ] ↑SN+M

SN×SM

)
= F([U ])F([V ])

for a SN-moduleU and aSM -module V . The second one is the character formula,
which can be stated as follows: for any finite dimensionalSN-moduleV , the value of the
chararacter ofV on a permutation of the conjugacy class labelled by the partitionµ is equal
to the scalar product

χ(µ) = 〈F(V), pµ〉

wherepµ is the product of power sumspµ1· · · pµr .
This theory can be extended to the Hecke algebraHN(q) whenq is neither 0 nor a root

of unity. The characteristic map is independent ofq, and still maps theq-Specht module
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Vλ(q) to the Schur functionsλ. The induction formula remains valid and the character
formula has to be modified as follows (see [2, 18, 19, 32, 36, 37]). Define for a partition
µ = (µ1, µ2, . . . , µr ) of N the element

wµ =
(
σ1 · · · σµ1−1

)(
σµ1+1 · · · σµ1+µ2−1

) · · · (σµ1+···+µr−1+1 · · · σN−1
)

(whereσi is the elementary transposition(i i + 1)). The character formula forHN(q) gives
the valueχλµ on Twµ of the character of the irreducibleq-Specht moduleVλ(q). It reads

χλµ = trVλ(q)
(
Twµ

) = 〈F(Vλ(q)),Cµ(q)〉 = 〈sλ,Cµ(q)〉

whereCµ(q)= (q − 1)l (µ) hµ((q − 1)X) (in λ-ring notation,hµ((q − 1)X) denotes the
image of the homogeneous symmetric functionhµ(X) under the ring homomorphismpk 7→
(qk − 1) pk).

4. The quantum coordinate ringAq(n)

4.1. Tensor representations of HN(q)

Let E = {e1, . . . ,en} be a finite set and let

V =
n⊕

i=1

C(q) ei

be theC(q)-vector space with basis(ei ). Forv = ek1⊗· · ·⊗ekN ∈ V⊗N andi ∈ [1, N− 1],
we definevσi by setting

vσi = ek1 ⊗ · · ·eki−1 ⊗ eki+1 ⊗ eki ⊗ eki+2 ⊗ · · · ⊗ ekN .

Following [4, 5, 15], one defines a right action ofHN(q) on V⊗ N by

v · Ti = vσi if ki < ki+1,

v · Ti = qv if ki = ki+1,

v · Ti = qvσi + (q − 1) v if ki > ki+1.

This is a variant of Jimbo’s action [15] itself defined by

v · Ti = q1/2 vσi if ki < ki+1,

v · Ti = qv if ki = ki+1,

v · Ti = q1/2 vσi + (q − 1) v if ki > ki+1.
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Let (e∗i )1≤i≤n be the basis ofV∗ dual to the basis(ei ) of V . The dual (right) action of
HN(q) on (V∗)⊗N is given byv∗ · Ti = q(v∗)σi if ki < ki+1,

v∗ · Ti = qv∗ if ki = ki+1,

v∗ · Ti = (v∗)σi + (q − 1) v∗ if ki > ki+1.

Example 4.1 Let V = C(q) e1⊕C(q) e2. The matrices describing the right action ofT1

on V ⊗ V and onV∗ ⊗ V∗ in the canonical bases of these spaces are

Ř=


q 0 0 0
0 0 q 0
0 1 q − 1 0
0 0 0 q

 , Ř∗ =


q 0 0 0
0 0 1 0
0 q q− 1 0
0 0 0 q

 .
We also need the left actions ofHN(q) on V⊗N and(V∗)⊗N defined by{

Ti · v = −qv · T−1
i = −v · Ti + (q − 1) v,

Ti · v∗ = −qv∗ · T−1
i = −v∗ · Ti + (q − 1) v∗.

Equivalently, forv = ek1 ⊗ · · · ⊗ ekN ∈ (V)⊗N andv∗ = e∗k1
⊗ · · · ⊗ e∗kN

∈ (V∗)⊗N ,Ti · v = −vσi + (q − 1) v, Ti · v∗ = −q (v∗)σi + (q − 1) v∗ if ki < ki+1,

Ti · v = −v, Ti · v∗ = −v∗ if ki = ki+1,

Ti · v = −qvσi , Ti · v∗ = −(v∗)σi if ki > ki+1.

4.2. The Hopf algebra Aq(n)

The quantum groupAq(n) is theC(q)-algebra generated by then2 elements(xi j )1≤i, j≤n

subject to the defining relations xjk xil = qxil x jk for i < j, k ≤ l ,
xik xil = xil xik for every i, k, l ,
xjl xik − xik x jl = (q − 1)xil x jk for i < j, k < l .

This algebra is a quantization of the Hopf algebra of polynomial functions on the variety
of n × n matrices introduced by Dipper and Donkin in [4]. It is not isomorphic to the
classical quantization of Faddeev-Reshetikin-Takhtadzhyan [8], and although for generic
values ofq both versions play essentially the same rˆole, an essential difference is that the
Dipper-Donkin algebra is defined forq = 0.

Aq(n) is a Hopf algebra with comultiplication1 defined by

1(xi j ) =
n∑

k=1

xik ⊗ xkj .
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Moreover one can define a left coactionδ of Aq(n) on V⊗N by

δ(ei ) =
n∑

j=1

xi j ⊗ ej

and the following property shows thatAq(n) is related to the Hecke algebras in a similar
way asGLn and the symmetric groups.

Proposition 4.2 [4] The left coactionδ of Aq(n) on V⊗N commutes with the right action
of HN(q) on V⊗N. That is, the following diagram is commutative

V⊗N δ⊗N → Aq(n)⊗ V⊗N

h

↓ ↓
Id ⊗ h

V⊗N Aq(n)⊗ V⊗N→
δ⊗N

for every element h∈ HN(q) considered as an endomorphism of V⊗N.

This property still holds forq = 0. Thus, for anyh ∈ HN(0), V⊗N h will be a sub-
A0(n)-comodule ofV⊗N . This is this property which will allow us to define a plactic-like
realization of quasi-symmetric functions. For later reference, note that the defining relations
of A0(n) are xjk xil = 0 for i < j, k ≤ l ,

xik xil = xil xik for every i, k, l ,
xjl xik = xik x jl − xil x jk for i < j, k < l .

(5)

4.3. Some notations for the elements of Aq(n)

Each generatorxi j of Aq(n) will be identified with a two row array and with an element of
V ⊗ V∗ modulo certain relations as described below:

xi j =
[

i
j

]
= ei ⊗ e∗j .

For i= (i1, . . . , i r ), j = ( j1, . . . , jr ) ∈ [1, n]r , let ei = ei1⊗ · · ·⊗eir ande∗j = e∗j1⊗ · · ·⊗ e∗jr . One can then identify the monomialxij = xi1 j1 · · · xir jr of Aq(n) with the two row
array[

i1 i2 · · · i r
j1 j2 · · · jr

]
,
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itself regarded as the class of the tensorei ⊗ e∗j ∈ Tr (V ⊗ V∗) modulo the relations{
ei ⊗ e∗j ≡ eσr

i ⊗ (e∗j · Tr ) for eachr such thati r > i r+1,

ei ⊗ e∗j ≡ ei ⊗ (e∗j )σr for eachr such thati r = i r+1.
(6)

These relations are equivalent to

ei ⊗ e∗j ≡ −Tr · ei ⊗ (e∗j )σr for eachr such thatjr ≤ jr+1. (7)

4.4. Linear bases of Aq(n)

For everyi = (i1, . . . , i r ) ∈ [1, n]r , let I (i) ∈ Nn be defined by

I (i)p = Card{i k, k ∈ [1, r ] , i k = p}

for p ∈ [1, n]. For I , J ∈ Nn, set

Aq(I , J) =
∑

I (i)=I , I ( j)=J

C(q) xij .

Observe that(Aq(I , J))I ,J∈Nn defines a grading ofAq(n) compatible with multiplication.
A monomial basis compatible with this grading is constructed in [4]. The basis vectors,

which are labelled by matricesM = (mi j )1≤i, j≤n ∈Mn(N) are

xM =
(
xm11

11 xm12
12 · · · xm1n

1n

) · · · (xmn1
n1 xmn2

n2 · · · xmnn
nn

) ∈ Aq(n).

It will be useful to introduce another monomial basis(xM) of Aq(n), labelled by the same
matrices, and defined by

xM = (xm1n
1n xm2n

2n · · · xmnn
nn

) · · · (xm11
11 xm21

21 · · · xmn1
n1

) ∈ Aq(n).

Proposition 4.3 For any q∈ C, the family(xM)M∈Mn(N) is a homogeneous linear basis
of Aq(n).

Proof: It is clearly sufficient to prove that each basis elementxM can be expressed in
terms of thexN . Using the array and tensor notations, such an element can be represented
by

xM =
[ · · · i1 i2 · · ·
· · · j1 j2 · · ·

]
= ei ⊗ e∗j ,

where j1 is the maximal element of the second row of this array and wherei1 ≤ i2. The
maximality of j1 and relation (7) imply

xM = (−1)`(σ )Tσei ⊗ ej =
(
(−1)l (σ ) Tσ

Id

)
·
[

i1 · · · i2 · · ·
j1 · · · j2 · · ·

]
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for some permutationσ . By induction on the length ofxM , there exists some other permu-
tationτ such that

xM =
(
(−1)l (τ ) Tτ

Id

)
·
[

i1 · · · i r · · · k1 · · · ks

j1 · · · j1 · · · 1 · · · 1

]
.

Going back to the definition of the left action ofHN(q) and to relations (6), this implies
thatxM is aZ[q]-linear combination of elements of the form[

i1 · · · i r · · · k1 · · · ks

n · · · n · · · 1 · · · 1

]
,

from which the conclusion follows immediately. 2

4.5. The standard subspace of Aq(n)

The restrictions to the standard component ofAq(n) of the transition matrices between the
two bases(xM) and(xM) have an interesting description.

Definition 4.4 Thestandard subspace Sq(n) of Aq(n) is

Sq(n) = Aq(1
n, 1n) =

⊕
σ∈Sn

C(q) xσ

wherexσ = x1σ(1)x2σ(2) · · · xnσ(n) for σ ∈ Sn.

The following result is an immediate consequence of Proposition 4.3.

Proposition 4.5 One has

Sq(n) =
⊕
σ∈Sn

C(q)xσ

where xσ = xσ(n)n · · · xσ(2)2 xσ(1)1.

The elements of the transition matrices between the two bases(xσ )σ∈Sn
and(xσ )σ∈Sn

of Sq(n) are R-polynomials. Recall that the family(Rτ,σ (q))σ,τ∈Sn
of R-polynomials is

defined by

(Tσ−1)−1 = ε(σ )q−l (σ )
∑
τ≤σ

ε(τ ) Rτ,σ (q)Tτ ∈ Hn(q)

for σ ∈ Sn (cf. [13]). TheR-polynomial Rτ,σ (q) is in Z[q], has degreel (σ ) − l (τ ) and
its constant term isε(στ).
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Proposition 4.6 The bases(xσ ) and(xσ ) are related by

xσ =
∑
τ≤σ

Rτ,σ (q)xωτ and xσ =
∑
τ≤σ

Rτ,σ (−q)xωτ

whereω = (n n−1 · · ·1) and where≤ is the Bruhat order.

Proof: In the notation of Section 4.3, we can write

xσ = eσ ⊗ e∗ω = eσ12···n ⊗ e∗ω ≡ e12···n ⊗ e∗ω · Tσ−1

≡ e12···n ⊗ (−q)l (σ ) T−1
σ−1 · e∗ω ≡ e12···n ⊗

(∑
τ≤σ

ε(τ ) Rτ,σ (q) Tτ

)
· e∗ω

≡ e12···n ⊗
(∑
τ≤σ

Rτ,σ (q) e∗ωτ

)
=
∑
τ≤σ

Rτ,σ (q) xωτ .

The second relation can be proved in the same way. 2

Corollary 4.7 In A0(n), one has

xσ =
∑
τ≤σ

ε(στ)xωτ and xσ =
∑
τ≤σ

ε(στ)xωτ .

4.6. Decomposition of left and right standard subspaces at q= 0

In the array notation, the standard subspace is spanned by arrays whose both rows are
permutations. If one requires one row to be a fixed permutationσ , one obtains the left and
right subcomodules ofAq(n)which are independent ofσ for genericq, but not forq = 0.

Definition 4.8 The left andright standard subspacesof Aq(n), respectively denoted by
Lq(n) andRq(n), are defined by

Lq(n) =
⊕

J=( j1,..., jn)∈Nn

C(q)x1, j1x2, j2 · · · xn, jn,

Rq(n) =
⊕

I=(i1,...,i r )∈Nr

C(q)xin,n · · · xi2,2xi1,1.

We associate with a permutationσ ∈ Sn the subspaces ofAq(n)

Lq(n; σ) =
∑

J=( j1,..., jn)∈Nn

C(q)xσ(1), j1xσ(2), j2 · · · xσ(n), jn,

Rq(n; σ) =
∑

I=(i1,...,i r )∈Nr

C(q)xin,σ (n) · · · xi2,σ (2)xi1,σ (1).

For genericq, all the left (resp. right) subspaces are the same.
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Proposition 4.9 If q ∈ C is nonzero and not a root of unity,

Lq(n; σ) = Lq(n) and Rq(n; σ) = Rq(n).

Proof: Using the tensor notation of Section 4.3, we can write

eσ ⊗ e∗J = eσ12···n ⊗ e∗J ≡ e12···n ⊗ e∗J · Tσ−1 ≡ (e12···n ⊗ e∗J) · (Id ⊗ Tσ−1)

for every J ∈ Nn, so thatLq(n; σ) ⊂ Lq(n). Moreover the asumptions onq imply that
Tσ−1 is invertible. The previous relation can therefore be read as

e12...n ⊗ e∗J ≡ (eσ ⊗ e∗J) · (Id ⊗ (Tσ−1)−1),

from which we get thatLq(n) ⊂ Lq(n; σ). The second equality is obtained in the same
way. 2

Whenq = 0, the subspacesL0(n; σ) and R0(n; σ) are not equal toL0(n) and R0(n).
However, the proof of Proposition 4.9 shows thatL0(n; σ) ⊂ L0(n) andR0(n; σ) ⊂ R0(n).
The subspacesL0(n; σ) (resp.R0(n; σ)are right (resp. left) sub-A0(n)-comodules ofL0(n)
(resp.R0(n)), of which they form a filtration with respect to the weak order on the symmetric
group. To prove this, let us introduce some notations. We associate to an integer vector
I = (i1, . . . , i n) of Nn the two sets

Inv(I ) = {(k, l ), 1≤ k < l ≤ n− 1, i k > i l },
Pos(I ) = {(k, l ), 1≤ k < l ≤ n− 1, i k < i l }.

Proposition 4.10 For every permutationσ ∈ Sn, one has

L0(n; σ) =
⊕

J=( j1,..., jn)
Inv(σ )⊂Inv(J)

C xσ(1), j1 · · · xσ(n), jn,

R0(n; σ) =
⊕

I=(i1,...,in)
Pos(I )⊂Pos(σ )

C xin,σ (n) · · · xi1,σ (1).

Proof: We only show the first identity, the second one being proved in the same way.

Lemma 4.11 Let l ≥ 1 be such thatσ(i ) > σ(i + l ) and ji ≤ ji+l . Then, in A0(n)

xσ(i ), ji · · · xσ(i+l ), ji+l = 0.

Proof of the lemma: The result is obvious whenl = 1. Let thenl ≥ 2 and suppose that
the result holds forl − 1. Two cases are to be considered.

1) σ(i + l − 1) > σ(i + l ). If ji+l−1 ≤ ji+l , one clearly has

xσ(i ), ji · · · xσ(i+l ), ji+l = xσ(i ), ji · · · xσ(i+l−1), ji+l−1xσ(i+l ), ji+l = 0.
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On the other hand, ifji+l−1 > ji+l , we can write

xσ(i ), ji · · · xσ(i+l ), ji+l = xσ(i ), ji · · · xσ(i+l ), ji+l xσ(i+l−1), ji+l−1

− xσ(i ), ji · · · xσ(i+l ), ji+l−1xσ(i+l−1), ji+l .

We have hereji ≤ ji+l−1 so that the right hand side is zero, as required.
2) σ(i + l − 1) < σ(i + l ). Thusσ(i ) > σ(i + l − 1) and we just have to check the case

ji > ji+l−1. Then, ji+l−1 < ji+l so that

xσ(i ), ji · · · xσ(i+l ), ji+l = xσ(i ), ji · · · xσ(i+l ), ji+l xσ(i+l−1), ji+l−1

+ xσ(i ), ji · · · xσ(i+l−1), ji+l xσ(i+l ), ji+l−1,

which is indeed zero by induction. 2

It follows from the lemma that

L0(n; σ) =
∑

J=( j1,..., jn)
Inv(σ )⊂Inv(J)

C xσ(1), j1 · · · xσ(n), jn,

and it remains to prove that the sum is direct. LetJ= ( j1, . . . , jn)∈Nn such that Inv(σ ) ⊂
Inv(J). Using the same argument as in the proof of Proposition 4.6 we can write

xσ(1), j1 · · · xσ(n), jn = eσ ⊗ e∗J = eσ12···n ⊗ e∗J ≡ e12···n ⊗ (e∗J · Tσ−1)

=
∑
τ≤σ

ε(στ) e12···n ⊗ eJ·τ

where≤ is the Bruhat order onSn andJ · τ = ( jτ(1), . . . , jτ(n)). This last formula clearly
shows that the family(xσ(1), j1 · · · xσ(n), jn)Inv(σ )⊂Inv(J) is free. 2

We can now prove that the “left cells”L0(n; σ) form a filtration of the right comodule
L0(n) with respect to the weak order.

Proposition 4.12 Let σ ∈ Sn and let i ∈ [1, n − 1] such thatσ(i ) > σ(i + 1). Then
L0(n; σ) is strictly included into L0(n; σ σi ).

Proof: The inclusionL0(n; σ) ⊂ L0(n; σ σi ) is immediate. Thus it suffices to show that
this inclusion is strict. One can easily construct an elementx ∈ L0(n; σ σi ) of the formx =
· · · xσ(i+1),k xσ(i ),k · · ·Using the formalism of Section 4.3, one checks that(Ti ⊗ Id) · x =
−x 6= 0. On the other hand,(Ti ⊗ Id) · L0(n; σ) = 0. Thusx /∈ L0(n; σ). 2

4.7. The diagonal subalgebra and the quantum pseudoplactic algebra

Definition 4.13 Thequantum diagonal algebra1q(n) is the subalgebra ofAq(n) gener-
ated byx11, . . . , xnn.
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The character theory ofAq(n)-comodules described in Section 6 will show that the
noncommutative algebra1q(n) contains a subalgebra isomorphic to the algebra of ordinary
symmetric polynomials, exactly as in the case of the plactic algebra.

Definition 4.14 Let A be a totally ordered alphabet. Thequantum pseudoplactic algebra
PPlq(A) is the quotient ofC(q)〈A〉 by the relationsqaab− (q + 1) aba+ baa= 0 for a < b,

qabb− (q + 1) baa+ bba= 0 for a < b,
cab− acb− bca+ bac= 0 for a < b < c.

The third relation is the Lie relation [[a, c], b] = 0 where [x, y] is the usual commutator
xy−yx. Forq = 1, the first two relations become [a, [a, b]] = [b, [b,a]] = 0 andPPl1(A)
is the universal enveloping algebra of the Lie algebra defined by these relations.

It should be noted that the classical plactic algebra is not obtained by any specialization
of PPlq(A). The motivation for the introduction ofPPlq(A) comes from the following
conjecture.

Conjecture 4.15 Let A = {a1, . . . ,an} be a totally ordered alphabet of cardinality n.
For generic q, the mappingϕ : ai → xii induces an isomorphism between PPlq(A) and the
diagonal algebra1q(n).

Our conjecture is stated for generic values ofq, i.e., whenq is considered as a free
variable, or avoiding a discrete set inC. It is clearly not true for arbitrary complex values
of q. For example, forq = 1, the diagonal algebra11(n) is an algebra of commutative
polynomials. The diagonal algebra atq = 0 is also particularly interesting, and its structure
will be investigated in the forthcoming section.

4.8. The hypoplactic algebra

Let againA be a totally ordered alphabet. We recall that theplactic algebraon A is the
C-algebraPl(A), quotient ofC〈A〉 by the relations{

aba= baa, bba= bab for a < b,
acb= cab, bca= bac for a < b < c.

These relations, which were obtained by Knuth [20], generate the equivalence relation
identifying two words which have the sameP-symbol under the Robinson-Schensted cor-
respondence. Though Schensted had shown that the construction of theP-symbol is an
associative operation on words, the monoid structure on the set of tableaux has been mostly
studied by Lascoux and Sch¨utzenberger [23] under the name ‘plactic monoid’. These au-
thors showed, for example, that the Littlewood-Richardson rule is essentially equivalent to
the fact that plactic Schur functions, defined as sums of all tableaux with a given shape,
are the basis of a commutative subalgebra of the plactic algebra. This point of view is now
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explained by Kashiwara’s theory of crystal bases [16, 17], which also leads to the definition
of plactic algebras associated to all classical simple Lie algebras [24, 27]. Other interpreta-
tions of the Robinson-Schensted correspondence and of the plactic relations can be found
in [3, 26].

Kashiwara’s crystallization process describes the generic situation modulo a certain lat-
tice, but does not amount to puttingq = 0 in the defining relations of quantum groups,
which is generally impossible due to the symmetric rˆoles played byq andq−1. The special-
izationq = 0 in Aq(n) or in HN(q) leads to a different combinatorics, and describes a truly
degenerate case, rather than combinatorial aspects of the generic situation. In particular,
the specialization of the diagonal algebra is a remarkable quotient of the plactic algebra that
we shall now introduce.

Definition 4.16 The hypoplactic algebra HPl(A) is the quotient of the plactic algebra
Pl(A) by the quartic relationsbaba= abab, baca= abac for a < b < c,

cacb= acbc, cbab= bacb for a < b < c,
badc= dbca, acbd= cdab for a < b < c < d.

The combinatorial objects playing the rˆole of Young tableaux are the so-called ribbons and
quasi-ribbons. We recall first that aribbon diagramis a skew Young diagram containing no
2×2 block of boxes. A ribbon diagram withn boxes is naturally encoded by a composition
I = (i1, . . . , i r ) of n, called theshapeof the diagram, whose parts are the lengths of its
rows (starting from the top). For instance, the following skew diagram is a ribbon diagram
of shape(3, 1, 3, 2, 3).

Let I be a composition. Aquasi-ribbon tableauof shapeI is then obtained by filling a
ribbon diagramr of shapeI by letters ofA in such a way that

• each row ofr is nondecreasing from left to right;
• each column ofr is strictly increasing fromtop to bottom.

A word is said to be aquasi-ribbon wordof shapeI if it can be obtained by reading from
bottom to topand from left to right the columns of a quasi-ribbon diagram of shapeI .
Observe that this convention allows to read the shape of a quasi-ribbon word on the word
itself.

Example 4.17 The wordu= aacbabbacis not a quasi-ribbon word since the planar
representation ofu obtained by writing its decreasing factors as columns is not a quasi-ribbon
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tableau, as one can see on the picture. On the other hand, the wordv = aacbacdcdis
a quasi-ribbon word of shape(3, 1, 3, 2). The quasi-ribbon tableau corresponding tov is
also given below.

a a a

b

c b a

b c

aacbabbac

a a a

b

c c c

d d

aacbacdcd

The central result of this section is the following.

Theorem 4.18 The classes of the quasi-ribbon words form a linear basis of the hypoplactic
algebra HPl(A).

Proof: We first prove that every wordw of A∗ is equivalent to some quasi-ribbon word
with respect to the hypoplactic congruence≡. It is sufficient to prove this for standard words
(i.e., permutations), since the hypoplactic congruence is compatible with standardization.
The standardizedstd(w) of a wordw is the permutation obtained by the following process.
Readingw from left to right, label 1, 2, . . . the successive occurrences of the smallest letter
a of w, then do the same with the next letterb, and so on. One obtains in this way a word
in distinct labelled lettersai regarded as elements of the alphabetA×N endowed with the
lexicographic order. Then replace each labelled letter by the integers 1, 2, . . . , according
to its rank in the lexicographic order, as in the following example:

w = ababca→ a1b1a2b2c1a3→ std(w) = 142563.

This standardization process, due to Schensted [34], is compatible with the plactic relations
[23]. One can also check that it is compatible with the quartic hypoplactic relations (used
in connection with the usual plactic relations). The standardization of the first hypoplactic
relationbaba= abableads for instance tob1a1b2a2 = a1b1a2b2 which is a consequence
of a plactic relation (bac= bca) and of the last hypoplactic relation (cdab= acbd):

b1a1b2a2 = b1b2a1a2 = a1b1a2b2.

The other verifications are done in the same way. This implies therefore thatu ≡ v iff
std(u) ≡ std(v).

Thus, if we assume that the theorem holds for standard words,std(w) is equivalent to
some standard quasi-ribbon wordr . Compatibility with the hypoplactic congruence imply
thatw ≡ r ′ wherer ′ is the word obtained fromr by replacing each integeri ∈ [1, n] by the
letter of A occupying thei th position instd(w)−1. But in a standard word, the hypoplactic
relations preserve the relative order of all pairs(i, i +1). It follows that the image inr ′ of a
column of the ribbon diagram ofr is still a strictly decreasing sequence of letters, so thatr ′

is still a quasi-ribbon word of the same shape asr . Hencew is equivalent to a quasi-ribbon
word.
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Example 4.19 Let againw = ababca. Then we havestd(w) = 142563 and

142563≡ 142536≡ 124356

(the places where a rewriting rule has been applied are underlined). Hencestd(w) is
equivalent to the standard quasi-ribbon wordr = 124356 of shape(3, 3). The compatibility
of the standardization process with≡ implies thatw ≡ r ′ = aababc. The quasi-ribbon
representation ofr ′ is

a a a

b b c

We now turn back to the standard case. We have to prove that every permutation ofSn

(considered as a word over [1, n]) is equivalent to some (standard) quasi-ribbon word over
[1, n]. The proof proceeds by induction onn. Suppose that the result is true up to some
n ≥ 1, and letw = uabe a permutation ofSn+1 where|u| = n anda ∈ [1, n+ 1]. Applying
the induction hypothesis tou, we can writew ≡ ra wherer is a standard quasi-ribbon word
over [1, n + 1] − {a}. Decomposer asr = c1 · · · cl whereci is the word obtained by
reading from bottom to top thei th column of the quasi-ribbon tableau associated withr .
Thusw ≡ c1 · · · cl a. Sincer is a quasi-ribbon word, the first columnc1 has to be of one of
the following two types:

1. c1 = j j−1 · · ·1 for somej ∈ [1, n+1]. In this case, the conclusion follows by applying
the induction hypothesis toc2 · · · cl a.

2. c1 = j j − 1 · · · i + 1 i − 1 · · ·1 for some j ∈ [1, n + 1]. In this case, the induction
hypothesis allows us to writec2 · · · cl i ≡ d2 · · ·dm whered2 · · · dm is the column de-
composition of some standard quasi-ribbon word. Sincei is the minimal letter of this last
word, we must haved2 = d′2 i , and the conclusion is implied by the following lemma.

Lemma 4.20 Let1≤ i < j ≤ n. Then,

( j · · · i + 1 i − 1 · · ·1)(n · · · j + 1 i ) ≡ (i − 1 · · ·1)( j · · · i )(n · · · j + 1),

where x· · · y denotes the concatenation of the elements of the interval[x, y], which is the
empty word for x> y.

Proof of the lemma: We argue by induction onn. Forn = 3, the two possible situations
covered by the lemma correspond exactly to the two standard plactic relations written as

3
1 2

≡ 1 3
2
,

2 3
1
≡ 2

1 3
.
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The standard quartic hypoplactic relations are also special instances of the lemma:

4
2 3

1
≡

2
1 4

3
,

3 4
1 2

≡ 1 3
2 4

.

Let nown ≥ 4 and suppose that the lemma holds up to ordern− 1. Suppose first that
i = 1. If j + 1= n, the formula is obtained by application of a single plactic relation. So,
we can suppose thatj + 1< n. In this case, the result follows by successively applying a
plactic relation, the induction hypothesis and a hypoplactic relation as shown below

( j · · ·2) (n n− 1 · · · j + 1 1) ≡ ( j · · ·3) (n 2) (n− 1 · · · j + 1 1)

≡ ( j · · ·3) (n 2 1) (n− 1 · · · j + 1) ≡ ( j · · ·2 1) (n n− 1 · · · j + 1 1).

Consider now the casei = 2. Suppose first thatj = 3. Forn = 4, the result to be
proved is exactly one of the standard hypoplactic relations. Thus we can assume thatn > 4.
Using successively the fact that(3 1) (n · · ·4 2) is plactically equivalent to(n · · ·3 1) (4 2),
a hypoplactic relation and then a plactic relation, we obtain

(3 1) (n · · ·4 2) ≡ (n · · ·3 1) (4 2) ≡ (n · · ·1) (3 2) (4) ≡ (n · · ·3 1) (2) (4).

Applying twice the induction hypothesis, we can rewrite the right hand side as

(n · · ·3 1) (2) (4) ≡ (1) (n · · ·3 2) (4) ≡ (1) (3 2) (n · · ·4).
If j > 3, we reach the desired conclusion by first applying the induction hypothesis and
then the fact thatj · · ·1 3 is plactically equivalent to 1j · · ·3 as described below

( j · · ·3 1) (n · · · j + 1 2)≡ ( j · · ·1) (3 2) (n · · · j + 1)

≡ (1) ( j · · ·3 2) (n · · · j + 1).

The general casei ≥ 3 follows then by iterated applications of the induction hypothesis
as described below

( j · · · i + 1 i − 1 · · ·2 1) (n · · · j + 1 i ) ≡ ( j · · · i + 1 i − 1 · · ·2) (n · · · j + 1 i 1)

≡ (i − 1 · · ·2) ( j · · · i ) (n · · · j + 1 1) ≡ (i − 1 · · ·2) ( j · · · i 1) (n · · · j + 1)

≡ (i − 1 · · ·2 1) ( j · · · i ) (n · · · j + 1). 2

At this point, we have shown that every word ofA∗ is equivalent to some quasi-ribbon
word. To conclude the proof of the theorem, it remains to show that the hypoplactic classes
of quasi-ribbon words are linearly independent. Again, by the standardization argument, it
suffices to see that the familyBn of all standard quasi-ribbon words of fixed lengthn is free.
Thus we can suppose thatA = [1, n] for somen ≥ 1. The point is now that the hypoplactic
relations are satisfied by the generators of the 0-diagonal algebra10(n). Hence one can
define a morphismϕ from HPl(A) onto10(n) by ϕ(i ) = xii for everyi ∈ A = [1, n].

Let w ∈ Sn be a standard quasi-ribbon word of lengthn over [1, n]. By definition,
there exists a strictly increasing sequence 1= k1 < k2 < · · · < kl+1 = n + 1 such that
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w = c1 · · · cl with ci = ki+1 − 1 · · · ki for i ∈ [1, l ]. Consider the Young subgroupSw =
S[k1,k2−1]× · · · ×S[kl ,kl+1−1] of Sn. Applying Corollary 4.7 to each strictly decreasing
wordci , one obtains that

ϕ(w) =
∑
σ∈Sn

ε(σ )

[
1 2 · · · n

σ(1) σ (2) · · · σ(n)

]

in the notation of Section 4.3. Observe thatw is the unique permutation of maximal length
occuring in the sum. This property implies immediately thatϕ(Bn) is free in10(n). It
follows thatBn is itself free inHPl(A) as desired. 2

LetC(σ ) be the unique compositionI such thatD(σ ) = D(I ). By theevaluationev(w)
of a wordw ∈ A∗, we mean the vector ev(w) = (|w|a)a∈A ∈ NA whose entries are just the
different numbers of occurences of each lettera ∈ A in w.

As an interesting consequence of the proof of Theorem 4.18 and of Lemma 4.20, we
obtain:

Proposition 4.21 Letw be a word over a totally ordered alphabet A, letλ be its evaluation
and letσ = std(w). The unique quasi-ribbon word to whichw is equivalent with respect to
the hypoplactic congruence is the unique quasi-ribbon word of evaluationλ and of shape
C(σ−1).

Example 4.22 Consider againw= ababca. Thenλ= (3, 2, 1)andstd(w)= σ = 142563.
Henceσ−1= 136245 andC(σ−1)= (3, 3). The unique quasi-ribbon word of evaluation
(3, 2, 1) and of shape(3, 3) is aababc. Thusw ≡ aababcas already seen in Example 4.19.

The importance of the hypoplactic algebra comes from the following isomorphism, wich
follows directly from the previous considerations.

Theorem 4.23 The ring homomorphism defined byϕ : ai → xii is an isomorphism bet-
ween the hypoplactic algebra HPl(A) and the crystal limit10(n) of the quantum diagonal
algebra.

We have already seen that the quantum diagonal algebra1q(n) is not isomorphic to the
quantum plactic algebra whenq ∈ {0, 1}. We conjecture that these two degenerate cases
are the only exceptions.

5. Characteristics ofHN(0)-modules

5.1. Grothendieck rings associated with finitely generated HN(0)-modules

Let G0(HN(q)) be the Grothendieck group of the category of finitely generatedHN(q)-
modules and letK0(HN(q)) be the Grothendieck group of equivalence classes of finitely
generated projectiveHN(q)-modules. Whenq is not 0 and not a root of unity, the Hecke
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algebraHN(q) is semi-simple and these two groups coincide. Moreover their direct sum for
all n ≥ 0 endowed with the induction product is isomorphic to the ringSymof (commutative)
symmetric functions.

Whenq = 0, HN(0) is not semi-simple. In particular, indecomposableHN(0)-modules
are not necessarily irreducible, and the Grothendieck rings

G =
⊕
N≥0

G0(HN(0)) and K =
⊕
N≥0

K0(HN(0))

are not isomorphic. We will see thatG andKare respectively isomorphic to the ringsQSymof
quasi-symmetric functions andSymof noncommutative symmetric functions. The duality
betweenSym andQSym(cf. Section 2.2) can therefore be traced back to a general fact in
representation theory.

5.2. Simple HN(0)-modules

There are 2N−1 simpleHN(0)-modules, all of dimension 1 [1, 31]. To see this, it is sufficient
to observe that(Ti Ti+1−Ti+1Ti )

2 = 0. Thus, all the commutators [Ti , Tj ] are in the radical
of HN(0). But the quotient ofHN(0) by the ideal generated by these elements is the
commutativealgebra generated byN − 1 elementst1, . . . , tN−1 subject tot2

i = −ti . It is
easy to check that this algebra has no nilpotent elements, so that it isHN(0)/rad(HN(0)).
The irreducible representations are thus obtained by sending a set of generators to−1 and its
complement to 0. We shall however label these representations by compositions rather than
by subsets. LetI be a composition ofN and letD(I ) the associated subset of [1, N − 1].
The irreducible representationϕI of HN(0) is then defined by

ϕI (Ti ) =
{−1 if i ∈ D(I ),

0 if i /∈ D(I ).

The associatedHN(0)-module will be denoted byCI . These modules (whenI runs over
all compositions ofN) form a complete system of simpleHN(0)-modules.

The simple modules can also be realized as minimal left ideals ofHN(0). To describe
the generators, we associate with a compositionI of N two permutationsα(I ) andω(I ) of
SN defined by

• α(I ) is the permutation obtained by filling the columns of the skew Young diagram of
ribbon shapeI from bottom to top and from left to right with the numbers 1, 2, . . . , N,
i.e., the standard quasi-ribbon word of shapeI ;
• ω(I ) is the permutation obtained by filling the rows of the skew Young diagram of ribbon

shapeI from left to right and from bottom to top with the numbers 1, 2, . . . , N.

Example 5.1 Consider the compositionI = 22113 of 9. The fillings of the ribbon
diagram of shapeI corresponding toα(I ) andω(I ) are
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1 3

2 7

6

5

4 8 9

α(22113)

8 9

6 7

5

4

1 2 3

ω(22113)

Thusα(22113) = 132765489 andω(22113) = 896754123.

Recall that thepermutohedronof order N is the Hasse diagram of the weak order on
SN , that is, the graph whose vertices are the elements ofSN and where an edge labelled
i ∈ [1, N − 1] betweenσ andτ means thatτ = σi σ .

Lemma 5.2 Let I be a composition of N. The descent class DI = {σ ∈ SN, D(σ ) =
D(I )} is the interval[α(I ), ω(I )] for the weak order onSN.

For i ∈ [1, N − 1], let 2i = 1+ Ti . These elements verify the relations22
i = 2i for i ∈ [1, N − 1],

2i 2 j = 2 j 2i for |i − j | > 1,
2i 2i+12i = 2i+12i 2i+1 for i ∈ [1, N − 2].

In particular, the morphism defined byTi → −2i is an involution ofHN(0). As the2i

satisfy the braid relations, one can associate to each permutationσ ∈ SN the element2σ of
HN(0) defined by2σ = 2i1 · · ·2i r whereσi1· · · σi r is an arbitrary reduced decomposition
of σ .

For a compositionI = (i1, . . . , i r ) we denote byĪ = (i r , . . . , i1) its mirror image and
by I ∼ its conjugate composition, i.e., the composition obtained by writing from right to left
the lengths of the columns of the ribbon diagram ofI . For instance,(3, 2, 1) = (1, 2, 3)
and(3, 2, 1)∼ = (2, 2, 1, 1).

Proposition 5.3 The simple HN(0) moduleCI is isomorphic to the minimal left ideal
HN(0) ηI of HN(0) whereηI = Tω( Ī ) 2α(I ∼).

Proof: Observe first thatω( Ī )−1 = ω(I )andα(I ) = ω(I ∼) ωN (whereωN is the maximal
permutation ofSN). It follows that Des(ω( Ī )−1) = D(I ) and Des(α(I ∼)−1) = [1, n−1]
− D( Ī ). Thus, taking into account the fact thatTi 2i = 0, one checks thatηI is different
from 0 and that

Ti Tω( Ī ) 2α(I ∼) =
{−Tω( Ī ) 2α(I ∼) if i ∈ D(I ),

0 if i /∈ D(I ). 2

5.3. Indecomposable projective HN(0)-modules

The indecomposable projectiveHN(0)-modules have also been classified by Norton (cf.
[1, 31]). One associates with a compositionI of N the unique indecomposable projective
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HN(0)-moduleM I such thatM I /rad(M I ) ' CI . This module can be realized as the left
ideal

M I = HN(0) νI

whereνI = Tα(I ) 2α( Ī ∼). Sinceα(I ∼)−1 = ωnω( Ī ), one getsD(α( Ī ∼)−1) = [1, n− 1]−
D(I ). It follows that the generatorνI of M I is different from 0 and that a basis ofM I is
given by

{Tσ 2α( Ī ∼), Des(σ ) = D(I )} = {Tσ 2α( Ī ∼), σ ∈ [α(I ), ω(I )]},

according to Lemma 5.2. Hence the dimension ofM I is equal to the cardinality of the descent
classDI . Also, every interval of the form [α(I ), ω(I )] in the permutohedron can be inter-
preted as the “graph” of some indecomposable projectiveHN(0)-module (cf. Example 5.4
below). The family(M I )|I |=N forms a complete system of projective indecomposable
HN(0)-modules, and

Hn(0) =
⊕
|I |=N

M I . (8)

Example 5.4 Let I = (1, 1, 2). Then I ∼ = (1, 3), Ī = (2, 1, 1), Ī ∼ = (3, 1), α(I ) =
3214 andα( Ī ∼) = 1243. Henceν112 = T2 T1 T2 23. The moduleM112 can be described
by the following automaton. An arrow labelledTi going from f to g means thatTi · f = g,
and a loop on the vertexf labelledTi | ε (with ε = 0 or ε = −1) means thatTi · f = ε f .

���e ��� T1|−1
T2|−1

?

T3�� �T3 e
��� T1|−1

T3|−1

?

T2�� �T2 T3 e
��� T1|0

T2|−1
T3|−1

This is also the graph of the interval [3214, 4312]= D112 in the permutohedron ofS4. The
(−1)-loops correspond to the descents of the inverse permutation.

5.4. A Frobenius type characteristic for finite dimensional HN(0)-modules

Let M be a finite dimensionalHN(0)-module and consider a composition series forM , i.e.,
a decreasing sequenceM1 = M ⊃ M2 ⊃ · · · ⊃ Mk ⊃ Mk+1 = C of submodules where
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the successive quotientsMi /Mi+1 are simple. Therefore eachMi /Mi+1 is isomorphic to
someCIi , and the Jordan-H¨older theorem ensures that the quasi-symmetric function

F(M) =
k∑

i=1

FIi

is independent of the choice of the composition series. This quasi-symmetric function is
called thecharacteristicof M . Its properties are quite similar to those of the usual Frobenius
characteristic of aSN-module [7]. However, the characteristicF(M) of a HN(0)-module
M does not specify it up to isomorphism.

The character formula forHN(0)-modules can be stated in a form similar to the Frobenius
character formula. For a compositionI , we denote byCI (q) the noncommutative symmetric
functionCI (q) = (q−1)l (I )SI ((q−1)A), in the noncommutativeλ-ring notation introduced
in [21]. Let alsowJ be the permutation of the Young subgroupSJ defined by

wJ = (σ1 · · · σ j1−1) (σ j1+1 · · · σ j1+ j2−1) · · · ( σ j1+···+ jr−1+1 · · · σn−1).

The character of a moduleM is then determined by its valuesχM(TwJ ) = trM(TwJ ) on the
special elementsTwJ .

Proposition 5.5 [7] (Character formula) The character of M is given by

χM(TwJ ) = 〈F(M) , CJ(0)〉

where〈, 〉 is the pairing between QSym andSym.

One can refineF into a graded version of the characteristic, at least whenM is a cyclic
module i.e., whenM = HN(0) e. In this case, the length filtration

HN(0)
(k) =

⊕
l (σ )≥k

C Tσ

of the 0-Hecke algebra induces a filtration(M (k))k∈N of M by settingM (k) = HN(0)(k)e.
This suggests to introduce thegraded characteristicFq(M) of M defined by

Fq(M) =
∑
k≥0

qk F(M (k)/M (k+1)).

The ordinary characteristicF(M) is then the specialization ofFq(M) atq = 1.
The graded characteristic is in particular defined for the modules induced by tensor

products of simple 1-dimensional modules

MI1,...,Ir = CI1 ⊗ · · · ⊗ CIr ↑
Hn1+···+nr (0)
Hn1(0)⊗···⊗Hnr (0)

,
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the characteristic of which being equal to the productFI1 · · · FIr . The induction formula can
be stated in terms of the graded characteristic, which leads to aq-analogue of the algebra
of quasi-symmetric functions. Thisq-analogue is defined in terms of theq-shuffle product
[6]. Let A be an alphabet and letq be an indeterminate commuting withA. Theq-shuffle
is the bilinear operation ofN[q]〈A〉 denoted bȳ q and recursively defined on words by the
relations{

1¯q u = u¯q 1= u,
(a u)¯q (bv) = a (u¯q bv)+ q|au| b (a u¯q v),

where 1 is the empty word,u, v ∈ A∗ anda, b ∈ A. One can show that̄ q is associative
(cf. [6]).

Example 5.6 Let M(11),(2) denote theH4(0)-module obtained by inducing toH4(0) the
H2(0)⊗ H2(0)-moduleC11⊗C2, identifying H2(0)⊗ H2(0) with the subalgebra ofH4(0)
generated byT1 andT3. This H4(0)-module is generated by a single elemente on which
T1 andT3 act byT1 · e= −e and byT3 · e= 0. The following automaton gives a complete
description of this module. The states (vertices) correspond to the images ofe under the
action of some element ofH4(0), which form a linear basis ofM(11),(2).

���e ��� T1|−1
T3|0

?

T2�
 �	T2·e ��� T2|−1

�
�
�
��	

@
@
@
@@R

T1 T3

�
 �	T1T2·e��-T1|−1
T2|−1

@
@
@
@@R

T3

�
 �	T3T2·e ��� T2|0
T3|−1

�
�

�
��	

T1�
 �	T1T3T2·e ��� T1|−1
T3|−1

?

T2�
 �	T2T1T3T2·e ��� T1|0
T2|−1
T3|−1

4

3

2

1

0

The automaton is graded by the distanced( f ) of a statef to the initial statee as indicated
on the picture. This grading is precisely the one described byFq. That is, if we associate
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with each statef the compositionI ( f ) of 4 whose associated subset of [1, 3] is D( f ) =
{i ∈ [1, 3] | Ti · f = − f }, we find

Fq(M(11,2))=
∑

f

qd( f )FI ( f )= F13+ q F22+ q2(F112+ F31)+ q3F121+ q4F211.

This equality can also be read on theq-shuffle of 21 and 34:

21¯q 34= 2134+ q2314+ q22341+ q23214+ q33241+ q43421.

One obtains the graded characteristic by replacing each permutationσ in this expansion by
the quasi-symmetric functionFC(σ ).

This example illustrates the general fact that the graded characteristic of an induced
module as above is always given by theq-shuffle. As it is an associative operation, one
obtains in this way aq-deformation of the ring of quasi-symmetric functions.

Proposition 5.7 [6, 7] Let I and J be compositions of N and M. Let alsoσ ∈ S[1,N]

and τ ∈ S[N+1,N+M ] be such thatDes(σ ) = D(I ) andDes(τ ) = D(J). The HN+M(0)-
module obtained by inducing to HN+M(0) the HN(0)⊗HM(0)-moduleCI ⊗CJ (identifying
HN(0) ⊗ HM(0) to the subalgebra of HN+M(0) generated by T1, . . . , TN−1, TN+1, . . . ,

TN+M−1) is cyclic, and its graded characteristic is given by

Fq

(
CI ⊗ CJ ↑HN+M (0)

HN (0)⊗HM (0)

)
=

∑
ν∈SN+M

qd(ν)FC(ν)

where C(ν) denotes the composition associated with the descent set ofν and where

σ ¯q τ =
∑

ν∈SN+M

qd(ν) ν.

Forq = 1, we obtain the following result [7].

Corollary 5.8 The characteristicF is an isomorphism betweenG and theZ-algebra of
quasi-symmetric functions.

5.5. A noncommutative characteristic for finite dimensional projective HN(0)-modules

Let M be a finite dimensional projectiveHN(0)-module. HenceM is isomorphic to a direct
sum of indecomposable projective modules

M =
m⊕

i=1

M Ii .
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The noncommutative Frobenius characteristicof M is the noncommutative symmetric
functionR(M) defined by

R(M) =
m∑

i=1

RIi .

The characteristicR(M) does characterize every finite dimensional projectiveHN(0)-
moduleM up to isomorphism, and is therefore stronger thanF . The following proposition,
which is a reformulation of Carter’s expression of the Cartan invariants ofHN(0) shows in
particular how to computeF(M) fromR(M).

Proposition 5.9 [7] Let M be a finite dimensional projective HN(0)-module. Then the
characteristicF(M) of M is a symmetric function which is the commutative image of
R(M).

Proof: It suffices to prove the result whenM = M I . In this case,

F(M I ) =
∑
J`N

cI J FJ,

where the Cartan invariantcIJ is equal to the number of permutationsσ of SN such that
D(σ ) = I andD(σ−1) = J (see [1]). On the other hand, by a formula of Gessel [10], we
havecIJ = (r I , r J) = 〈r I , RJ〉, where(·, ·) denotes the usual scalar product of commutative
symmetric functions (see [28]) and wherer I is the commutative image of the ribbon Schur
function RI . Using the fact that the quasi-ribbonsFI and noncommutative ribbon Schur
functionsRJ are dual bases, it follows thatF(M I ) = r I . 2

The induction from a tensor product of projective modules is described by the product
of noncommutative symmetric functions.

Proposition 5.10 Let I = (i1, . . . , i r ) and J = ( j1, . . . , js) be compositions of N and
M. Then,

R
(
M I ⊗M J ↑HN+M (0)

HN (0)⊗HM (0)

)
= RI RJ = RI ·J + RI FJ, (9)

where we set I· J = (i1, . . . , i r , j1, . . . , js) and I F J = (i1, . . . , i r−1, i r + j1, j2, . . . , js).

Proof: The formula for the product of two noncommutative ribbon Schur functions is
proved in [9], and we just have to show that

M I ⊗M J ↑HN+M (0)
HN (0)⊗HM (0)

' M I ·J ⊕M I FJ .
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Using the duality between simple modules and indecomposable projective modules, we
obtain

M I ⊗M J ↑HN+M (0)
HN (0)⊗HM (0)

'
⊕

K`N+M

dim Hom HN+M (0)

×
(
M I ⊗M J ↑HN+M (0)

HN (0)⊗HM (0)
,M K

)
M K .

By Frobenius reciprocity, we have

M I ⊗M J ↑HN+M (0)
HN (0)⊗HM (0)

'
⊕

K`N+M

dim Hom HN (0)⊗HM (0)

×
(
M I ⊗M J,CK ↓HN+M (0)

HN (0)⊗HM (0)

)
M K .

Observe now that the description of the family(M I ) given in Section 5.3 implies that

dim HomHN (0) (M J,CI ) =
{

1 if I = J,
0 if I 6= J,

so that

dim HomHN (0)⊗HM (0)

(
M I ⊗M J,CK ↓HN+M (0)

HN (0)⊗HM (0)

)
is equal to 0 ifD(K )∩ [1, N] 6= D(I ) or D(K )∩ [N+1, N+M ] 6= N+ D(J) and equal
to 1 whenD(K ) ∩ [1, N] = D(I ) andD(K ) ∩ [N + 1, N + M ] = N + D(J), i.e., when
K = I · J or K = I F J as desired. 2

Thus, we have the following interpretation of the algebra of noncommutative symmetric
functions.

Corollary 5.11 The characteristic mapR is an isomorphism between the Grothendieck
ring K and theZ-algebra of noncommutative functions.

6. Hypoplactic characters ofA0(n)-comodules

6.1. The character of an Aq(n)-comodule

Let M be a finite dimensionalAq(n)-comodule with coactionδ. Let (mi )i=1,m be a basis
of M . There exist elements(a(i, j ))1≤i, j≤m of Aq(n) such that

δ(mi ) =
m∑

j=1

a(i, j )⊗mj
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for i ∈ [1,m]. The element

m∑
i=1

a(i, i )

of Aq(n) is independent of the choice of the basis(mi ). It will be denoted byχ(M) and
called thecharacterof the Aq(n)-comoduleM .

Proposition 6.1 Let M, N,M ′,M ′′ be Aq(n)-comodules.
1. If 0→ M ′ → M → M ′′ → 0 is a short exact sequence, χ(M) = χ(M ′)+ χ(M ′′);
2. χ(M ⊗ N) = χ(M) χ(N);
3. if M ' N, thenχ(M) = χ(N).

It happens that for generic values ofq, the character of anAq(n)-comodule is always an
element of the quantum diagonal algebra.

Theorem 6.2 Let q be an indeterminate and let M be an Aq(n)-comodule. Then the
characterχ(M) belongs to the diagonal algebra1q(n).

Proof: The basic observation is the following lemma.

Lemma 6.3 The quantum determinant of Aq(n) can be expressed by means of q-commu-
tators as follows:∣∣∣∣∣∣∣∣∣

x11 x12 . . . x1n

x21 x22 . . . x2n
...

...
. . .

...

xn1 xn2 . . . xnn

∣∣∣∣∣∣∣∣∣
q

def=
∑
σ∈Sn

ε(σ ) x1σ(1) · · · xnσ(n)

= 1

(1− q)n−1
[xnn, [. . . , [x22, x11]q · · ·]q]q

where[ P, Q]q = P Q− q Q P.

Proof of the lemma: Observe first that the lemma is equivalent to the identity

xnn

∣∣∣∣∣∣∣
x11 . . . x1,n−1
...

. . .
...

xn−1,1 . . . xn−1,n−1

∣∣∣∣∣∣∣ − q

∣∣∣∣∣∣∣
x11 . . . x1,n−1
...

. . .
...

xn−1,1 . . . xn−1,n−1

∣∣∣∣∣∣∣ xnn

= (1− q)

∣∣∣∣∣∣∣
x11 . . . x1,n
...

. . .
...

xn1 . . . xnn

∣∣∣∣∣∣∣ .
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Using the tensor notation of Section 4.3, this can be rewritten as

(1− q)

(∑
σ∈Sn

ε(σ ) e12···n ⊗ e∗σ

)
+ q

 ∑
σ∈Sn
σ(n)=n

ε(σ ) e12···n ⊗ e∗σ


=

∑
σ∈Sn−1

ε(σ ) en12···n−1⊗ e∗nσ ,

which is itself equivalent to

(−1)n−1

 ∑
σ∈Sn
σ(1)=n

ε(σ ) e∗σ

 · T1 T2 · · · Tn−1

= (1− q)

(∑
σ∈Sn

ε(σ ) e∗σ

)
+ q

 ∑
σ∈Sn
σ(n)=n

ε(σ ) e∗σ

 .
This last formula is now easily proved by induction onn. 2

As a consequence of Lemma 6.3, we obtain that the character of ther th exterior power
3r

q(V) of V (cf. [4]) is equal to

χ
(
3r

q(V)
) = 3r (q;1)

def= 1

(1−q)n−1

( ∑
1≤ i1< ···< i r ≤ n

[
xir ir ,

[
. . . ,

[
xi2i2, xi1i1

]
q . . .

]
q

]
q

)

where1 = {x11, . . . , xnn}. Let nowλ = (1l1, . . . ,nln) be a partition ofn. It follows then
from Proposition 6.1 that the character of the comodule

Mλ,q = V⊗l1 ⊗32
q(V)

⊗l2 ⊗ · · · ⊗3n
q(V)

⊗ln

is also in the diagonal algebra1q(n).
On the other hand, it has been shown by Dipper and Donkin [4] that one can associate

with every partitionλ of n an irreducibleAq(n)-comoduleLλ,q and that the family(Lλ,q)λ`n

forms a complete system of irreducibleAq(n)-comodules. They also proved that for an
appropriate ordering< on partitions ofn, the products of exterior powers decompose as

Mλ,q ' Lλ,q ⊕
⊕
µ<λ

aµLµ,q.

Applying Proposition 6.1, we see that the matrix giving the decomposition of(χ(Mλ,q))λ`n

on(χ(Lλ,q))λ`n is unitriangular. It follows that the characterχ(Lλ,q) is a linear combination
of elements of the family(χ(Mλ,q))λ`n. Henceχ(Lλ,q) ∈ 1q(n). 2
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Note 6.4 The commutative image ofχ(M) is the formal commutative character introduced
in [4]. But the formal character ofLλ,q is the Schur functionSλ. Thus the characters (in
our sense) of the irreducibleAq(n)-comodules are quantum analogues of Schur functions.

Note 6.5 Let CharZ(q; n) denote theZ-lattice of1n(q) spanned by characters ofAq(n)-
comodules. The proof of Theorem 6.2 shows thatCharZ(q; n) is the subring of1n(q)
generated by thenquantum elementary functions3r (q;1)with 1≤ r ≤ n. Moreover since
the composition series of the twoAn(q)-comodules3r

q(V)⊗3s
q(V) and3s

q(V)⊗3r
q(V)

are the same, these quantum elementary functions commute. It follows thatCharZ(q; n) is
a commutativeZ-algebra isomorphic to the algebra of symmetric functions inn variables.

Note 6.6 Although Theorem 6.2 has been stated for generic values ofq, it is not difficult
to see that it holds forq ∈ C − {0, 1}. In the usual commutative case (i.e.,q = 1), the
result becomes false. On the other hand we conjecture that it still holds forq = 0 (cf.
Conjecture 6.13).

6.2. A family of irreducible A0(n)-comodules

Let I be a composition ofN. The elementηI = Tω( Ī ) 2α(I ∼) of HN(0) generates the
one-dimensional leftHN(0)-moduleCI . One can use it to construct theA0(n)-comodule

DI = V⊗N · ηI .

Let A be a noncommutative totally ordered alphabet and letI be a composition. We
denote byFI (A) the sum of all quasi-ribbon words of shapeI . According to a result of
Gessel [10], the commutative image ofFI (A) is the quasi-symmetric functionFI .

Example 6.7 The quasi-ribbon tableaux of shapeI = (2, 1) over{a < b < c} are

a a

b

a a

c

a b

c

b b

c

Thus F21(a, b, c) = aba+ aca+ acb+ bcb. The commutative image ofF21(a, b, c) is
clearly equal toM21+ M111= F21, as desired.

Proposition 6.8 Let I be a composition of N. Thenχ(DI ) = FI (x11, . . . , xnn).

Proof: LetQR(I ) be the set of all quasi-ribbon words of shapeI . We associate with every
wordw = ak1 · · ·akn of A∗ the tensorw = ak1 ⊗ · · · ⊗ akn of V⊗n.

Lemma 6.9 The family(w · ηI )w∈QR(I ) is a linear basis of the A0(n)-comoduleDI .

Proof of the lemma: Define the natural readingn(r )of a quasi-ribbon tableaur of shapeI
as the word obtained by readingr from left to right. Ifw is the quasi-ribbon word associated
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with r , we also denote byn(w) the natural reading ofr . For example,n(ababdc) = aabbcd
is the natural reading of the quasi-ribbon tableau

a a

b b c

d .

Let now i ∈ D(I ). By definition ofηI , one hasTi ηI = −ηI . Hence, we get

v · ηI = − (v · Ti ) · ηI =
{

0 if ki = ki+1,

− vσi · ηI if ki < ki+1,

for everyv = ak1 ⊗ · · · ⊗ akN ∈ V⊗N . In particular,

v · ηI = −vσi · ηI (10)

whenki 6= ki+1. Suppose now thati /∈ D(I ). ThenTi ηI = 0. Thus we can write

v · ηI = (vσi · Ti ) · ηI = vσi · Ti ηI = 0

for everyv = ak1 ⊗ · · · ⊗ akN ∈ V⊗N such thatki > ki+1. It follows that the family of
all tensors of the form(ak1 ⊗ · · · ⊗ akN ) · ηI with ki ≤ ki+1 wheni /∈ D(I ) andki < ki+1

when i ∈ D(I ) spans the comoduleDI . In other words, we get a generating family of
DI by taking the setR formed of allw · ηI wherew runs over the natural readings of all
quasi-ribbon tableaux of shapeI . Moreover it is easy to see that these elements are not
zero.

Now, there is at most one increasing word of a given evaluation which can be the natural
reading of some quasi-ribbon tableau of shapeI . It follows thatR is a linear basis of
DI . Finally, formula (10) shows thatw · ηI = ±n(w) · ηI for a quasi-ribbon wordw of
shapeI . 2

We are now in position to computeχ(DI ). In the notation of Section 4.3,

δ(w) =
∑
|u|=|w|

(w ⊗ u∗)⊗ u

for everyw ∈ A∗. Hence, according to Proposition 4.2,

δ(w · ηI ) =
∑
|u|=|w|

(w ⊗ u∗)⊗ u · ηI ,

and from Lemma 6.9,

χ(DI ) =
∑

w∈QR(I )

 ∑
|u|=|w|

u·ηI=w·ηI

w ⊗ u∗

 . (11)
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Let noww be a quasi-ribbon word of shapeI . Let alsou = ak1 · · · akN be a word distinct
from w such thatw · ηI = u · ηI . Let r (u) be the ribbon diagram of shapeI obtained by
filling the boxes from left to right by the letters ofu. Let thenr ′(u) be the quasi-ribbon
tableau of shapeI obtained fromr (u) by sorting all columns in increasing order from top
to bottom. Let us finally denote byv(u) the word obtained by reading from left to right
the letters ofr ′(u). Using again the arguments of the proof of Lemma 6.9, we see that
v(u) · ηI = 0 if v(u) is not the natural reading of a quasi-ribbon tableau of shapeI . It
follows that the alphabets of all columns ofr (u) andr (w) must coincide. Sinceu 6= w,
there must exist integersi < j andk < l such that

w ⊗ u∗ =
[ · · · l k · · ·
· · · i j · · ·

]
which is therefore equal to 0. Hence, we have∑

|u|=|w|
u·ηI=w·ηI

w ⊗ u∗ = w ⊗ w∗.

Going back to formula (11), we see that

χ(DI ) =
∑

w∈QR(I )

w ⊗ w∗ = FI (x11, . . . , xnn). 2

Note 6.10 The same argument as in Note 6.5 shows that the noncommutative quasi-
ribbon functionsFI (A) span a commutative subalgebra of the hypoplactic algebraHPl(A),
isomorphic to the algebra of quasi-symmetric functions over a commutative alphabet of the
same cardinality asA. This property can in fact also be proved in a purely combinatorial
way.

Example 6.11 Let n = 3, N = 4 andI = (3, 1). Thenη31 = T3 T2 T1 (1+ T2) (1+ T3)

(1+ T2) andD31 = V⊗4 · η31. By computing the images underη31 of the canonical basis
vectors ofV⊗4, one gets

D31 = Ca1a2a3a2 · η31⊕ Ca2a2a3a2 · η31⊕ Ca1a1a3a2 · η31

⊕Ca1a1a3a1 · η31⊕ Ca1a1a2a1 · η31.

Thus,

χ(D31) = x22x11x11x11+ x33x11x11x11+ x33x22x22x22

+ x33x11x11x22+ x33x11x22x22

= x11x11x22x11+ x11x11x33x11+ x22x22x33x22

+ x11x11x33x22+ x11x22x33x22.

This last expression is exactly the sum of the quasi-ribbons words associated with the five
quasi-ribbon tableaux



                   

P1: RPS/PCY P2: MVG/ASH QC: MVG

Journal of Algebraic Combinatorics KL472-03-Krob August 6, 1997 10:34

NONCOMMUTATIVE SYMMETRIC FUNCTIONS IV 371

1 1 1

2

1 1 1

3

1 1 2

3

1 2 2

3

2 2 2

3

Henceχ(D31) = F31(x11, x22, x33) as desired.

Proposition 6.12 TheDI are irreducible, pairwise non-isomorphic A0(n)-comodules.

Proof: Propositions 6.1 and 6.8 imply that theDI are pairwise non-isomorphic. We just
have to prove that these comodules are irreducible. LetI be a composition ofN and let
M be a nonzero subcomodule ofDI . According to Lemma 6.9, there exists a familyR of
quasi-ribbon words of shapeI and a family(mw)w∈R of nonzero complex numbers such
that

m=
∑
w∈R

mw w · ηI ∈ M.

Using the tensor formalism of Section 4.3, it follows that

δ(m) =
∑
|u|=N

(∑
w∈R

mw w ⊗ u∗
)
⊗ u · ηI ∈ A0(n)⊗ M.

As there is at most one quasi-ribbon word of shapeI and of a given evaluation, we deduce
by homogeneity with respect to the first component ofA0(n) that

δ(w) =
∑
|u|=N

(w ⊗ u∗)⊗ u · ηI ∈ A0(n)⊗ M

for everyw ∈ R. Let noww be an arbitrary quasi-ribbon word ofR and letu = ak1 · · ·ukN

be a word of lengthN. Note thatw ⊗ u∗ = 0 if ki ≤ ki+1 wheni ∈ D(I ). On the other
hand,u · ηI = 0 if ki > ki+1 andi /∈ D(I ) according to the proof of Lemma 6.9. Hence

δ(w) =
∑

u∈QR(I )

(w ⊗ u∗)⊗ u · ηI .

The monomialsw ⊗ u∗, whereu runs over all quasi-ribbon words of shapeI , are nonzero
and pairwise distincts elements ofA0(n). Sinceδ(w) ∈ A0(n)⊗ M , all the tensorsu · ηI

areM . According to Lemma 6.9, this shows thatM = DI . 2

Conjecture 6.13 The family(DI )I (where I runs through all compositions) is a complete
system of irreducible A0(n)-comodules.

Note 6.14 Conjecture 6.13 would imply that the character of everyA0(n)-comodule is an
element of10(n), showing therefore that Theorem 6.2 is still valid whenq = 0. Moreover
according to Note 6.10, it would also imply that the character ringCharZ(0; n) is isomorphic
to theZ-algebra of quasi-symmetric functions over ann-letter alphabet.
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6.3. Another family of A0(n)-comodules

Let I be a composition ofN. The elementνI = Tα(I ) 2α( Ī ∼) of the 0-Hecke algebra gen-
erates the indecomposable projective leftHn(0)-moduleM I . One can also use to construct
the A0(n)-comoduleNI defined by

NI = V⊗N · νI .

A word will be said to be ofribbon shape I(whereI is a composition) if it can be obtained
by reading from left to right and from top to bottom the columns of a skew Young tableau
of ribbon shapeI . We denote byRI (A) the sum of all words ofA∗ of ribbon shapeI .

Proposition 6.15 Let I be a composition of N. Thenχ(NI ) = RI (x11, . . . , xnn).

Proof: We use the same notation as in the proof of Proposition 6.8. Let alsoR(I ) be the
set of all words of ribbon shapeI .

Lemma 6.16 The family(w ·2α( Ī ∼))w∈R(I ) is a linear basis of the A0(n)-comoduleNI .

Proof of the lemma: Note thatTi νI = −νI for i ∈ D(I ). It follows that

v · νI = −(v · Ti ) νI =
0 if ki = ki+1,

−vσi · νI if ki < ki+1,

v · νI if ki > ki+1,

for i ∈ D(I ) andv = ak1 ⊗ · · · ⊗ akN ∈ V⊗N . Hence we can rewrite (up to a sign) every
v·νI in such a way thatki > ki+1 for i ∈ D(I ). The structure of the right action ofHN(0) on
V⊗N implies that such an element is equal tow ·2α( Ī ∼) where we still havew = ak1 · · ·akN

with ki > ki+1 for i ∈ D(I ). Let nowi /∈ D(I ). Then2α( Ī ∼) = 2i 2α( Ī ∼). Hence

w ·2α( Ī ∼) = w ·2i 2α( Ī ∼) = wσi · Ti 2i 2α( Ī ∼) = 0

whenki > ki+1. Everyv · νI can therefore be rewritten as±w · 2α( Ī ∼) wherew ∈ R(I ).
In other words, the family(w ·2α( Ī ∼))w∈R(I ) spansNI .

Now, it follows from (8) that

V⊗N =
∑
I`N

NI . (12)

Since any word ofAN has a unique ribbon shape, we deduce that∑
I`N

|R( Ī )| = dim V⊗N ≤
∑
I`N

dimNI ≤
∑
I`N

|R( Ī )|

from which we get that dimNI is equal to the number of words of ribbon shapeI . 2
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This argument also shows that decomposition (12) is in fact a direct sum. Arguing as in
the proof of Proposition 6.8, we see that

δ(w ·2α(I ∼)) =
∑

u∈R( Ī )

(w ⊗ u∗) u ·2α(I ∼)

for w ∈ R(I ), whence the theorem. 2

Example 6.17 Let n = 3, N = 4 andI = (1, 1, 2). Thenν112 = T1 T2 T1 (1+ T3) and
N112= V⊗4 · ν112. By computing the action ofν211 on the standard basis ofV⊗4, one gets

N112= Ca3a2a1a1 · ν112⊕Ca3a2a1a2 · ν112⊕Ca3a2a1a3 · ν112.

Then,

χ(N112) = x33x22x11x11+ x33x22x11x22+ x33x22x11x33.

This expression is the sum of the ribbon words associated with the 3 ribbon tableaux

3

2

1 1

3

2

1 2

3

2

1 3

andχ(N112) = R112(x11, x22, x33) as desired.

Note 6.18 Using the same kind of argument as in Section 6.2, one can prove thatNI is an
indecomposableAn(q)-comodule.

7. Robinson-Schensted type correspondences

In the classical case (corresponding toq = 1), the Robinson-Schensted correspondence is
the combinatorial counterpart of the decomposition ofV⊗N into GLn(C)×SN-bimodules.
On the other hand, forq= 0, there are two natural ways of decomposingV⊗N into
A0(n)× HN(0)-bicomodules. This leads to two different Robinson-Schensted type corres-
pondences, involving here ribbon and quasi-ribbon diagrams.

7.1. A first Robinson-Schensted type correspondence

The first combinatorial algorithm corresponds to the decomposition

V⊗N =
⊕
I`N

NI (13)

(cf. the proof of Proposition 6.15). Recall that any rightHN(0)-submodule ofV⊗N can
also be regarded as a left module, the action being given byvTi = −2i v. It follows then
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from Lemma 6.16 thatNI is a left HN(0)-module whose all composition factors are equal
to C Ī ∼ . This observation gives us a basis ofV⊗N indexed by pairs(r,qr) wherer is a
word of ribbon shapeI and whereqr is the (unique) standard quasi-ribbon word of shape
Ī ∼. The corresponding Robinson-Schensted map is therefore trivial. It just associates to a
wordw its ribbon diagram. It can clearly be recursively defined by an insertion process as
follows.

Let r be the ribbon diagram ofw, let x be the letter which is in the last box ofr and let
a ∈ A. The ribbon diagram ofwa is then obtained fromr by glueinga at the end of the
last row ofr if x ≤ a or under the last box of the last row ofr if a < x. For example, with
w = baccb, we have

∅ - b - b

a
- b

a c
- b

a c c
- b

a c c

b

This construction is clearly bijective (the standard quasi-ribbon does not bring here any
supplementary information).

7.2. A second Robinson-Schensted type correspondence

The second Robinson-Schensted type algorithm is related to the composition factors of
V⊗N . Using Lemmas 6.9 and 6.16, one can see that these compositions factors are exactly
the comodulesDI each of them occuring|QR(I )| times. ButDI considered as a left
HN(0)-module is isomorphic toM I . It follows that there exists a basis ofV⊗N indexed by
pairs(Q, R) whereQ is a quasi-ribbon word of shapeI and whereR is a standard ribbon
word of the same shape. The corresponding Robinson-Schensted type algorithm which
associates to each wordw ∈ A∗ the pair(Q, R) is described below.

Let Q be a quasi-ribbon diagram and leta ∈ A. Let Q′ be the diagram obtained fromQ
by deleting its last row and letx (resp.z) be the first (resp. last) letter of the last row ofQ.
The resultQ of the insertion ofa in Q is defined by the following rules:

• if z≤ a,Q is obtained by adding a box containinga at the end of the last row ofQ
• if x ≤ a < z, let y be the first letter of the last row ofQ which is strictly greater thana.

The quasi-ribbon diagramQ is then

...Q′

. . .

x . . . a

y . . . z ;

• if a < x,Q is obtained by insertinga in Q′ and glueing under the quasi-ribbon obtained
in this way the last row ofQ.

Let w = a1 · · ·an be a word of lengthn. The pair(Q, R) associated withw can be
defined as follows. The quasi-ribbon diagramQ is obtained by inserting the letters ofw
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(from left to right), starting from an empty diagram. The standard ribbon diagramR is
iteratively constructed by putting at each stepi ∈ [1, n] of the algorithm the numberi in
the box that contains at this moment inQ the letterai inserted at this step. Let us illustrate
again this correspondence onw = baccb.

(∅, ∅)- b , 1 -
a
b ,

2
1 -

a
b c ,

2
1 3 -

a
b c c ,

2
1 3 4 -

a
b b

c c
,

2
1 5

3 4

The correspondencew→ (Q, R) is clearly a bijection. In fact, the quasi-ribbon diagram
Q associated withw is of shapeC(σ−1)whereσ = std(w). Going back to Proposition 4.21,
this gives the following property, which is the quasi-ribbon version of Knuth’s theorem [20].

Proposition 7.1 Let u, v ∈ A∗. Then, u andv correspond to the same quasi-ribbon Q
under the second algorithm iff u≡ v with respect to the hypoplactic congruence.

In other words, the hypoplactic relations play, for quasi-ribbons, the same rˆole as the
plactic relations for Young tableaux.
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