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Abstract. Let w0 be the element of maximal length in the symmetric groupSn, and letRed(w0) be the set of all
reduced words forw0. We prove the identity

∑
(a1,a2,...)∈Red(w0)

(x + a1)(x + a2) · · · =
(

n

2

)
!

∏
1≤i < j ≤n

2x + i + j − 1

i + j − 1
, (∗)

which generalizes Stanley’s [20] formula for the cardinality ofRed(w0), and Macdonald’s [11] formula
∑

a1a2 · · ·
= ( n

2 )!.

Our approach uses an observation, based on a result by Wachs [21], that evaluation of certain specializations of
Schubert polynomials is essentially equivalent to enumeration of plane partitions whose parts are bounded from
above. Thus, enumerative results for reduced words can be obtained from the corresponding statements about
plane partitions, and vice versa. In particular, identity (∗) follows from Proctor’s [14] formula for the number of
plane partitions of a staircase shape, with bounded largest part.

Similar results are obtained for other permutations and shapes;q-analogues are also given.

Keywords: reduced word, plane partition, Schubert polynomial

1. Main result

We study enumerative problems related to reduced words (or reduced decompositions) in
the symmetric groupSn. Recall that a reduced word for a permutationw ∈ Sn is a sequence
of indicesa = (a1, . . . , al ) such thatl = l (w) is thelengthof w (the number of inversions),
andsa1 · · · sal = w, wheresa denotes a simple transposition(a a+1). The set of all reduced
words forw is denoted byRed(w).

Let

w0 = n n − 1 · · · 2 1

be the permutation of maximal length inSn; obviously,l (w0) = ( n
2 ). Stanley [20] proved

that the number of reduced words forw0 is equal to the numberf λ0 of standard Young
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tableaux of the staircase shapeλ0 = (n − 1, n − 2, . . . , 1), and therefore can be computed
via the hooklength formula (see, e.g., [12]):

|Red(w0)| = f λ0 =
(n

2

)
!∏n−1

i =1 (2i − 1)n−i
. (1.1)

Edelman and Greene [2] then found an explicit bijection between reduced words and stan-
dard tableaux that underlies Stanley’s formula. For example, ifn = 3, thenw0 = 321,
and there are two reduced words inRed(w0) = {121, 212}, as well as two standard Young
tableaux of shapeλ0 = (2, 1).

Macdonald [11] discovered that, amazingly,

∑
a∈Red(w0)

a1a2 · · · a(n
2)

=
(

n

2

)
!. (1.2)

For instance, in the example above,

1 · 2 · 1 + 2 · 1 · 2 =
(

3

2

)
!.

We found the following common generalization of these formulas of Stanley and
Macdonald.

Theorem 1.1 We have∑
a=(a1,a2,...)∈Red(w0)

(x + a1) · · ·
(

x + a(n
2)

)
=

(
n

2

)
!

∏
1≤i < j ≤n

2x + i + j − 1

i + j − 1

= f λ0
∏

1≤i < j ≤n

2x + i + j − 1

2
. (1.3)

The last two expressions are equal by virtue of the hooklength formula (1.1). Specializing
x = 0, we obtain (1.2); equating the leading coefficients yields (1.1).

Identity (1.3) can also be rewritten as

∑
a∈Red(w0)

(x + a1) · · ·
(

x + a(n
2)

)
=

(
n

2

)
!

∏
t∈λ0

x + c(t)+n
2

h(t)
,

wheret runs over all boxes of the staircase shapeλ0, andc(t) andh(t) denote the content
and hooklength oft , respectively (see, e.g., [19]). To obtain the last formula, it suffices to
observe that

∏
1≤i < j ≤n

i + j − 1

2
=

∏
t∈λ0

c(t) + n

2
=

∏
t∈λ0

h(t) =
n−1∏
i =1

(2i − 1)n−i .
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To illustrate (1.3), taken = 3. Then it becomes

(x + 1)(x + 2)(x + 1) + (x + 2)(x + 1)(x + 2)

=
(

3

2

)
! · 2x + 2

2
· 2x + 3

3
· 2x + 4

4
.

Let us note that ifx is a nonnegative integer, then, by a theorem of Proctor [14] (see also
[8, 15, 16]), the first product appearing in (1.3) is exactly the number ppλ0(x) of (weak)
plane partitions of shapeλ0 whose parts do not exceedx:

ppλ0(x) =
∏

1≤i < j ≤n

2x + i + j − 1

i + j − 1
. (1.4)

For example, ifn = 3, then ppλ0(x) is the number of plane partitions of the form

k a
b ,

with 0 ≤ a, b ≤ k ≤ x. This number obviously is
∑x

k=0(k + 1)2 = (x+1)(x+2)(2x+3)

6 ,
agreeing with our previous computations.

Appearance of plane partitions in this context is not accidental. We will show that there is
a close connection between counting plane partitions with bounded parts and enumerative
problems concerning reduced words. It is this connection that will allow us to prove
Theorem 1.1.

In what follows, we will need some results from the theory ofSchubert polynomialsof
Lascoux and Sch¨utzenberger (see, e.g., [10, 11]). For a permutationw = (w(1), . . . , w(n))

∈ Sn, we will denote bySw(x1, . . . , xn−1) the corresponding Schubert polynomial. We will
also use the notation

1x × w = (1, 2, . . . , x, x + w(1), . . . , x + w(n)) ∈ Sn+m, (1.5)

providedx is a nonnegative integer.

Lemma 1.2 Let x be a nonnegative integer. Then

∑
a∈Red(w0)

(x + a1) · · ·
(

x + a(n
2)

)
=

(
n

2

)
!S1x × w0(1, . . . , 1). (1.6)

(Note that 1x × w0 = (1, 2, . . . , x, x + n, x + n − 1, . . . , x + 1).)

Proof: Since(x + a1, . . . , x + a(n
2)

) is a general form of a reduced word for 1x × w0 , the
lemma follows from [11, (6.11)]. 2

Proof of Theorem 1.1: By a theorem of Wachs [21] (cf. also [11, 17]), the Schubert
polynomial of any vexillary permutation (see [11, p. 11]) can be expressed as a certain
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flagged Schur function. In the case under consideration, Wachs’ theorem gives

S1x×w0(x1, . . . , xn−1) =
∑

T

xT , (1.7)

where the sum is over all semi-standard Young tableaux of a staircase shapeλ0 such that
every entry in rowi is≤ i +x, andxT denotes the monomial associated with such a tableau,
in the usual way. These tableaux are in obvious one-to-one correspondence with reverse
plane partitions of shapeλ0 and parts≤ x; namely, subtracti from all entries in thei th row.
Hence substitutingx1 = x2 = · · · = 1 in (1.7) yields

S1x×w0(1, . . . , 1) = ppλ0(x). (1.8)

Combining this with (1.6) and (1.4), we obtain (1.3). 2

We remark that both sides of the identity (1.8) have several interpretations:

(i) purely combinatorial;
(ii) representation-theoretic;

(iii) as certain determinants.

Let us explain what we mean by (i), (ii) and (iii).
Combinatorially, the left-hand side of (1.8) can be described by means of Stanley’s

formula for a Schubert polynomial [1, 3]. In the case under consideration,S1x×w0(1, . . . , 1)

is equal to the number of subwords of

(1 2 · · · n − 1)x(1)(2 1)(3 2 1) · · · (n − 1 · · · 2 1)

which are reduced words forw0. Other equivalent descriptions can be given in terms
of resolutions of pseudo-line arrangements (see [4]), or in terms of balanced flagged la-
bellings (see [5]). None of these can be trivially bijected to the plane partitions enumerated
by ppλ0(x).

The number ppλ0(x) is the dimension of a certain indecomposable representation of a
symplectic group. In fact, the multiplicative formula (1.4) for this number can be obtained
(see [8, 14]) by combining the classical product formula for this dimension (see, e.g.,
[18, Corollary VII.8.1]) with an explicit combinatorial description of the corresponding
Gelfand-Tsetlin basis given by Zhelobenko [22] and King [7]. (It was also realized (see [6,
14, 16]) that (1.4) can be derived in a purely combinatorial way, by factoring MacMahon’s
determinantal expression for ppλ0(x).) On the other hand, the specialization atx1 = x2 =
· · · = 1 of any Schubert polynomial, and in particularS1x×w0(1, . . . , 1), is the dimension of
a certain naturally defined representation of the Borel subgroup of upper-triangular matrices,
namely, theSchubert moduleof Kraśkiewicz and Pragacz [9] (see also, e.g., [5, Section 7]).
It would be interesting to find a direct connection between these two representation-theo-
retic constructions.
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2. Other shapes and permutations

We will now replaceλ0 by an arbitrary Ferrers shapeλ. The role ofw0 will then be played
by a dominant permutation(see, e.g., [11, p. 12]) whose Rothe diagram isλ. This is a
permutationwλ such that

λ = {
(i, j ) : wλ(i ) > j andw−1

λ ( j ) > i
}
.

The arguments of Section 1 can be repeated, with obvious changes, and Theorem 1.1
generalizes as follows.

Theorem 2.1 Letλ be a Ferrers shape of size l, and letwλ be the corresponding dominant
permutation. Then∑

a∈Red(wλ)

(x + a1) · · · (x + al ) = l ! ppλ(x) , (2.1)

whereppλ(x) denotes the number of plane partitions of shapeλ with parts≤x.

This theorem can be used to compute the polynomials ppλ(x). For example, ifλ is a
rectangular shape [n1] × [n2], then

wλ = (n2 + 1, n2 + 2, . . . , n2 + n1, 1, 2, . . . , n2) ∈ Sn1+n2.

This permutation is 321-avoiding (see [1]), which means that all its reduced words are
permutations of one another. Hence all summands in the left-hand side of (2.1) are equal,
and we easily arrive at the famous MacMahon’s formula [13, Section 495] for the number
of plane partitions whose 3-dimensional shape is contained in a box.

In the other direction, Theorem 2.1 provides a product formula for the expression in the
left-hand side of (2.1) whenever such a formula exists for ppλ(x). The most general result
of the latter kind that we know is due to Proctor [14] who gave product formulas in the case
when the rows (equivalently, columns) ofλ form an arithmetic progression.

For a generalλ, let us compute the greatest common divisor of the summands in (2.1).
To this end, we employ the following observation.

Lemma 2.2 For any permutationw, the number of occurrences of an entry k in any
reduced word forw is at least

mk = #{i : i ≤ k andw(i ) > k}. (2.2)

Proof: Let us interpret a reduced word as a process of converting the identity permutation
intow by means of adjacent transpositions. Sincemk numbers have to be moved from some
of the firstk positions to some of the remaining ones, it follows that the transpositionsk has
to be applied at leastmk times. 2
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Corollary 2.3 Letλ be a Ferrers shape of size l. For k= 1, 2, . . . , let mk be the maximal
number of boxes(i, j ) in an intersection of the diagonal i+ j = k+1with some rectangular
shapeµ contained inλ. Then

ppλ(x) = 1

l !
Tλ(x)(x + 1)m1(x + 2)m2 · · · , (2.3)

where Tλ(x) is a polynomial in x with nonnegative integer coefficients.

Proof: In view of Lemma 2.2, each product(x + a1) · · · (x + al ) in (2.1) is divisible by∏
(x + ak)

mk , where themk are computed according to (2.2), forw = wλ . It remains to
check that thesemk coincide with those defined in Corollary 2.3. 2

Corollary 2.3 enables us to compute polynomials ppλ(x) for shapesλ which are “almost
rectangular,” so that we can calculateTλ(x) for small values ofx by brute force. Note that
the degree ofTλ is |λ| − ∑

mk , and the leading coefficient isf λ, the number of standard
Young tableaux of shapeλ.

Example 2.4 Let λ = (3, 3, 3, 2, 2). Then, by Corollary 2.3,

ppλ(x) = 1

13!
(x + 1)(x + 2)2(x + 3)3(x + 4)2(x + 5)2(x + 6)(ax2 + bx + c),

wherea = f λ = 3432. To findb andc, note that ppλ(0) = 1, and ppλ(1) is the num-
ber of Ferrers shapes contained inλ, which in this case is equal to 52. Straightforward
computations result in

ppλ(x) = 2

10!
(x + 1)(x + 2)2(x + 3)3(x + 4)2(x + 5)2(x + 6)(x2 + 5x + 7).

Corollary 2.5 For any Ferrers shapeλ and any rectangular shapeµ contained inλ, the
polynomialppµ(x) dividesppλ(x), and the quotient has nonnegative rational coefficients.

Proof: Follows from Corollary 2.3 and MacMahon’s product formula [13, Section 495]
for ppµ(x). 2

3. q-analogues

Most results stated above have naturalq-analogues. Instead of simply counting plane parti-
tions, we canq-enumerate them by the sum of their parts; this will translate into computing
a principal specialization of the corresponding flagged Schur function or, equivalently, the
corresponding Schubert polynomial.

Our next result generalizes Theorem 2.1. To state it, we will need to recall some con-
ventional notation. Thecomajor indexof a finite sequencea = (a1, a2, . . .) is defined to
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be the number

comaj(a) =
∑

ai <ai +1

i .

Theq-analogue of a nonnegative integer is defined by [k] = (1 − qk)/(1 − q). We will
denote by [rppλ(x)]q the generating function for (weak) reverse plane partitions of shapeλ

and parts≤ x, which areq-enumerated with respect to the sum of their parts.

Theorem 3.1 Letλ be a Ferrers shape of size l, and letwλ be the corresponding dominant
permutation. Then∑

a=(a1,a2,...)∈Red(wλ)

qcomaj(a)[x + a1] · · · [x + al ] = [l !]qb(λ)[rppλ(x)]q, (3.1)

where b(λ) = ∑
i (i − 1)λi .

Proof: We first rewrite the left-hand side as∑
a∈Red(1x×wλ)

qcomaj(a)[a1] · · · [al ]. (3.2)

According to the formula for the principal specialization of a Schubert polynomial, conjec-
tured in [11] and proved in [3], the expression (3.2) is equal to

[l !]S1x×wλ
(1, q, q2, . . .).

By Wachs’ theorem,S1x×wλ
is a certain flagged Schur function for the shapeλ , whose

principal specialization can easily be seen to coincide, up to an appropriate power ofq,
with the generating function for reverse plane partitions of shapeλ with bounded part size.
This yields (3.1). 2

4. Open problems and comments

1. It would be very nice to have a bijective proof of our main identity

∑
a∈Red(w0)

(x + a1) · · ·
(

x + a(n
2)

)
=

(
n

2

)
! ppλ0(x) (4.1)

(cf. (1.3)–(1.4)) or even itsq-analogue (3.1). This seems to be quite tricky even in the case
of x = 0 (that is, in the case of Macdonald’s identity (1.2)), where a fairly complicated
bijection has been constructed by B. Sagan and the first author (unpublished).

We have already mentioned that there may also exist a representation-theoretic proof
of (4.1).
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2. It is natural to look for results similar to Theorem 1.1 for other finite Coxeter groups, for
example, for the hyperoctahedral group. And even in the case of the symmetric group, it
is not clear what should be the analogue of this theorem for other classes of permutations
(not necessarily dominant). In particular, for which permutationsw is the polynomial∑

a∈Red(w)

(x + a1) · · · (x + al (w))

a product of linear factors?
3. The product expression for ppλ0(x) (see (1.4)) has yet another combinatorial interpreta-

tion. It is straightforward to show that

∏
1≤i < j ≤n

2x + i + j − 1

i + j − 1
= 2−(n

2)sλ0(1, . . . , 1︸ ︷︷ ︸
n+2x

),

wheresλ0 denotes the corresponding Schur function. Sincesλ0(1, . . . , 1︸ ︷︷ ︸
n

) = 2(n
2), we obtain

the identity

ppλ0(x)sλ0(1, . . . , 1︸ ︷︷ ︸
n

) = sλ0(1, . . . , 1︸ ︷︷ ︸
n+2x

),

which suggests that there exists an explicit bijection between

(i) pairs (plane partition of shapeλ0 with parts≤x, semi-standard Young tableaux of
shapeλ0 and entries≤n), and

(ii) semi-standard Young tableaux of shapeλ0 and entries≤n + 2x.
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9. W. Kraśkiewicz and P. Pragacz, “Schubert functors and Schubert polynomials,” 1986 (preprint).

10. A. Lascoux, “Polynˆomes de Schubert. Une approche historique,”Śeries formelles et combinatoire algébrique,
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12. I.G. Macdonald,Symmetric Functions and Hall Polynomials, 2nd edition, Oxford Univ. Press, Oxford, 1995.
13. P.A. MacMahon,Combinatory Analysis, Vols. 1–2, Cambridge University Press, 1915, 1916; reprinted by

Chelsea, New York, 1960.
14. R.A. Proctor, unpublished research announcement, 1984.
15. R.A. Proctor, “Odd symplectic groups,”Invent. Math.92 (1988), 307–332.
16. R.A. Proctor, “New symmetric plane partition identities from invariant theory work of De Concini and Procesi,”

European J. Combin.11 (1990), 289–300.
17. V. Reiner and M. Shimozono, “Key polynomials and a flagged Littlewood-Richardson rule,”J. Combin.

Theory, Ser. A70 (1995), 107–143.
18. J.-P. Serre,Algebres de Lie Semi-Simples Complexes, W.A. Benjamin, New York, 1966.
19. R.P. Stanley, “Theory and applications of plane partitions,”Studies in Appl. Math.50 (1971), 167–188,

259–279.
20. R.P. Stanley, “On the number of reduced decompositions of elements of Coxeter groups,”European J. Combin.

5 (1984), 359–372.
21. M.L. Wachs, “Flagged Schur functions, Schubert polynomials, and symmetrizing operators,”J. Combin.

Theory, Ser. A40 (1985), 276–289.
22. D.P. Zhelobenko, “The classical groups. Spectral analysis of their finite dimensional representations,”Russ.

Math. Surv.17 (1962), 1–94.


