On a Family of Hyperplane Arrangements Related to the Affine Weyl Groups

PATRICK HEADLEY
Department of Mathematics and Statistics, University of Minnesota-Duluth, Duluth MN 55812

Received November 21, 1995; Revised July 30, 1996

Abstract

Let Φ be an irreducible crystallographic root system in a Euclidean space V, with Φ^{+}the set of positive roots. For $\alpha \in \Phi, k \in \boldsymbol{Z}$, let $H(\alpha, k)$ be the hyperplane $\{v \in V:\langle\alpha, v\rangle=k\}$. We define a set of hyperplanes $\mathcal{H}=\left\{H(\delta, 1): \delta \in \Phi^{+}\right\} \cup\left\{H(\delta, 0): \delta \in \Phi^{+}\right\}$. This hyperplane arrangement is significant in the study of the affine Weyl groups. In this paper it is shown that the Poincaré polynomial of \mathcal{H} is $(1+h t)^{n}$, where n is the rank of Φ and h is the Coxeter number of the finite Coxeter group corresponding to Φ.

Keywords: hyperplane arrangement, Weyl group, Poincaré polynomial

1. Introduction

Let Φ be an irreducible crystallographic root system in a Euclidean space V, with Φ^{+}the set of positive roots. For $\alpha \in \Phi, k \in \boldsymbol{Z}$, let $H(\alpha, k)$ be the hyperplane $\{v \in V:\langle\alpha, v\rangle=k\}$. We define a set of hyperplanes $\mathcal{H}=\left\{H(\delta, 1): \delta \in \Phi^{+}\right\} \cup\left\{H(\delta, 0): \delta \in \Phi^{+}\right\}$. We will refer to \mathcal{H} as the sandwich arrangement of hyperplanes associated to Φ. This set of hyperplanes has appeared in at least two areas of the study of the affine Weyl groups: the Kazhdan-Lusztig representation theory as it applies to these groups [7], and the study of the properties of the language of reduced expressions [3]. In [8] Shi proved the following theorem:

Theorem 1.1 The number of connected components of $V-\bigcup_{H \in \mathcal{H}} H$ is $(h+1)^{n}$, where n is the rank of Φ, and h is the Coxeter number of the associated finite Coxeter group.

The purpose of this paper is, in some sense, to generalize this result by determining the Poincaré polynomial $P(\mathcal{H}, t)$ of \mathcal{H}. The number of connected components of $V-\bigcup_{H \in \mathcal{H}} H$, and the number of these components that are bounded, can both be read off easily from $P(\mathcal{H}, t)$. The Poincaré polynomial has other connections to combinatorial and algebraic properties of \mathcal{H}; a good reference is [6].

2. The Poincaré polynomial of \mathcal{H}

The intersection poset $L(\mathcal{H})$ of \mathcal{H} is the set of nonempty intersections of elements of \mathcal{H}, partially ordered by reverse inclusion. This poset is ranked by codimension, with V the unique element having rank 0 . Writing $\mu(x)$ for $\mu(V, x)$, we define the Poincaré polynomial
of \mathcal{H} to be

$$
P(\mathcal{H}, t)=\sum_{x \in L(\mathcal{H})} \mu(x)(-t)^{\mathrm{rk}(x)}
$$

Theorem 2.1 ([6] (2.3), [9]) For any set \mathcal{H} of hyperplanes in a real Euclidean space V the number of connected components of $V-\bigcup_{H \in \mathcal{H}} H$ is equal to $P(\mathcal{H}, 1)$. The number of bounded connected components is $|P(\mathcal{H},-1)|$.

To proceed to evaluate the Poincaré polynomials for the sandwich arrangement, we need the following simple lemma.

Lemma 2.2 ([6] (2.3)) If $\mathcal{A}=\mathcal{A}_{1} \cup \mathcal{A}_{2}$ is a hyperplane arrangement, and $H_{1} \perp H_{2}$ for all $H_{1} \in \mathcal{A}_{1}, H_{2} \in \mathcal{A}_{2}$, then

$$
P(\mathcal{A}, t)=P\left(\mathcal{A}_{1}, t\right) P\left(\mathcal{A}_{2}, t\right)
$$

Let Φ be a root system, and let \mathcal{H} be the associated sandwich arrangement. Let \mathcal{H}_{0} be the subarrangement of \mathcal{H} consisting of the hyperplanes that contain the origin of V. For $Y \in L\left(\mathcal{H}_{0}\right)$, let W_{Y} be the group generated by the reflections through all hyperplanes containing Y. This is a Coxeter group [5].

Lemma 2.3 For $Y \in L\left(\mathcal{H}_{0}\right)$, let $W_{Y, 1} \times \cdots \times W_{Y, m}$ be the decomposition of W_{Y} into irreducible Coxeter groups. Let $\mathcal{H}\left(W_{Y, i}\right)$ be the sandwich arrangement associated to the Coxeter group $W_{Y, i}$. Then

$$
\left[t^{l}\right] P(\mathcal{H}, t)=\left[t^{l}\right] \sum_{Y \in L\left(\mathcal{H}_{0}\right): \mathrm{rk}(Y)=l} P\left(\mathcal{H}\left(W_{Y, 1}\right), t\right) \cdots P\left(\mathcal{H}\left(W_{Y, m}, t\right)\right) .
$$

Proof: For any $X \in L(\mathcal{H})$, let X_{0} be the unique translate of X that passes through the origin. Since the hyperplanes that intersect to form X all have translates in $\mathcal{H}_{0}, X_{0} \in L\left(\mathcal{H}_{0}\right)$. For $Y \in L\left(\mathcal{H}_{0}\right)$ with $\operatorname{rk}(Y)=l$, let $\mathcal{H}_{Y}=\left\{H \in \mathcal{H}: H_{0} \supseteq Y\right\}$. By the decomposition of the Coxeter group W_{Y} and by the previous lemma, $P\left(\mathcal{H}_{Y}, t\right)=P\left(\mathcal{H}\left(W_{Y, 1}\right), t\right) \cdots$ $P\left(\mathcal{H}\left(W_{Y, m}\right), t\right)$. We have

$$
\begin{aligned}
{\left[t^{l}\right] P\left(\mathcal{H}\left(W_{Y, 1}\right), t\right) \cdots P\left(\mathcal{H}\left(W_{Y, m}\right), t\right) } & =\sum_{X \in L\left(\mathcal{H}_{Y}\right): \mathrm{rk}(X)=l}(-1)^{l} \mu(X) \\
& =\sum_{X \in L(\mathcal{H}): X_{0}=Y}(-1)^{l} \mu(X) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
{\left[t^{l}\right] } & \sum_{Y \in L(\mathcal{H} 0): \mathrm{rk}(Y)=l} P\left(\mathcal{H}\left(W_{Y, 1}\right), t\right) \cdots P\left(\mathcal{H}\left(W_{Y, m}\right), t\right) \\
& =\sum_{Y \in L(\mathcal{H} 0): \mathrm{rk}(Y)=l} \sum_{X \in L(\mathcal{H}): X_{0}=Y}(-1)^{l} \mu(X) \\
& =\sum_{X \in L(\mathcal{H}): \mathrm{rk}(X)=l}(-1)^{l} \mu(X) .
\end{aligned}
$$

Theorem 2.4 Let Φ be an irreducible crystallographic root system, W the associated finite group, and \mathcal{H} the associated sandwich arrangement. We have

$$
P(\mathcal{H}, t)=(1+h t)^{n},
$$

where h is the Coxeter number and n is the rank of the associated finite Coxeter group W.

We prove the theorem by induction on the number of generators, using the previous lemma. We will determine every coefficient of $P(\mathcal{H}, t)$ except that of t^{n}. Since we know $P(\mathcal{H}, 1)$ from Theorem 1.1, this will determine the polynomial. The analysis will be done case-bycase.
A_{n} : There is a bijection between $L\left(\mathcal{H}_{0}\right)$ and the partitions of $[n+1]$. It is given by matching the partition $B=\left(B_{1}, \ldots, B_{m}\right)$ with

$$
Y=\cap\left\{x_{i}-x_{j}=0: i, j \text { are in the same block of } B\right\} .
$$

The Coxeter group W_{Y} is isomorphic to $A_{\left|B_{1}\right|-1} \times \cdots \times A_{\left|B_{m}\right|-1}$, and $\operatorname{rk}(Y)=n+1-m$. By Lemma 2.3, for $l<n$ we have

$$
\left[t^{l}\right] P(\mathcal{H}, t)=\sum\left|B_{1}\right|^{\left|B_{1}\right|-1} \cdots\left|B_{n+1-l}\right|^{\left|B_{n+1-l}\right|-1}
$$

where the sum is taken over all partitions of $[n+1]$ into $n+1-l$ blocks. This is recognized to be the number of labeled forests on $n+1$ vertices of $n+1-l$ rooted trees. From [4] we have

$$
\left[t^{l}\right] P(\mathcal{H}, t)=(n+1)^{l}\binom{n}{n-l}
$$

We have shown that the coefficients of t^{l} in $P(\mathcal{H}, t)$ and $(1+(n+1) t)^{n}$ are the same for $1 \leq l \leq n-1$. Since $P(\mathcal{H}, t)$ is an nth degree polynomial and $P(\mathcal{H}, 1)=(n+2)^{n}, P(\mathcal{H}, t)$ is in fact equal to $(1+(n+1) t)^{n}$.
B_{n} : The elements of $L\left(\mathcal{H}_{0}\right)$ of dimension l (rank $n-l$) are somewhat harder to describe than in the A_{n} case. We can start by taking a subset $J \subseteq[n]$ and partitioning it into l non-empty blocks $X=\left(X_{1}, \ldots, X_{l}\right)$. Define a sign function sgn: $J \rightarrow\{1,-1\}$ so that $\operatorname{sgn}(j)=1$ whenever j is the smallest element in its block. For a given partition of J, there are $2^{|J|-l}$ ways to do this. The partition and the function sgn together determine the intersection

$$
\begin{aligned}
Y= & \cap\left\{\operatorname{sgn}(i) x_{i}-\operatorname{sgn}(j) x_{j}=0: i, j \text { are in the same block of } X\right\} \\
& \cap\left\{x_{k}=0: k \in[n]-J\right\} .
\end{aligned}
$$

We have $W_{Y} \cong A_{\left|X_{1}\right|-1} \times \cdots \times A_{\left|X_{l}\right|-l} \times B_{n-|J|}$, and the contribution of Y to the coefficient of t^{n-l} in $P(\mathcal{H}, t)$ is $\left|X_{1}\right|^{\left|X_{1}\right|-1} \cdots\left|X_{l}\right|^{\left|X_{l}\right|-1}(2(n-|J|))^{n-|J|}$. If we sum $\Pi\left|X_{i}\right|^{\left|X_{i}\right|-1}$ over all partitions of J into l blocks, we get $|J|^{|J|-l}\binom{|J|-1}{l-1}$, the coefficient of $t^{|J|-l}$ in $P\left(\mathcal{H}\left(A_{|J|-1}\right), t\right)$. Putting this all together, the coefficient of t^{n-l} in $P\left(\mathcal{H}\left(B_{n}\right), t\right)$ is

$$
\sum_{k=l}^{n}\binom{n}{k}(2 k)^{k-l}\binom{k-1}{l-1}(2(n-k))^{n-k}
$$

We would like to show that this is equal to the coefficient of t^{n-l} in $(1+2 n t)^{n}$, which is $\binom{n}{l}(2 n)^{n-l}$. We can remove a factor of 2^{n-l} so that we have

$$
\sum_{k=l}^{n}\binom{n}{k} k^{k-l}\binom{k-1}{l-1}(n-k)^{n-k}=\binom{n}{l} n^{n-l}
$$

which is a consequence of Abel's Identity [2].
C_{n} : The calculations are the same as for B_{n}.
D_{n} : This is very similar to the B_{n} case. If $|J| \neq n-1$, the intersection Y determined by X, J and sgn is

$$
\begin{aligned}
Y= & \cap\left\{\operatorname{sgn}(i) x_{i}-\operatorname{sgn}(j) x_{j}=0: i, j \text { are in the same block of } X\right\} \\
& \cap\left\{x_{k}-x_{l}=0: k, l \in[n]-J\right\} \\
& \cap\left\{x_{k}+x_{l}=0: k, l \in[n]-J\right\} .
\end{aligned}
$$

If $|J|=n-1$, there is no corresponding Y. We have $W_{Y} \cong A_{\left|X_{\mid}\right|-1} \times \cdots \times A_{\left|X_{l}\right|-1} \times D_{n-|J|}$, and the identity to be proved is

$$
\sum_{k=l}^{n}\binom{n}{k} k^{k-l}\binom{k-1}{l-1}((n-k)-1)^{n-k}=\binom{n}{l}(n-1)^{n-l}
$$

which is again a consequence of Abel's Identity.
For the exceptional groups we use the data from [5]. The integers $n(R, T)$ listed there give the number of $Y \in L\left(\mathcal{H}_{0}(T)\right)$ such that $W_{Y} \cong R$. As before, we need only show that the coefficients of t^{0}, \ldots, t^{n-1} match the coefficients of $(1+h t)^{n}$. The calculations are shown in the tables that follow. In these tables, $c(R)$ is the leading coefficient of $P\left(\mathcal{H}\left(R_{1}\right), t\right) \cdots P\left(\mathcal{H}\left(R_{m}\right), t\right)$, where $R_{1} \times \cdots \times R_{m}$ is the decomposition of R into irreducible factors.

As a corollary of Theorem 2.1, we have the following.
Corollary 2.5 Let \mathcal{H}, h, and n be as in Theorem 1.1. The number of bounded components of $V-\bigcup_{H \in \mathcal{H}} H$ is $(h-1)^{n}$.

3. Tables

Table 1. E_{6}.

	R	$n\left(R, E_{6}\right)$	$n\left(R, E_{6}\right) \cdot c(R)$
t^{5}	$A_{1} \times A_{2}^{2}$	360	58320
	$A_{1} \times A_{4}$	216	270000
	A_{5}	36	279936
	D_{5}	27	$\underline{884736}$
t^{4}	$A_{1}^{2} \times A_{2}$	1080	1492992
	A_{2}^{2}	120	38880
	$A_{1} \times A_{3}$	540	9720
	A_{4}	216	69120
	D_{4}	45	135000
	A_{1}^{3}	540	58320
t^{3}	$A_{1} \times A_{2}$	720	31040
		270	12960
	A_{1}^{2}	270	$\underline{17280}$
	A_{2}	120	34560
t^{2}	A_{1}	36	1080
		1080	
t^{1}			2160
t^{0}	A_{0}		72

Table 2. $\quad E_{7}$.

	R	$n\left(R, E_{7}\right)$	$n\left(R, E_{7}\right) \cdot c(R)$
t^{6}	$A_{1} \times A_{2} \times A_{3}$	5040	5806080
	$A_{2} \times A_{4}$	2016	11340000
$A_{1} \times A_{5}$	1008	15676416	
A_{6}	288	33882912	
	$A_{1} \times D_{5}$	378	24772608
D_{6}	63	63000000	
E_{6}	28	$\underline{83607552}$	
		238085568	

(Continued on next page.)

Table 2. (Continued.)

	R	$n\left(R, E_{7}\right)$	$n\left(R, E_{7}\right) \cdot c(R)$
t^{5}	$A_{1}^{3} \times A_{2}$	5040	362880
	$A_{1} \times A_{2}^{2}$	10080	1632960
	$A_{1}^{2} \times A_{3}$	7560	1935360
	$A_{2} \times A_{3}$	5040	2903040
	$A_{1} \times A_{4}$	6048	7560000
	A_{5}	1344	10450944
	$A_{1} \times D_{4}$	945	2449440
	D_{5}	378	$\underline{12386304}$
			39680928
t^{4}	A_{1}^{4}	3780	60480
	$A_{1}^{2} \times A_{2}$	15120	544320
	A_{2}^{2}	3360	272160
	$A_{1} \times A_{3}$	8820	1128960
	A_{4}	2016	1260000
	D_{4}	315	408240
			3674160
t^{3}	A_{1}^{3}	4095	32760
	$A_{1} \times A_{2}$	5040	90720
	A_{3}	1260	80640
			204120
t^{2}	A_{1}^{2}	945	3780
	A_{2}	336	$\underline{3024}$
			6804
t^{1}	A_{1}	63	126
t^{0}	A_{0}	1	1

Table 3. E_{8}.

	R	$n\left(R, E_{8}\right)$	$n\left(R, E_{8}\right) \cdot c(R)$
t^{7}	$A_{1} \times A_{2} \times A_{4}$	241920	2721600000
	$A_{3} \times A_{4}$	120960	4838400000
$A_{1} \times A_{6}$	34560	8131898880	
A_{7}	8640	18119393280	
	$A_{2} \times D_{5}$	30240	8918138880
D_{7}	1080	38698352640	
$A_{1} \times E_{6}$	3360	20065812480	
E_{7}	120	$\underline{73466403840}$	
		174960000000	

(Continued on next page.)

Table 3. (Continued.)

	R	$n\left(R, E_{8}\right)$	$n\left(R, E_{8}\right) \cdot c(R)$
t^{6}	$A_{1}^{2} \times A_{2}^{2}$	604800	195955200
	$A_{1} \times A_{2} \times A_{3}$	604800	696729600
	$A_{1}^{2} \times A_{4}$	362880	907200000
	A_{3}^{2}	151200	619315200
	$A_{2} \times A_{4}$	241920	1360800000
	$A_{1} \times A_{5}$	120960	1881169920
	A_{6}	34560	4065949440
	$A_{2} \times D_{4}$	50400	587865600
	$A_{1} \times D_{5}$	45360	2972712960
	D_{6}	3780	3780000000
	E_{6}	1120	3344302080
			20412000000
t^{5}	$A_{1}^{3} \times A_{2}$	604800	43545600
	$A_{1} \times A_{2}^{2}$	403200	65318400
	$A_{1}^{2} \times A_{3}$	453600	116121600
	$A_{2} \times A_{3}$	302400	174182400
	$A_{1} \times A_{4}$	241920	302400000
	A_{5}	40320	313528320
	$A_{1} \times D_{4}$	37800	97977600
	D_{5}	7560	247726080
			1360800000
t^{4}	A_{1}^{4}	113400	1814400
	$A_{1}^{2} \times A_{2}$	302400	10886400
	A_{2}^{2}	67200	5443200
	$A_{1} \times A_{3}$	151200	19353600
	A_{4}	24192	15120000
	D_{4}	3150	4082400
			56700000
t^{3}	A_{1}^{3}	37800	302400
	$A_{1} \times A_{2}$	40320	725760
	A_{3}	7560	483840
			1512000
t^{2}	A_{1}^{2}	3780	15120
	A_{2}	1120	$\underline{10080}$
			25200
t^{1}	A_{1}	120	240
t^{0}	A_{0}	1	1

Table 4. $\quad F_{4}$.

	R	$n\left(R, F_{4}\right)$	$n\left(R, F_{4}\right) \cdot c(R)$
t^{3}	$A_{1} \times A_{2}$	96	1728
	B_{3}	12	2592
	C_{3}	12	$\underline{2592}$
t^{2}	A_{2}	32	6912
	$A_{1} \times A_{1}$	72	288
	B_{2}	18	288
			$\underline{288}$
t^{1}	A_{1}	24	48
t^{0}	A_{0}	1	1

Table 5. $\quad G_{2}$.

	R	$n\left(R, G_{2}\right)$	$n\left(R, G_{2}\right) \cdot c(R)$
t^{1}	A_{1}	6	12
t^{0}	A_{0}	1	1

Acknowledgments

This paper is adapted from part of my Ph.D. thesis. I would like to thank my thesis advisor, John Stembridge, for all of his help during the research that led to this paper.

Note added during revision: One of the referees has brought to my attention the work of Christos Athanasiadis, who has found combinatorial proofs of this paper's main result for various classes of Weyl groups [1].

References

1. C.A. Athanasiadis, "Characteristic polynomials of subspace arrangements and finite fields," Advances in Mathematics (to appear).
2. L. Comtet, Advanced Combinatorics, D. Reidel, Dordrecht, 1974.
3. P. Headley, "Reduced Expressions in Infinite Coxeter Groups," Ph.D. thesis, University of Michigan, 1994.
4. J.W. Moon, "Counting labelled trees," Canadian Mathematical Monographs, No. 1, 1970.
5. P. Orlik and L. Solomon, "Coxeter arrangements," Singularities, Part 2, Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI, 40 (1983), 269-291.
6. P. Orlik and H. Terao, Arrangements of Hyperplanes, Springer-Verlag, Berlin, 1992.
7. J.-Y. Shi, "The Kazhdan-Lusztig cells in certain affine Weyl groups," Lecture Notes in Mathematics, SpringerVerlag, Berlin, Vol. 1179, 1986.
8. J.-Y. Shi, "Sign types corresponding to an affine Weyl group," Journal London Mathematical Society, 35 (1987), 56-74.
9. T. Zaslavsky, "Facing up to arrangements: Face-count formulas for partitions of space by hyperplanes," Mem. Amer. Math. Soc. No. 154, 1975.
