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Abstract. Letwg be the element of maximal length in the symmetric gr&ypand letRedwp) be the set of all
reduced words fowp. We prove the identity

xX+i+j—-1
l_[ sl -

(X +ap(x+a) = (1) )
2) i+j—1 "

(a1,a2,...)eRedwp) 1<i<j<n

which generalizes Stanley’s [20] formula for the cardinalitiRef wo), and Macdonald’s [11] formul®_ ajaz - - -

= (L.

Our approach uses an observation, based on a result by Wachs [21], that evaluation of certain specializations
Schubert polynomials is essentially equivalent to enumeration of plane partitions whose parts are bounded fror
above. Thus, enumerative results for reduced words can be obtained from the corresponding statements abc
plane partitions, and vice versa. In particular, identifyfollows from Proctor’s [14] formula for the number of
plane partitions of a staircase shape, with bounded largest part.

Similar results are obtained for other permutations and shggasalogues are also given.
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1. Mainresult

We study enumerative problems related to reduced words (or reduced decompositions) i
the symmetric grouf®,. Recall that a reduced word for a permutatior S, is a sequence
of indicesa = (a, ..., &) suchthat = I (w) is thelengthof w (the number of inversions),
ands,, - - - Sy = w, wheres, denotes a simple transpositima+1). The set of all reduced
words forw is denoted byRedw).

Let

wgo=nhn-1...21
be the permutation of maximal length &; obviously,l (wg) = (}). Stanley [20] proved
that the number of reduced words fogp is equal to the numbef* of standard Young
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tableaux of the staircase shape= (n—1,n—2,..., 1), and therefore can be computed
via the hooklength formula (see, e.g., [12]):

()

R =fro= 2
IRed(wo)| T

(1.1)

Edelman and Greene [2] then found an explicit bijection between reduced words and stan
dard tableaux that underlies Stanley’s formula. For example,= 3, thenwy = 321,
and there are two reduced wordsRedwg) = {121, 212}, as well as two standard Young
tableaux of shapgy = (2, 1).

Macdonald [11] discovered that, amazingly,

Z a;---am) = <;>' (1.2)

acRedwo)

For instance, in the example above,
3
1.2.1+2-1.2= (2)!.

We found the following common generalization of these formulas of Stanley and
Macdonald.

Theorem 1.1 We have

n 2X+i+j—-1
Z (X+8.1)~-~(X+a(2)>=<2>! 1_[ Iﬂi—l

a=(ay,ay,...)eRedwp) 1<i<j=<n
2xX+i+j-1
= fh _— 1.3
I @3
<I<j=n

The last two expressions are equal by virtue of the hooklength formula (1.1). Specializing
x = 0, we obtain (1.2); equating the leading coefficients yields (1.1).
Identity (1.3) can also be rewritten as

n X 4 SN
> (x+a1)~-<x+a(2))=<2)!£[0Tt)2,

acRedwyp)

wheret runs over all boxes of the staircase shapeandc(t) andh(t) denote the content
and hooklength of, respectively (see, e.g., [19]). To obtain the last formula, it suffices to
observe that

i+j-1 c(t) +n o e
I1 5 =] 5 =Hh(t)=i11(2l—l) .

I<i<j=<n tero tero
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To illustrate (1.3), tak@ = 3. Then it becomes

X+DX+2DX+D+X+2)X+ D(x+2)
_ (3>| 2Xx+2 2x+3 2x+4
“\2) 2 T3 4

Let us note that ik is a nonnegative integer, then, by a theorem of Proctor [14] (see also
[8, 15, 16]), the first product appearing in (1.3) is exactly the numbé&r(ppof (weak)
plane partitions of shapg whose parts do not exceed

xX+i+j—-1
°(X) = _ 14

Forexample, i = 3, then ppe(x) is the number of plane partitions of the form

k|a]
b

with 0 < a,b < k < x. This number obviously i§"}_o(k + 1)? = D@L
agreeing with our previous computations.

Appearance of plane partitions in this context is not accidental. We will show that there is
a close connection between counting plane partitions with bounded parts and enumerativ
problems concerning reduced words. It is this connection that will allow us to prove
Theorem 1.1.

In what follows, we will need some results from the theorysahubert polynomialsf
Lascoux and Saltzenberger (see, e.g., [10, 11]). For a permutatiea(w (1), ..., w(n))
€ S, we willdenote byS,, (X, . . ., Xn—1) the corresponding Schubert polynomial. We will
also use the notation

Lixw=(@@2,.... XX+ w@),....,.x+wh)) € Siem, (1.5)
providedx is a nonnegative integer.

Lemma 1.2 Let x be a nonnegative integer. Then

n
(X+an) - (x+ag =< )!Glxxwo(l,...,l). (1.6)
aeFé[:wo) ( ()) 2

(Notethatk x wo=(1,2,...,X,Xx+n,x+n—-1 ..., x+1).)

Proof: Since(x+ap,...,x+ a(;)) is a general form of a reduced word for & wg , the
lemma follows from [11, (6.11)]. |

Proof of Theorem 1.1: By a theorem of Wachs [21] (cf. also [11, 17]), the Schubert
polynomial of any vexillary permutation (see [11, p. 11]) can be expressed as a certair
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flagged Schur functiorin the case under consideration, Wachs’ theorem gives

Glxxwo(xla DR Xn—l) = Z XT’ (1'7)
T

where the sum is over all semi-standard Young tableaux of a staircase)shsypeh that
every entry inrow is < i +x, andx" denotes the monomial associated with such a tableau,
in the usual way. These tableaux are in obvious one-to-one correspondence with revers
plane partitions of shapg and parts< x; namely, subtradtfrom all entries in théth row.

Hence substituting; = x, = --- = 1in (1.7) yields
S1oue(L, ..., 1) = ppro(x). (1.8)
Combining this with (1.6) and (1.4), we obtain (1.3). |

We remark that both sides of the identity (1.8) have several interpretations:

(i) purely combinatorial;
(ii) representation-theoretic;
(iii) as certain determinants.

Let us explain what we mean by (i), (ii) and (iii).

Combinatorially, the left-hand side of (1.8) can be described by means of Stanley’s
formulafor a Schubert polynomial [1, 3]. In the case under consideraign,,,(1, ..., 1)
is equal to the number of subwords of

12 n-1'WRDAB2D---(n—1---21)

which are reduced words farg. Other equivalent descriptions can be given in terms
of resolutions of pseudo-line arrangements (see [4]), or in terms of balanced flagged la
bellings (see [5]). None of these can be trivially bijected to the plane partitions enumeratec
by pp™ (x).

The number pf?(x) is the dimension of a certain indecomposable representation of a
symplectic group. In fact, the multiplicative formula (1.4) for this number can be obtained
(see [8, 14]) by combining the classical product formula for this dimension (see, e.g.,
[18, Corollary VII.8.1]) with an explicit combinatorial description of the corresponding
Gelfand-Tsetlin basis given by Zhelobenko [22] and King [7]. (It was also realized (see [6,
14, 16]) that (1.4) can be derived in a purely combinatorial way, by factoring MacMahon’s
determinantal expression for}spx).) On the other hand, the specializatiorkat= x, =
-+- = 1 ofany Schubert polynomial, and in particugy, « ., (1, . . ., 1), is the dimension of
a certain naturally defined representation of the Borel subgroup of upper-triangular matrices
namely, theSchubert modulef KraSkiewicz and Pragacz [9] (see also, e.g., [5, Section 7]).

It would be interesting to find a direct connection between these two representation-theo
retic constructions.
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2. Other shapes and permutations

We will now replaceq by an arbitrary Ferrers shape The role ofwg will then be played
by adominant permutatiorfsee, e.g., [11, p. 12]) whose Rothe diagram.isThis is a
permutatiorw, such that

A= {G, ) wi) > jandw; *(j) > i}.

The arguments of Section 1 can be repeated, with obvious changes, and Theorem 1
generalizes as follows.

Theorem 2.1 Letx be a Ferrers shape of sizednd letw; be the corresponding dominant
permutation. Then

Y (xta)-(x+a) = 1pptx) (2.1)

acRedw;)
wherepp*(x) denotes the number of plane partitions of shapeith parts<x.

This theorem can be used to compute the polynomial$xpp For example, ifz is a
rectangular shapa] x [ny], then

wy,=M2+Ln+2,...,n4+n,12...,n2) € S 4n,.

This permutation is 321-avoiding (see [1]), which means that all its reduced words are
permutations of one another. Hence all summands in the left-hand side of (2.1) are equa
and we easily arrive at the famous MacMahon’s formula [13, Section 495] for the number
of plane partitions whose 3-dimensional shape is contained in a box.

In the other direction, Theorem 2.1 provides a product formula for the expression in the
left-hand side of (2.1) whenever such a formula exists fé(pp The most general result
of the latter kind that we know is due to Proctor [14] who gave product formulas in the case
when the rows (equivalently, columns) oform an arithmetic progression.

For a general, let us compute the greatest common divisor of the summands in (2.1).
To this end, we employ the following observation.

Lemma 2.2 For any permutatiornw, the number of occurrences of an entry k in any
reduced word fom is at least

mey = #i i <kandw(i) > k}. (2.2)

Proof: Letus interpretareduced word as a process of converting the identity permutation
into w by means of adjacent transpositions. Simgenumbers have to be moved from some

of the firstk positions to some of the remaining ones, it follows that the transpositioas

to be applied at leashy times. ]
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Corollary 2.3 Let) be a Ferrers shape of sizel. Fork 1, 2, ... , let m¢ be the maximal
number of boxe@, j) in anintersection of the diagonahi j = k+ 1 with some rectangular
shapeu contained im.. Then

1

PP 00 = FTOO(X + D™ (X +2)™ -, (2.3)

where T (x) is a polynomial in x with nonnegative integer coefficients.

Proof: In view of Lemma 2.2, each product + a;) - - - (X + @) in (2.1) is divisible by
[T(x + &)™, where themy are computed according to (2.2), fer= w; . It remains to
check that thesmy coincide with those defined in Corollary 2.3. O

Corollary 2.3 enables us to compute polynomials(gp for shapes. which are “almost
rectangular,” so that we can calculdtgx) for small values ok by brute force. Note that
the degree of; is |x| — >_ my, and the leading coefficient i§*, the number of standard
Young tableaux of shape

Example 2.4 Leti = (3,3, 3,2, 2). Then, by Corollary 2.3,

ppt(X) = %(x + DX+ 2)2(x + 3)3(x + 4)?(X + 5)2(x + 6)(ax® + bx + ¢),

wherea = f* = 3432. To findb andc, note that pp(0) = 1, and pp(1) is the num-
ber of Ferrers shapes containediinwhich in this case is equal to 52. Straightforward
computations result in

2
ppt () = ﬁ(x + (X 4+ 22X + 33X + D%(X + 5)%(X + 6)(X° + 5X + 7).

Corollary 2.5 For any Ferrers shape and any rectangular shape contained ink, the
polynomialpp® (x) dividespp*(x), and the quotient has nonnegative rational coefficients.

Proof: Follows from Corollary 2.3 and MacMahon's product formula [13, Section 495]
for pp* (X). a

3. g-analogues

Most results stated above have natgranalogues. Instead of simply counting plane parti-
tions, we camg-enumerate them by the sum of their parts; this will translate into computing
a principal specialization of the corresponding flagged Schur function or, equivalently, the
corresponding Schubert polynomial.

Our next result generalizes Theorem 2.1. To state it, we will need to recall some con-
ventional notation. Theomajor indexof a finite sequenca = (ay, a, .. .) is defined to
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be the number

comaja) = Y i.

Qi <qy1

The g-analogue of a nonnegative integer is definedkjy=£ (1 — g¥)/(1 — q). We will
denote by [rpp(x)]q the generating function for (weak) reverse plane partitions of shape
and parts< x, which areq-enumerated with respect to the sum of their parts.

Theorem 3.1 Let) be a Ferrers shape of sizednd letw,, be the corresponding dominant
permutation. Then

Z qcoma'[a)[x +a]-[x+al=]l !]qb(k)[rpp)\(x)]q, (3.1)

a=(a,a2,...)eRedw,)
where 2) =Y (i — DA .
Proof: We first rewrite the left-hand side as

> gemaPay]- - [a]. 3.2)

acRed 1, xwy)

According to the formula for the principal specialization of a Schubert polynomial, conjec-
tured in [11] and proved in [3], the expression (3.2) is equal to

[I '] Glx ><w;>(17 q, qz, o).

By Wachs' theorems_ ., is a certain flagged Schur function for the shapewhose
principal specialization can easily be seen to coincide, up to an appropriate poger of
with the generating function for reverse plane partitions of shapih bounded part size.
This yields (3.1). m|

4. Open problems and comments

1. It would be very nice to have a bijective proof of our main identity

Z X+ag)--- (X + a(;)) = (2)' pp**(X) (4.1)

acRedwp)

(cf. (1.3)—(1.4)) orevenitg-analogue (3.1). This seemsto be quite tricky eveninthe case
of x = 0 (that is, in the case of Macdonald’s identity (1.2)), where a fairly complicated
bijection has been constructed by B. Sagan and the first author (unpublished).

We have already mentioned that there may also exist a representation-theoretic proc
of (4.1).



318 FOMIN AND KIRILLOV

2. Itis natural to look for results similar to Theorem 1.1 for other finite Coxeter groups, for
example, for the hyperoctahedral group. And even in the case of the symmetric group, i
is not clear what should be the analogue of this theorem for other classes of permutation
(not necessarily dominant). In particular, for which permutatieris the polynomial

> (x+a) (Xt aw)

acRedw)

a product of linear factors?
3. The product expression for ffigx) (see (1.4)) has yet another combinatorial interpreta-
tion. It is straightforward to show that

X+i+j—1 o
ST T 2B (..., ),
I1 i+j-1 P D)

1<i<j=<n na2x
wheres,, denotes the corresponding Schur function. Sige. ... 1) = 2(), we obtain
the identity n

PP (XS, (L ..., D) =s,(1, ..., D),
— — ——

n n+2x

which suggests that there exists an explicit bijection between

(i) pairs (plane partition of shape, with parts<x, semi-standard Young tableaux of
shape\, and entries<n), and
(i) semi-standard Young tableaux of shageand entries<n + 2x.
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