ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

The Structure of Trivalent Graphs with Minimal Eigenvalue Gap

Barry Guiduli

DOI: 10.1023/A:1008669009563

Abstract

Let G be a connected trivalent graph on nvertices ( n ge10) such that among all connected trivalentgraphs on n vertices, G has the largest possiblesecond eigenvalue. We show that G must be reduced path-like, i.e. G must be of the form: where theends are one of the following:(the right-hand end block is the mirror image of one of the blocks shown)and the middle blocks are one of the following: This partially solves a conjecture implicit in a paper of Bussemaker, Ccaronobelji cacute, Cvetkovi cacute, and Seidel [3].

Pages: 321–329

Keywords: trivalent graph; eigenvalue

Full Text: PDF

References

1. N. Alon, “Eigenvalues and expanders,” Combinatorica 6 (1986), pp. 83-96.
2. N. Alon and V. D. Milman, “Eigenvalues, expanders, and superconcentrators,” Proc. 25th IEEE FOCS, (Singer Island, Florida, 1984), pp. 320-322.
3. F. C. Bussemaker, S. \check Cobeljić, D. M. Cvetković, and J. J. Seidel, Computer investigation of cubic graphs. Technological University Eindhoven, 1976. (Report 76-WSK-01).
4. F. C. Bussemaker, S. \check Cobeljić, D. M. Cvetković, and J. J. Seidel, “Cubic graphs on \leq 14 vertices,” J. Combin. Theory, Ser. B 23 (1977), pp. 234-235.
5. M. Fiedler, “Algebraic connectivity of graphs,” Czech. Math. J. 23 (1973), pp. 298-305.
6. C. Brand, B. Guiduli, and W. Imrich, “The characterization of trivalent graphs with minimal eigenvalue gap,” preprint, 1996.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition