Difference Sets with $n=2 p^{m}$

MIKHAIL MUZYCHUK*
muzychuk@macs.cs.biu.ac.il
Department of Mathematics and Computer Science, Bar-Ilan University, 52900, Ramat-Gan, Israel

Received October 28, 1994; Revised September 26, 1996

Abstract

Let D be a (v, k, λ) difference set over an abelian group G with even $n=k-\lambda$. Assume that $t \in \mathbf{N}$ satisfies the congruences $t \equiv q_{i}^{f_{i}}(\bmod \exp (G))$ for each prime divisor q_{i} of $n / 2$ and some integer f_{i}. In [4] it was shown that t is a multiplier of D provided that $n>\lambda,(n / 2, \lambda)=1$ and $(n / 2, v)=1$. In this paper we show that the condition $n>\lambda$ may be removed. As a corollary we obtain that in the case of $n=2 p^{a}$ when p is a prime, p should be a multiplier of D. This answers an open question mentioned in [2].

Keywords: difference set, abelian group

1. Introduction

Let G be a finite abelian group with unit 1 , where the group operation is written multiplicatively. We use $\exp (G)$ to denote an exponent of G and $\mathbf{Z} G$ for a group algebra of G over integers.

For an arbitrary $X=\sum_{g \in G} x_{g} g \in \mathbf{Z} G$ and $m \in \mathbf{Z}$, we set $X^{(m)}=\sum_{g \in G} x_{g} g^{m}$. If ($m,|G|$) $=1$, then the mapping $X \rightarrow X^{(m)}$ is an automorphism of the group algebra $\mathbf{Z} G$. An integer m is called a (numerical) multiplier of X if $X^{(m)}=X g$ for a suitable $g \in G$.

If T is a subset of G, then we use the same letter for the element $\sum_{t \in T} t \in \mathbf{Z} G$. In what follows we use a notation $|X|, X \in \mathbf{Z} G$ for a sum of all coefficients of X. The mapping $X \rightarrow|X|$ is a homomorphism of \mathbf{Z}-algebras. It satisfies the equality $X G=|X| G$.

A subset T of G is called a (v, k, λ)-difference set if it satisfies the equality

$$
\begin{equation*}
T T^{(-1)}=n+\lambda G \tag{1}
\end{equation*}
$$

where $n=k-\lambda, k=|T|, v=|G|$.
In 1967 Mann and Zaremba proved the following (Theorem 4 in [4]).
Theorem 1.1 Let G be an abelian group and D be a difference set over G with parameters (v, k, λ). Assume that $n=2 m,(m,|G|)=1,(m, \lambda)=1, n>\lambda$ and for some $t \in \mathbf{N}$, $t \equiv q_{i}^{f_{i}}(\bmod \exp (G))$ for every prime divisor q_{i} of m and some integer f_{i}. Then t is a multiplier.

In this paper we prove
Theorem 1.2 Theorem 1.1 remains true if we remove the condition $n>\lambda$.

[^0]As a consequence we obtain the following

Corollary 1.1 Let $D a(v, k, \lambda)$-difference set and $n=2 p^{m}$ for some odd prime p, $(p,|G|)=1$. Then p is a multiplier of D.

This claim answers an open question from [2].
In [5] the following situation was studied. Let D be an abelian difference set over a group G. Assume that $n=k-\lambda=3 m$ where $(m,|G|)=1$ and there exists an integer t satisfying $t \equiv q_{i}^{f_{i}}(\bmod \exp (G))$ for each prime divisor q_{i} of m. In the case of $(|G|, 3 \cdot 13)=1$ Qiu Weisheng proved in [5] that t is a multiplier of D provided that one of six conditions of Theorem 5 of [5] holds. Here we strengthen his result and prove the following claim.

Theorem 1.3 Let D be a (v, k, λ)-difference set over an abelian group G. Assume that $n=k-\lambda=3 m$ with $(m,|G|)=1$ and t be an integer satisfying the congruence $t \equiv q_{i}^{f_{i}}(\bmod \exp (G))$ for each prime divisor q_{i} of n and a suitable exponent f_{i}. If t is not a multiplier of D, then m is a square and exactly one of the following conditions is satisfied.
(i) $11 \||G|$ and for each prime divisor p of $|G| \operatorname{ord}_{p}(t)$ is even if $p=11$ and odd otherwise; t^{2} is a multiplier of D;
(ii) $13 \||G|$ and for each prime divisor p of $|G| \operatorname{ord}_{p}(t)$ is even if $p=13$ and odd otherwise; t^{4} is a multiplier of D.

2. Basic facts

In what follows G^{*} will stand for a group of permutations acting on G which consists of all mappings $g \rightarrow g^{m},(m,|G|)=1$. It is a well-known fact that $G^{*} \cong \mathbf{Z}_{\exp (G)}^{*}$ and two numbers $m_{1}, m_{2} \in G^{*}$ induce the same permutation if and only if $m_{1} \equiv m_{2}(\bmod \exp (G))$.

For two natural numbers n, λ we denote $D(n, \lambda)=\left\{X \in \mathbf{Z} G \mid X X^{(-1)}=n+\lambda G\right\}$. Clearly, $X \in D(n, \lambda)$ implies $|X|^{2}=n+\lambda|G|$.

If $X=\sum_{g \in G} x_{g} g \in \mathbf{Z} G$ and $Y=\sum_{g \in G} y_{g} g \in \mathbf{Z} G$, then we write $X \equiv Y(\bmod m), m \in$ \mathbf{Z} if $x_{g} \equiv y_{g}(\bmod m)$ holds for all $g \in G$.

First we list a few elementary properties of elements from $D(n, \lambda)$. We omit proofs, since they are straightforward.

Proposition 2.1 An integer t is a multiplier of $X \in D(n, \lambda)$ if and only if $X^{(t)} X^{(-1)}-$ $\lambda G=n g, g \in G$.

Proposition 2.2 For any $X, Y \in D(n, \lambda),|x||y|>0$ it holds that $X Y-\lambda G \in D\left(n^{2}, 0\right)$.
The set $D\left(n^{2}, 0\right)$ contains elements of the form $\pm n g, g \in G$. Following [5] we call these elements trivial.

Proposition 2.3 Let $X=\sum_{g \in G} x_{g} g \in D\left(n^{2}, 0\right)$. If all x_{g} are non-negative, then $X=$ $n g, g \in G$ (i.e., X is trivial).

Proof: The equation $X X^{(-1)}=n^{2}$ implies $\sum_{g \in G} x_{g}^{2}=n^{2}$ and $\sum_{g \in G} x_{g}=n$.
If X is non-trivial, then there are at least two $g \neq h \in G$ with non-zero x_{g} and x_{h}. Since all x_{f} are non-negative, $g h^{-1} \neq 1$ appears in the product $X X^{(-1)}$ with positive coefficient, a contradiction.

Proposition 2.4 Let $X=\sum_{g \in G} x_{g} g \in D\left(n^{2}, 0\right)$. If $X \equiv 0(\bmod n)$, then $X= \pm n g, g \in$ G (i.e., X is trivial).

Proof: By assumption $X=n Y, Y \in \mathbf{Z} G$, implying $Y Y^{(-1)}=1$. Let $y_{g}, g \in G$ be the coefficients of Y. Then $\sum_{g \in G} y_{g}^{2}=1$. Now the claim is evident.

Next claim plays the central role in this chapter. In fact, it is the straight consequence of Lemma 7.5 from [3]. Nevertheless, we prefer to give here an independent original proof.

Lemma 2.5 Let $X \in D(n, \lambda)$ for some $n, \lambda \in \mathbf{Z}$. Let $p \mid n$ be a prime divisor relatively prime to $|G|$. Then for any $j \in \mathbf{Z}, X^{\left(p^{j}\right)} X^{(-1)}-\lambda G \equiv 0\left(\bmod p^{a}\right)$, where $p^{a} \| n$.

Proof: It is sufficient to prove the claim only for non-negative j.
Define b to be the maximal natural number satisfying the property

$$
\forall j \in \mathbf{Z}^{+}, X^{\left(p^{j}\right)} X^{(-1)}-\lambda G \equiv 0\left(\bmod p^{b}\right)
$$

It is clear that our claim is equivalent to the inequality $b \geq a .{ }^{1}$
By the definition of b there exists $j \in \mathbf{Z}^{+}$such that

$$
\begin{aligned}
& X^{\left(p^{j}\right)} X^{(-1)}-\lambda G \equiv 0\left(\bmod p^{b}\right), \\
& X^{\left(p^{j}\right)} X^{(-1)}-\lambda G \not \equiv 0\left(\bmod p^{b+1}\right) .
\end{aligned}
$$

In other words, $X^{\left(p^{j}\right)} X^{(-1)}-\lambda G=p^{b} Y$, where $Y \in \mathbf{Z} G$ satisfies $Y \not \equiv 0(\bmod p)$. The direct computations give us

$$
\begin{aligned}
Y^{\left(p^{j}\right)} Y & =\frac{1}{p^{2 b}}\left(X^{\left(p^{j}\right)} X^{(-1)}-\lambda G\right)^{\left(p^{j}\right)}\left(X^{\left(p^{j}\right)} X^{(-1)}-\lambda G\right) \\
& =\frac{1}{p^{2 b}}\left(X^{\left(p^{2 j}\right)} X^{\left(-p^{j}\right)}-\lambda G\right)\left(X^{\left(p^{j}\right)} X^{(-1)}-\lambda G\right) \\
& =\frac{n}{p^{b}} \frac{X^{\left(p^{2 j}\right)} X^{(-1)}-\lambda G}{p^{b}} .
\end{aligned}
$$

By the definition of b,

$$
\frac{X^{\left(p^{2 j}\right)} X^{(-1)}-\lambda G}{p^{b}} \in \mathbf{Z} G
$$

Thus we have $Y^{\left(p^{j}\right)} Y=\frac{n}{p^{b}} Z, Z \in \mathbf{Z} G$. If $b<a$, then $Y^{p^{j}+1} \equiv Y^{\left(p^{j}\right)} Y \equiv 0(\bmod p)$, i.e., Y is nilpotent in the group algebra $\mathbf{F}_{p} G$. But this algebra is semisimple, therefore $Y \equiv 0(\bmod p)$, a contradiction.

As a corollary we obtain the following statement whose parts (i) and (ii) are equivalent to Lemma 2 of [5].

Lemma 2.6 Let $X \in D(n, \lambda)$ and let $m \mid n$ be a divisor of n relatively prime to $|G|$. Assume also that there exists an integer t satisfying the following condition:

For every prime p dividing m there exists an integer j such that $p^{j} \equiv t(\bmod \exp (G))$.
Then there exists $Y_{t} \in \mathbf{Z} G$ such that
(i) $X^{(t)} X^{(-1)}-\lambda G=m Y_{t}$;
(ii) $Y_{t} Y_{t}^{(-1)}=\left(\frac{n}{m}\right)^{2}$;
(iii) $X Y_{t}=(n / m) X^{(t)}$.

Proof: (i)-(ii) Let $p \mid m$ be a prime. By assumption $X^{(t)}=X^{\left(p^{j}\right)}$. Now Lemma 2.5 gives us $X^{\left(p^{j}\right)} X^{(-1)}-\lambda G \equiv 0\left(\bmod p^{b}\right), p^{b} \| n$. Thus $X^{(t)} X^{(-1)}-\lambda G \equiv 0\left(\bmod p^{b}\right)$ for every prime p dividing m. This implies $X^{(t)} X^{(-1)}-\lambda G=m Y_{t}$ for some $Y_{t} \in \mathbf{Z} G$. By Proposition 2.2 we have $\left(m Y_{t}\right)\left(m Y_{t}\right)^{(-1)}=n^{2}$, whence $Y_{t} Y_{t}^{(-1)}=(n / m)^{2}$.

To get (iii) it is sufficient to multiply both sides of the identity $X^{(t)} X^{(-1)}-\lambda G=m Y_{t}$ by X and to collect the terms.

Using this lemma and Proposition 2.3 one can easily prove the well-known Second Multiplier Theorem.

Second Multiplier Theorem Keep the assumptions of the previous claim. If, in addition, $m>\lambda$, then t is a multiplier of X.

Proof: Consider the equality $X^{(t)} X^{(-1)}-\lambda G=m Y_{t}, Y_{t} \in \mathbf{Z} G$, which holds due to (i) of Lemma 2.6. We claim that $m>\lambda$ implies that all coefficients of Y_{t} are non-negative. Indeed, if it is not the case, then the minimal coefficient in the right side of the equality is less or equal to $-m$. On the other hand the minimal coefficient in the left part is greater or equal to $-\lambda>-m$. Contradiction.

Since coefficients of Y_{t} are non-negative, part (ii) of Lemma 2.6 together with Proposition 2.3 yield $Y_{t}=(n / m) g, g \in G$, whence $X^{(t)} X^{(-1)}-\lambda G=n g$. By Proposition 2.1, t is a multiplier of X.

Lemma 2.7 Let $X \in D(n, \lambda),(n,|G|)=1$. Assume that $X=X^{(-1)} g, g \in G$. Then n is a square.

Proof: This is a direct consequence of Theorem 7.2 from [3].

3. Multipliers

Lemma 3.1 Let $X \in \mathbf{Z} G$ be an element satisfying the equation $X^{k}=n^{k} h$ for some $k \in \mathbf{N}, h \in G$. Then $(n,|G|)=1$ implies $X= \pm n g$ for some $g \in G$.

Proof: Denote by d the greatest common divisor of the coefficients of X. We can write that $X=d Y, Y \in \mathbf{Z} G$. It is clear that the greatest common divisor of the coefficients of Y is equal to one and $Y^{k}=m^{k} h, m=n / d$. Our proof will be finished if we show that $Y= \pm g, g \in G$. If $m \neq 1$, then a prime $p \mid m$ gives us the congruence $Y^{k} \equiv 0(\bmod p)$. But $(p,|G|)=1$, whence $Y \equiv 0(\bmod p)$. Hence p divides the greatest common divisor of the coefficients of Y, a contradiction. Hence $m= \pm 1$ and $Y^{k}= \pm h$. This implies that $Y \in \mathbf{Z} G$ is a unit of $\mathbf{Z} G$. Hence, (see Corollary 37.6 [1]) $Y= \pm g, g \in G$.

Corollary 3.2 Let $X \in \mathbf{Z} G$ be an element invertible in $\mathbf{Q} G$. Assume that for some $t \in G^{*}$ there exists $Y \in \mathbf{Z} G$ such that $X Y=|Y| X^{(t)},(|Y|,|G|)=1$. If t is a multiplier of Y, then t is also a multiplier of X.

Proof: Since t is a multiplier of $Y, Y^{(t)}=h Y, h \in G$. Let l be a natural number such that t^{l} is a multiplier of X, i.e., $X^{\left(t^{l}\right)}=X g, g \in G$. One can write the sequence of equalities:

$$
\begin{aligned}
|Y| X^{(t)} & =h_{1} Y X \\
|Y| X^{\left(t^{2}\right)} & =h_{2} Y X^{(t)} \\
\cdot & = \\
\cdot & = \\
\cdot & \cdot \\
|Y| X^{\left(t^{l}\right)} & =h_{l} Y X^{\left(t^{l-1}\right)},
\end{aligned}
$$

where $h_{1}=1, h_{2}=h, \ldots, h_{l}$ are elements of G. Since $X^{\left(t^{l}\right)}=X g, g \in G$, we have

$$
|Y|^{l} X^{(t)} X^{\left(t^{2}\right)} \ldots X^{\left(t^{l-1}\right)} X=\left(h_{1} h_{2} \ldots h_{l} g^{-1}\right) Y^{l} X X^{(t)} X^{\left(t^{2}\right)} \ldots X^{\left(t^{l-1}\right)}
$$

Since X is invertible in $\mathbf{Q} G$, we obtain $h|Y|^{l}=Y^{l}, h \in G$. By the previous statement $Y= \pm|Y| g, g \in G$. Taking into account that $|g|=1$, we get $Y=|Y| g$. After substitution of $Y=|Y| g$ into the equality $|Y| X^{(t)}=Y X$ and cancelling of $|Y|$ we get $X^{(t)}=g X$.

In what follows, by $M_{H}(X)$ where $X \in \mathbf{Z} G$ and $H \leq G^{*}$ we denote a subgroup of H consisting of all multipliers of X, i.e.,

$$
M_{H}(X)=\left\{t \in H \mid X^{(t)}=g_{t} X, g_{t} \in G\right\} .
$$

Theorem 3.1 Let $X \in D(n, \lambda),(n,|G|)=1$. Take any $t \in G^{*}$ and denote $Y_{t}=$ $X^{(t)} X^{(-1)}-\lambda G$. Then

$$
M_{\langle t\rangle}(X)=M_{\langle t\rangle}\left(Y_{t}\right)
$$

Proof: By definition of $Y_{t} M_{\langle t\rangle}(X) \subset M_{\langle t\rangle}\left(Y_{t}\right)$. To prove the inverse inclusion we multiply both sides of the equality $Y_{t}=X^{(t)} X^{(-1)}-\lambda G$ by X. After simple transformations we obtain

$$
\begin{equation*}
\left|Y_{t}\right| X^{(t)}=Y_{t} X \tag{2}
\end{equation*}
$$

The group $M_{\langle t\rangle}\left(Y_{t}\right)$ is cyclic, hence it has a generator, say t^{l} for some l (i.e., $Y_{t}^{\left(t^{l}\right)}=g Y_{t}$). To finish the proof we have to show that t^{l} is a multiplier of X. Applying t to (2) $l-1$ times we obtain

$$
\begin{aligned}
\left|Y_{t}\right| X^{(t)} & =Y_{t} X \\
\left|Y_{t}\right| X^{\left(t^{2}\right)} & =Y_{t}^{(t)} X^{(t)} \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\left|Y_{t}\right| X^{\left(t^{l}\right)} & =Y_{t}^{\left(t^{l-1}\right)} X^{\left(t^{l-1}\right)}
\end{aligned}
$$

By multiplication of all these equalities we obtain

$$
\left|Y_{t}\right|^{l} X^{\left(t^{l}\right)}\left(X^{\left(t^{l-1}\right)} \ldots X^{(t)}\right)=Y_{t} \ldots Y_{t}^{\left(t^{l-1}\right)} X\left(X^{(t)} \ldots X^{\left(t^{l-1}\right)}\right)
$$

Since $(n,|G|)=1, n+\lambda|G| \neq 0$ which implies that X is invertible in $\mathbf{Q} G$. Hence one can cancel the common factors in the both sides of the latter equality. This gives

$$
\begin{equation*}
\left|Y_{t}\right|^{l} X^{\left(t^{l}\right)}=\left(Y_{t} \ldots Y_{t}^{\left(t^{l-1}\right)}\right) X \tag{3}
\end{equation*}
$$

We claim that t (and, therefore, t^{l}) is a multiplier of the element $Y_{t} \ldots Y_{t}^{\left(t^{l-1}\right)}$. Indeed,

$$
\left(Y_{t} \ldots Y_{t}^{\left(t^{l-1}\right)}\right)^{(t)}=Y_{t}^{(t)} \ldots Y_{t}^{\left(t^{l}\right)}=Y_{t}^{(t)} \ldots Y_{t}^{\left(t^{l-1}\right)} Y_{t} g=g\left(Y_{t} \ldots Y_{t}^{\left(t^{l-1}\right)}\right)
$$

Since $\left|Y_{t} \cdot \ldots \cdot Y_{t}^{\left(t^{l-1}\right)}\right|=\left|Y_{t}\right|^{l}=n^{l}$ is relatively prime to $|G|$, the equality (3) shows that X and t^{l} satisfy the condition of Corollary 3.2. Hence t^{l} is a multiplier of X.

To formulate next results we need an additional notation. For any element $X=\sum_{g \in G} x_{g} g$ $\in \mathbf{Z} G$ by $[X]$, we denote a subgroup generated by a set $\left\{g h^{-1} \mid x_{g} \neq 0\right.$ and $\left.x_{h} \neq 0\right\}$.

Lemma 3.3 Let $X \in D(n, \lambda),(n,|G|)=1$. Define $Y_{t}=X^{(t)} X^{(-1)}-\lambda G, t \in G^{*}$. Assume that n is a non-square. Then the permutation $\bar{g} \rightarrow \bar{g}^{t}, \bar{g} \in G /\left[Y_{t}\right]$ is of odd order.

Proof: Since n is a non-square, $|G|$ is odd. Denote the natural projection $G \rightarrow G /\left[Y_{t}\right]$ by f. Consider $f(X)$. It is clear that $f(X)$ satisfies the equation $f(X) f(X)^{(-1)}=n+\bar{\lambda} \bar{G}$ (here $\left.\bar{G}=G /\left[Y_{t}\right], \bar{\lambda}=\lambda\left|\left[Y_{t}\right]\right|\right)$. One can easily find that $f\left(Y_{t}\right)=\left|Y_{t}\right| \bar{g}$, for a suitable $\bar{g} \in \bar{G}$. Applying f to both sides of the identity $\left|Y_{t}\right| X^{(t)}=Y_{t} X$ we obtain $f(X)^{(t)}=\bar{g} f(X)$, i.e., t is a multiplier of $f(X)$.

To prove the claim let us assume the contrary, i.e., $t^{2 m} \equiv 1(\bmod \exp (\bar{G}))$ and $t^{m} \not \equiv$ $1(\bmod \exp (G))$. Denote t^{m} by s. Since \bar{G} is of odd order and $s^{2} \equiv 1(\bmod \exp (\bar{G}))$, the group \bar{G} is a direct product $\bar{G}=\bar{G}_{1} \times \bar{G}_{-1}$ where $\bar{G}_{a}=\left\{\bar{g} \in \bar{G} \mid \bar{g}^{s}=\bar{g}^{a}\right\}, a= \pm 1$. Since $s \not \equiv 1(\bmod \exp (\bar{G})), \bar{G}_{-1}$ is nontrivial.

Let $h: \bar{G} \rightarrow \bar{G}_{-1}$ be a natural projection. Denote $Z=h(f(X))$. It is clear that Z satisfies the equation $Z Z^{(-1)}=n+\mu \bar{G}_{-1}, \mu \in \mathbf{Z}$. Since t is a multiplier of $f(X)$, $Z^{(t)}=Z g, g \in \bar{G}_{-1}$. From here, it follows that $u Z=Z^{\left(t^{m}\right)}=Z^{(s)}=Z^{(-1)}$ for a suitable $u \in \bar{G}_{-1}$. In other words -1 is a multplier of Z. Due to Lemma $2.7 n$ should be a square, a contradiction.

Corollary 3.4 Keep the notations and the assumptions of the previous statement. Suppose, in addition, that $\left[Y_{t}\right]$ is a subgroup of a prime order, say p. If t is of even order modulo p, then $p \||G|$.

Proof: This is rather simple, so we omit.

4. Proof of Theorem 1.3

In this section X always denotes a (v, k, λ)-difference set over an abelian group G. As we mentioned before, $X \in D(n, \lambda)$ where $n=k-\lambda$. In what follows we assume that there exists a divisor m of n such that
(i) $(m,|G|)=1$;
(ii) There exists a number t such that for every prime $p \mid m, t \equiv p^{j}(\bmod \exp (G))$ for some j.

Due to Lemma 2.6 the conditions above imply $X^{(t)} X^{(-1)}-\lambda G=m Y_{t}$, where $Y_{t} \in \mathbf{Z} G$ should satisfy the equation

$$
\begin{equation*}
Y_{t} Y_{t}^{(-1)}=\left(\frac{n}{m}\right)^{2} \tag{4}
\end{equation*}
$$

In this section we consider the case $n / m \in\{2,3\}$. It should be mentioned that all results concerning here with the case $n / m=2$ are known due to [4]. The results about the case $n / m=3$ strengthen ones obtained in [5]. We devote the next section to the detailed investigation of the case $n / m=2$.

Lemma 4.1 Let X be a difference set. Assume that n / m is a prime, say q. Then $(n,|G|)=1$. If, in addition, t is not a multiplier, then $(m, q)=1$.

Proof: Due to the assumption $n=q m$ and $(m,|G|)=1$. Hence, if $(n,|G|) \neq 1$, then $(n,|G|)=q$. Since X is a difference set, $|X|=n+\lambda$ and $(n+\lambda)^{2}=n+\lambda|G|$. Both n and $|G|$ are divisible by q. Therefore $q \mid \lambda$, which in turn, implies $q \mid m$. As $q \mid m$ contradicts the assumption $(m,|G|)=1$, we must have $(n,|G|)=1$.

If $q \mid m$, then Lemma 2.6 implies that $X^{(t)} X^{(-1)}-\lambda G \equiv 0(\bmod n)$. From Propositions 2.1, 2.2 and 2.4 it follows that t is a multiplier of X, a contradiction.

Thus we have $(|G|, 2)=1$ in the case $n / m=2$, and $(|G|, 3)=1$ if $n / m=3$. Moreover, Lemma 4.1 implies that n is not a square if t is not a multiplier. Therefore the order of G is odd for both values of n / m.

In what follows we assume that t is not a multiplier. Under this assumption the element Y_{t} defined above is a non-trivial solution of (4). All these solutions were found in [5]. They are:
(i)

$$
\begin{array}{rr}
Y_{t}=g\left(-2+y+y^{3}+y^{4}+y^{5}+y^{9}\right), & g, y \in G, \\
y^{11}=1, & {\left[Y_{t}\right]=\langle y\rangle,} \\
& n / m=3,
\end{array}
$$

(ii)

$$
\begin{aligned}
& Y_{t}=g\left(-y-y^{3}-y^{9}+y^{7}+y^{8}+y^{11}+y^{a}+y^{3 a}+y^{9 a}\right), g, y \in G, \\
& a=2,4, \quad\left[Y_{t}\right]=\langle y\rangle, \quad y^{13}=1, \quad n / m=3,
\end{aligned}
$$

(iii)

$$
Y_{t}=g\left(-1+y+y^{2}+y^{4}\right), \quad g, y \in G, \quad\left[Y_{t}\right]=\langle y\rangle, \quad y^{7}=1, \quad n / m=2 .
$$

First we show that g may be assumed to be equal to 1 in all three cases (i)-(iii). We shall prove it only for the case (iii), since all other cases can be considered analogously.

Proposition 4.2 There exists a translation $h X, h \in G$ of X such that

$$
(h X)^{(t)}(h X)^{(-1)}-\lambda G=m\left(-1+y+y^{2}+y^{4}\right)
$$

Proof: By definition $m g\left(-1+y+y^{2}+y^{4}\right)=m Y_{t}=X^{(t)} X^{(-1)}-\lambda G$. Therefore it is sufficient to show that $g=h^{t-1}$ for a suitable $h \in G$.

Rewrite the identity $2 X^{(t)}=Y_{t} X$ as

$$
2 X^{(t)}+g X=(g y) X+\left(g y^{2}\right) X+\left(g y^{4}\right) X
$$

and consider this equality as one of multisets. Then products of all elements in both sides should be equal. Therefore, setting $f=\prod_{x \in X} x$, we can write

$$
f^{2 t} \cdot g^{|X|} \cdot f=(g y)^{|X|} \cdot f \cdot\left(g y^{2}\right)^{|X|} \cdot f \cdot\left(g y^{4}\right)^{|X|} \cdot f
$$

After simple transformations we obtain

$$
f^{2 t-2}=g^{2|X|} .
$$

Since G is of odd order, $g^{|X|}=f^{t-1}$. Raising both sides to a power of $|X|$ yields

$$
\left(f^{|X|}\right)^{t-1}=g^{|X|^{2}}=g^{n+\lambda|G|}=g^{n}
$$

But $(n,|G|)=1$, hence g is $(t-1)$ th power, as claimed.

Proposition 4.3 Assume that t is not a multiplier. Then t restricted on $\left[Y_{t}\right]$ is of even order.

Proof: The group [Y_{t}] is of prime order in all three cases (i)-(iii). Denote it by C_{p}, where $p=\left|\left[Y_{t}\right]\right|$. One can easily check that every element of odd order from \mathbf{Z}_{p}^{*} is a multiplier of Y_{t} in all three cases (i)-(iii). Hence, if the order of the restriction of t on C_{p} is odd then t is a multiplier of Y_{t}. By Theorem 3.1, t should be a multiplier of X, a contradiction.

Corollary $4.4 m$ is a square.
Proof: As above denote $\left[Y_{t}\right]$ by C_{p}, where p is a prime. Let q be a prime divisor of m. By the assumption, $t \equiv q^{j}(\bmod \exp (G))$ for some j. Since t restricted on C_{p} is of even order, there exists i such that $t^{i} \equiv-1(\bmod p)$. Thus $q^{j i} \equiv-1(\bmod p)$. Now Theorem 7.2 of [3] says that the exponent of q in the decomposition of m into the product of prime powers should be even.

Next result will immediately imply Theorem 1.3.
We remind that $\operatorname{ord}_{p}(t)$ (see [2]) means the order of t modulo a prime p. A trivial observation shows that $\operatorname{ord}_{p}(t)$ of a non-square t is always even. The vice versa is not true in general, but if $p \equiv 3(\bmod 4)$, then t has an even order if and only if it is a non-square.

Theorem 4.1 As above we assume that t is not a multiplier and $n / m \in\{2,3\}$. Then
(i) If $n / m=2$, then m is a square, $7 \||G|, \operatorname{ord}_{p}(t)$ is even for $p=7$ and odd for all other prime divisors of $|G|, t^{2}$ is a multiplier of X.
(ii) If $n / m=3$, then m is a square and exactly one of two cases holds
$-11 \||G|, \operatorname{ord}_{p}(t)$ is even for $p=11$ and odd for all other prime divisors of $|G|, t^{2}$ is a multiplier of X;
$-13 \||G|, \operatorname{ord}_{p}(t)$ is even for $p=13$ and odd for all other prime divisors of $|G|, t^{4}$ is a multiplier of X.

Proof:

(i) The case of $\boldsymbol{n} / \boldsymbol{m}=\mathbf{2}$. In this case $Y_{t}=g\left(-1+y+y^{2}+y^{4}\right), g, y \in G, y^{7}=1$, and $\left[Y_{t}\right]=C_{7}$. By Proposition $4.3 \operatorname{ord}_{7}(t)$ is even. Hence, by Corollary 3.4, $7 \||G|$. Corollary 4.4 says that m is a square. If $p \neq 7$ is a prime divisor of $|G|$, then it follows from Lemma 3.3 that $\operatorname{ord}_{p}(t)$ is odd. Finally, it is easy to check that any square is a multiplier of Y_{t}. Therefore $Y_{t}^{\left(t^{2}\right)}=Y_{t}$, whence, by Theorem 3.1, t^{2} is a multiplier of X.
(ii) The case of $\boldsymbol{n} / \boldsymbol{m}=\mathbf{3}$. There are two opportunities for Y_{t} only:

$$
\begin{aligned}
& Y_{t}=g\left(-2+y+y^{3}+y^{4}+y^{5}+y^{9}\right), \quad g, y \in G, \quad\left[Y_{t}\right]=\langle y\rangle, \quad y^{11}=1, \\
& Y_{t}=g\left(-y-y^{3}-y^{9}+y^{7}+y^{8}+y^{11}+y^{a}+y^{3 a}+y^{9 a}\right), \\
& \quad g, y \in G, \quad a=2,4, \quad\left[Y_{t}\right]=\langle y\rangle, \quad y^{13}=1 .
\end{aligned}
$$

To prove the claim for $n / m=3$ one should repeat all the arguments we used above in the case $n / m=2$.

5. Proof of Theorem 1.2

Here we consider the case $n / m=2$ in more detail. It should be mentioned that the case $n / m=3$ may be treated in the same way.

We know that if $n / m=2$ and t is not a multiplier, then $|G|=7 h,(h, 7)=1$. Hence $G=H \times C_{7}$ where C_{7} is the unique subgroup of order 7. Further, by Theorem 4.1, $m=q^{2}$ for a suitable $q \in \mathbf{N}$.

Due to Lemma 3.3 the restriction of t on H is of odd order, say $2 l+1$. On the other hand $\operatorname{ord}_{7}(t)$ is even, hence $t^{3} \equiv-1(\bmod 7)$. By Proposition 4.2 we may assume that $X^{(t)} X^{(-1)}-\lambda G=m\left(-1+y+y^{2}+y^{4}\right),\langle y\rangle=C_{7}$. Multiplication of the both sides of this equality by X gives us $2 X^{(t)}=\left(-1+y+y^{2}+y^{4}\right) X$. Applying t to the both sides implies

$$
\begin{aligned}
2 X^{\left(t^{2}\right)} & =X^{(t)}\left(-1+y+y^{2}+y^{4}\right)^{(t)}=X^{(t)}\left(-1+y+y^{2}+y^{4}\right)^{(-1)} \\
& =\frac{1}{2} X\left(-1+y+y^{2}+y^{4}\right)\left(-1+y^{-1}+y^{-2}+y^{-4}\right)=2 X
\end{aligned}
$$

Finally, we obtained $X^{\left(t^{2}\right)}=X$.
Let $s=t^{3(2 l+1)}$. Then $s \equiv-1(\bmod 7)$ and $s \equiv 1(\bmod \exp (H))$. Moreover, $X^{\left(t^{2}\right)}=X$ implies that $2 X^{(s)}=2 X^{(t)}=X Y_{t}$, where $Y_{t}=-1+y+y^{2}+y^{4}$. Therefore,

$$
2 X^{(s)}=2 X^{(t)}=X Y_{t}=X\left(-1+y+y^{2}+y^{4}\right)
$$

The set X can be written in the form

$$
\begin{equation*}
X=\sum_{h \in H} h A_{h}, \quad A_{h} \subset C_{7} \tag{5}
\end{equation*}
$$

Then $2 X^{(t)}=2 X^{(s)}=\sum_{h \in H} 2 h A_{h}^{(-1)}$. Taking into account the Eq. (5) we get $2 A_{h}^{(-1)}=$ $\left(-1+y+y^{2}+y^{4}\right) A_{h}$ for all $h \in H$.

Lemma 5.1 Let $B \subset C_{7}$ satisfy the equation $2 B^{(-1)}=\left(-1+y+y^{2}+y^{4}\right) B$. Then $B \in\left\{\emptyset, y+y^{2}+y^{4}, 1+y^{6}+y^{5}+y^{3}, C_{7}\right\}$.

Proof: Consider the equation

$$
\begin{equation*}
2 z^{(-1)}=\left(-1+y+y^{2}+y^{4}\right) z, \quad z \in \mathbf{Z} C_{7} . \tag{6}
\end{equation*}
$$

One can easily verify that (6) is a linear equation for z. At first we consider all solutions of (6) admitting 2 as a multiplier. In this case z is a linear combination $z=z_{0} 1+z_{1}\left(y+y^{2}+y^{4}\right)+$ $z_{2} C_{7}$. Substitution of this expression into (6) gives us $2 z_{0}+2\left(z_{1}\left(y+y^{2}+y^{4}\right)+z_{2} C_{7}\right)^{(-1)}=$ $-z_{0}+z_{0}\left(y+y^{2}+y^{4}\right)+2\left(z_{1}\left(y+y^{2}+y^{4}\right)+z_{2} C_{7}\right)^{(-1)}$. From here it follows that $z_{0}=0$ and $z=z_{1}\left(y+y^{2}+y^{4}\right)+z_{2} C_{7}$. In other words z is linear combination of $y+y^{2}+y^{4}$ and $1+y^{6}+y^{5}+y^{3}$.

Now consider the general case, i.e., $B \subset C_{7}$ is a solution of (6). We assume B to be nonempty. The completion $C_{7}-B$ of B is a solution of (6) as well. So we can assume the $|B| \leq 3$. Take an element $B+B^{(2)}+B^{(4)}$. It also satisfies (6) and has 2 as a multiplier. By previous paragraph $B+B^{(2)}+B^{(4)}=z_{1}\left(y+y^{2}+y^{4}\right)+z_{2}\left(1+y^{6}+y^{5}+y^{3}\right)$ for some non-negative integers z_{1}, z_{2}. The numbers z_{1}, z_{2} satisfy the equation $3|B|=3 z_{1}+4 z_{2}$. Since $|B| \leq 3$ and z_{1}, z_{2} are non-negative integers, $z_{1}=|B|, z_{2}=0$ is the only solution of this equation. This immediately implies the inclusion $B \subset y+y^{2}+y^{4}$. If $B=y+y^{2}+y^{4}$, then there is nothing to prove. Assume $B \neq y+y^{2}+y^{4}$. Since both B and $y+y^{2}+y^{4}$ are solutions, the set $y+y^{2}+y^{4}-B$ has the same property. Thus we can assume that $|B|=1$, i.e., $B=y^{i}$ for some $i=1,2,4$. The direct substitution of y^{i} instead of B into (6) gives us

$$
2 y^{-i}=y^{i}\left(-1+y+y^{2}+y^{4}\right) \Leftrightarrow 2 y^{-i}+y^{i}=y^{i}\left(y+y^{2}+y^{4}\right) .
$$

But the non-zero coefficients in the right side of the latter equation are ones only. Therefore y^{i} cannot be a solution of (6) for any i.

The lemma we have proved above gives only four values for A_{h}. Let

$$
\begin{aligned}
& H_{0}=\left\{h \in H \mid A_{h}=\emptyset\right\}, \\
& H_{1}=\left\{h \in H \mid A_{h}=y+y^{2}+y^{4}\right\}, \\
& H_{2}=\left\{h \in H \mid A_{h}=1+y^{6}+y^{5}+y^{3}\right\}, \\
& H_{3}=\left\{h \in H \quad \mid A_{h}=C_{7}\right\} .
\end{aligned}
$$

Then $H=H_{0} \cup H_{1} \cup H_{2} \cup H_{3}$ is a partition of H and $X=H_{1}\left(y+y^{2}+y^{4}\right)+H_{2}(1+$ $y^{6}+y^{5}+y^{3}$) $+H_{3} C_{7}$. Denote $\left|H_{i}\right|=h_{i}$. Clearly $2 q^{2}+\lambda=3 h_{1}+4 h_{2}+7 h_{3}$ (we remind that $m=2 q^{2}$). Let χ be an irreducible character of H and ρ be a non-principal one of C_{7}. Then $\rho \otimes \chi$ is a irreducible character of $G=C_{7} \times H$. Since G is abelian, $\rho \otimes \chi$ is also a one-dimensional representation of $\mathbf{Z} G$. Hence a value $z=(\rho \otimes \chi)(X)$ is equal to $\chi\left(H_{1}\right) \rho\left(y+y^{2}+y^{4}\right)+\chi\left(H_{2}\right) \rho\left(1+y^{6}+y^{5}+y^{3}\right)+\chi\left(H_{3}\right) \rho\left(C_{7}\right)$. Since $\rho\left(C_{7}\right)=0$, then $\rho\left(1+y^{6}+y^{5}+y^{3}\right)=-\rho\left(y+y^{2}+y^{4}\right)$ and $z=\rho\left(y+y^{2}+y^{4}\right)\left(\chi\left(H_{1}\right)-\chi\left(H_{2}\right)\right)$. Since X satisfies the equation $X X^{(-1)}=2 q^{2}+\lambda G$, we can write

$$
\bar{z} z=\rho\left(y+y^{2}+y^{4}\right) \overline{\rho\left(y+y^{2}+y^{4}\right)}\left(\chi\left(H_{1}-H_{2}\right)\right)\left(\overline{\chi\left(H_{1}-H_{2}\right)}\right)=2 q^{2}
$$

Taking into account that $\rho\left(y+y^{2}+y^{4}\right) \overline{\rho\left(y+y^{2}+y^{4}\right)}=2$ we obtain

$$
\chi\left(H_{1}-H_{2}\right) \overline{\chi\left(H_{1}-H_{2}\right)}=q^{2}
$$

for all irreducible characters of the group H. Therefore $\left(H_{1}-H_{2}\right)\left(H_{1}-H_{2}\right)^{(-1)}=q^{2}$. This equation implies two ones: $\left(h_{1}-h_{2}\right)^{2}=q^{2}, h_{1}+h_{2}=q^{2}$.

Thus we have the following equation for h_{1}, h_{2}, h_{3}

$$
\left\{\begin{array}{l}
h_{1}-h_{2}= \pm q \\
h_{1}+h_{2}=q^{2} \\
3 h_{1}+4 h_{2}+7 h_{3}=\lambda+2 q^{2}
\end{array}\right.
$$

This system has the following solutions:

$$
h_{1}=\frac{q^{2} \pm q}{2}, \quad h_{2}=\frac{q^{2} \mp q}{2}, \quad 7 h_{3}=\lambda+\frac{-3 q^{2} \pm q}{2} .
$$

The last expression gives us the inequality $\lambda \geq\left(3 q^{2}-q\right) / 2$. Applying this inequality to the complement difference set $G \backslash X$ we obtain:

$$
\frac{2 q^{2}\left(2 q^{2}-1\right)}{\lambda} \geq \frac{3 q^{2}-q}{2} .
$$

Thus we have the following scope for λ :

$$
\begin{equation*}
\frac{3 q^{2}-q}{2} \leq \lambda \leq \frac{4 q\left(2 q^{2}-1\right)}{3 q-1} \tag{7}
\end{equation*}
$$

Proof of Theorem 1.2: Assume the contrary, i.e., t is not a multiplier. Then λ satisfies (7).
Since $\left(q^{2}, \lambda\right)=1$ and $\lambda \mid 2 q^{2}\left(2 q^{2}-1\right)$, the number $l=\left(4 q^{2}-2\right) / \lambda$ is an integer. From the inequality (7) it follows that

$$
3>2 \frac{4 q^{2}-2}{3 q^{2}-q} \geq l \geq \frac{3 q-1}{2 q}>1
$$

and we have the only solution $l=2$, i.e., $\lambda=2 q^{2}-1$. But in this case $n>\lambda$, and by Theorem 4 of [4] t is a multiplier of X, a contradiction.

As a consequence we are able to give a proof of Corollary 1.1.

Proof of Corollary 1.1: Suppose the contrary, i.e., p is not a multiplier of D. Then, by Theorem 1.2, λ should be divisible by p. Applying of the same claim to the complement difference set yields $p \mid n(n-1) / \lambda$. But this is impossible, because the order $|G|=$ $\lambda+n(n-1) / \lambda+4 p^{2 b}$ of the group G is divisible by p in this case ${ }^{2}$.

Acknowledgments

The author is very grateful to the anonymous referee who read the paper carefully and proposed very helpful suggestions.

Notes

1. In fact this inequality implies $b=a$, because of $X X^{(-1)}-\lambda G=n$ and $p^{a} \| n$.
2. Here b is defined by the equality $n=2 p^{2 b}$.

References

1. C.W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, John Wiley \& Sons, New York, London, 1962.
2. D. Jungnickel, "Difference Sets," in Contemporary Design Theory: A Collection of Surveys, J.H. Dinitz and D.R. Stinson (Eds.), John Wiley \& Sons, pp. 241-324, 1992.
3. H.B. Mann, Addition Theorems, Wiley, New York, 1965.
4. H.B. Mann and S.K. Zaremba, "On multipliers of difference sets," Illinois J. Math. 13 (1969), 378-382.
5. Qiu Weisheng, "On character approach to multiplier conjecture and a new result on it," 1993, submitted.

[^0]: *Supported by the Research Grant \# 3889 of the Ministry of Science of Israel.

