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Abstract. Let Y denote ad-class symmetric association scheme, withd ≥ 3. We show the following: IfY
admits a P-polynomial structure with intersection numbersph

i j andY is1-thinwith respect to at least one vertex, then

p1
11 = 0 ⇒ pi

1i = 0 1≤ i ≤ d − 1.

If Y admits a Q-polynomial structure with Krein parametersqh
i j , andY is dual 1-thinwith respect to at least one

vertex, then

q1
11 = 0 ⇒ qi

1i = 0 1≤ i ≤ d − 1.
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1. Introduction

Let Y denote ad-class symmetric association scheme, withd ≥ 3. It is well-known that if
Y admits a P-polynomial structure with intersection numbersph

i j , then

p1
11 6= 0 ⇒ pi

1i 6= 0 1≤ i ≤ d − 1 (1)

[1, Theorem 5.5.1]. The first author shows in [3] that ifY admits a Q-polynomial structure
with Krein parametersqh

i j , then

q1
11 6= 0 ⇒ qi

1i 6= 0 1≤ i ≤ d − 1. (2)

In the present paper we show the following: IfY admits a P-polynomial structure with
intersection numbersph

i j , andY is 1-thinwith respect to at least one vertex, then

p1
11 = 0 ⇒ pi

1i = 0 1≤ i ≤ d − 1. (3)

If Y admits a Q-polynomial structure with Krein parametersqh
i j , andY is dual 1-thin

with respect to at least one vertex, then

q1
11 = 0 ⇒ qi

1i = 0 1≤ i ≤ d − 1. (4)
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The1-thinanddual 1-thinconditions are defined in Section 1.4. Our main results are in
Theorems 2.1 and 2.2.

In the following sections we introduce notation and recall basic results, following [1,
Section 2.1] and [4, Section 3].

1.1. Symmetric association schemes

By a d-classsymmetric association schemewe mean a pairY = (X, {Ri }0≤i≤d), whereX
is a non-empty finite set, and where

(i) {Ri }0≤i≤d is a partition ofX × X;
(ii) R0 = {xx | x ∈ X};
(iii) Ri = Rt

i for 0≤ i ≤ d, whereRt
i = {yx | xy ∈ Ri };

(iv) there exist integersph
i j such that for all integersh with 0 ≤ h ≤ d and all vertices

x, y ∈ X with xy ∈ Rh,

ph
i j = |{z ∈ X | xz∈ Ri , yz∈ Rj }| 0≤ i, j ≤ d. (5)

We refer toX as thevertex setof Y, and refer to the integersph
i j as theintersection numbers

of Y. Abbreviateki = p0
i i , and observeki is non-zero for 0≤ i ≤ d.

1.2. The Bose-Mesner algebra

Let Y = (X, {Ri }0≤i≤d) denote a symmetric association scheme. Let MatX(R) denote the
algebra of matrices overR with rows and columns indexed byX. Theassociate matrices
for Y are the matricesA0, . . . , Ad ∈MatX(R) defined by

(Ai )xy =
{

1 if xy ∈ Ri ,

0 otherwise
x, y ∈ X. (6)

From (i)–(iv) above we obtain

A0+ · · · + Ad = J, (7)

Ai ◦ Aj = δi j Ai 0≤ i, j ≤ d, (8)

A0 = I , (9)

Ai = At
i 0≤ i ≤ d, (10)

Ai Aj =
d∑

h=0

ph
i j Ah 0≤ i, j ≤ d, (11)

whereJ is the all-1s matrix and◦ denotes the entry-wise matrix product.
By theBose-Mesneralgebra ofY we mean the subalgebraM of MatX(R) generated by

the associate matricesA0, . . . , Ad. Observe by (8) and (11) that the associate matrices form
a basis forM . In particular,M is symmetric and closed under◦.
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The algebraM has a second basisE0, . . . , Ed such that

E0+ · · · + Ed = I , (12)

Ei Ej = δi j Ei 0≤ i, j ≤ d, (13)

E0 = 1

|X| J, (14)

Ei = Et
i 0≤ i ≤ d, (15)

[1, Theorem 2.6.1]. We refer toE0, . . . , Ed as theprimitive idempotentsof Y. SinceM is
closed under◦, there exist real numbersqh

i j satisfying

Ei ◦ Ej = 1

|X|
d∑

h=0

qh
i j Eh 0≤ i, j ≤ d. (16)

The numbersqh
i j are theKrein parametersfor Y. Abbreviatek∗i = q0

i i for 0≤ i ≤ d.
By (8), (9), and the fact thatA0, . . . , Ad is a basis forM , the primitive idempotents have

constant diagonal; in fact

(Ei )xx = k∗i
|X| 0≤ i ≤ d, x ∈ X (17)

andk∗i 6= 0 [1, p. 45]. We apply (17) in the proof of Lemma 4.1.

1.3. The dual Bose-Mesner algebra

Let Y denote ad-class symmetric association scheme with vertex setX, associate matrices
A0, . . . , Ad, primitive idempotentsE0, . . . , Ed, and Bose-Mesner algebraM . Fix a vertex
x ∈ X.

For each integeri with 0≤ i ≤ d let A∗i = A∗i (x) denote the diagonal matrix in MatX(R)
defined by

(A∗i )yy = |X|(Ei )xy y ∈ X. (18)

We refer toA∗0, . . . , A∗d as thedual associate matricesfor Y with respect tox. Let
M∗ = M∗(x) denote the subalgebra of MatX(R) generated by the dual associate matrices.
We refer toM∗ as thedual Bose-Mesner algebrafor Y with respect tox. From (16) we
obtain

A∗i A∗j =
d∑

h=0

qh
i j A∗h 0≤ i, j ≤ d. (19)

In particular, the dual associate matrices form a basis forM∗.
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For each integeri with 0≤ i ≤ d let E∗i = E∗i (x) denote the diagonal matrix in MatX(R)
defined by

(E∗i )yy = (Ai )xy y ∈ X. (20)

From (7), (8) we obtain

E∗0 + · · · + E∗d = I , (21)

E∗i E∗j = δi j E∗i 0≤ i, j ≤ d. (22)

We refer toE∗0, . . . , E∗d as thedual idempotentsfor Y with respect tox. Note that the
dual idempotents form a second basis forM∗.

1.4. The thin and dual-thin conditions

LetY denote ad-class symmetric association scheme with vertex setX. Fix a vertexx ∈ X,
and writeM∗ = M∗(x).

Let T = T(x) denote the subalgebra of MatX(R) generated byM andM∗. We refer toT
as thesubconstituent algebrafor Y with respect tox. By aT -modulewe mean a subspace
of the standard moduleV = RX which is closed under multiplication byT . A T-module
is said to beirreducible if it properly contains noT-modules other than 0. Recall thatT is
semi-simple, so thatV may be decomposed as a direct sum of irreducibleT-modules [4,
Lemma 3.4].

An irreducibleT-moduleW is said to bethin if

dim E∗i W ≤ 1 0≤ i ≤ d, (23)

anddual thin if

dim Ei W ≤ 1 0≤ i ≤ d. (24)

We sayY is i -thin with respect tox if every irreducibleT-moduleW with E∗i W 6= 0
is thin. We sayY is dual i -thin with respect tox if every irreducibleT-moduleW with
Ei W 6= 0 is dual thin.

1.5. P- and Q-polynomial structures

Let Y denote ad-class symmetric association scheme, with vertex setX, intersection
numbersph

i j , and Krein parametersqh
i j . We say that an orderingA0, . . . , Ad of the associate

matrices is aP-polynomial structurefor Y whenever

ph
i j = 0 if one ofh, i, j is greater than the sum of the other two, (25)

ph
i j 6= 0 if one ofh, i, j is equal to the sum of the other two (26)
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for 0 ≤ h, i, j ≤ d. Recall that ifA0, . . . , Ad is a P-polynomial structure forY, thenA1

generatesM [4, Lemma 3.8].
We say that an orderingE0, . . . , Ed of the primitive idempotents is aQ-polynomial

structurefor Y whenever

qh
i j = 0 if one ofh, i, j is greater than the sum of the other two, (27)

qh
i j 6= 0 if one ofh, i, j is equal to the sum of the other two (28)

for 0 ≤ h, i, j ≤ d. Recall that ifE0, . . . , Ed is a Q-polynomial structure forY, then for
eachx ∈ X the dual associate matrixA∗1(x) generatesM∗(x) [4, Lemma 3.11].

2. Results

Our main results are the following:

Theorem 2.1 Let Y denote a d-class symmetric association scheme,with d ≥ 3. Suppose
A0, . . . , Ad is a P-polynomial structure for Y with intersection numbers ph

i j , and suppose
Y is 1-thin with respect to at least one vertex. Then

p1
11 = 0 ⇒ pi

1i = 0 1≤ i ≤ d − 1. (29)

We prove Theorem 2.1 in Section 3.

Theorem 2.2 Let Y denote a d-class symmetric association scheme,with d ≥ 3. Suppose
E0, . . . , Ed is a Q-polynomial structure for Y with Krein parameters qh

i j , and suppose Y is
dual 1-thin with respect to at least one vertex. Then

q1
11 = 0 ⇒ qi

1i = 0 1≤ i ≤ d − 1. (30)

We prove Theorem 2.2 in Section 4.

3. Proof of Theorem 2.1

Define a symmetric bilinear form on MatX(R) (whereX is any set) by

〈B,C〉 = tr(BtC) B,C ∈ MatX(R). (31)

Observe that〈B,C〉 is just the sum of the entries ofB ◦ C. In particular, the form is
positive definite.

Lemma 3.1 (Terwilliger [4]) Let Y= (X, {Ri }0≤i≤d) denote a symmetric association
scheme with associate matrices A0, . . . , Ad and intersection numbers ph

i j . Fix a vertex
x ∈ X, and write E∗i = E∗i (x) for 0≤ i ≤ d. Then:
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(i) for 0≤ h, h′, i, i ′, j, j ′ ≤ d,

〈E∗i AhE∗j , E∗i ′Ah′E
∗
j ′ 〉 = δhh′δi i ′δ j j ′kh ph

i j ; (32)

(ii) for 0≤ h, i, j ≤ d,

E∗h Ai E
∗
j = 0 ⇔ ph

i j = 0. (33)

Proof of (i): Observe

(E∗i AhE∗j )yz = (E∗i )yy(Ah)yz(E
∗
j )zz (34)

= (Ai )xy(Ah)yz(Aj )xz, (35)

so that(E∗i AhE∗j )yz 6= 0 if and only if xy ∈ Ri , yz∈ Rh, andxz∈ Rj . Since the relations
R0, . . . , Rd are disjoint, the matricesE∗i AhE∗j and E∗i ′Ah′E∗j ′ have no non-zero entries in
common unlessh = h′, i = i ′, j = j ′. In this case there are preciselykh ph

i j non-zero
entries, each equal to 1. The result follows.

Proof of (ii): Immediate from (i). 2

Let Y denote ad-class symmetric association scheme, with vertex setX. Suppose
A0, . . . , Ad is a P-polynomial structure forY, with intersection numbersph

i j . Fix a vertex
x ∈ X, and writeT = T(x), M∗ = M∗(x), andE∗i = E∗i (x) for 0≤ i ≤ d.

There are three matrices inT which are of particular interest to us (their duals will be
used in Section 4). These are theloweringmatrix L = L(x), theflat matrix F = F(x),
and theraisingmatrix R= R(x), defined by

L =
d∑

i=1

E∗i−1A1E∗i , (36)

F =
d∑

i=0

E∗i A1E∗i , (37)

R =
d−1∑
i=0

E∗i+1A1E∗i . (38)

It is easily shown using (25), (21), and (33) that

A1 = L + F + R. (39)

Recall thatA1 generates the Bose-Mesner algebraM , so thatA1 andE∗0, . . . , E∗d generate
T . In particular,L, F , R, andE∗0, . . . , E∗d generateT by (39).

Lemma 3.2 Let Y denote a d-class symmetric association scheme, with vertex set X.
Suppose A0, . . . , Ad is a P-polynomial structure for Y, with intersection numbers ph

i j . Fix
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a vertex x∈ X, and write T= T(x), L = L(x), and E∗i = E∗i (x) for 0 ≤ i ≤ d. If Y is
1-thin with respect to x, then:

(i) for any irreducible T -module W with E∗1W 6= 0,

L E∗i W = 0 ⇒ E∗i W = 0 2≤ i ≤ d; (40)

(ii) for w ∈ T E∗1V,

L E∗i w = 0 ⇒ E∗i w = 0 2≤ i ≤ d; (41)

(iii) for B ∈ T E∗1,

L E∗i B = 0 ⇒ E∗i B = 0 2≤ i ≤ d. (42)

Proof of (i): Let W be given. Fix an integeri with 2 ≤ i ≤ d, and supposeL E∗i W = 0.
Let W′ denote the subspace ofW defined by

W′ = E∗i W + · · · + E∗dW. (43)

Observe by (36)–(38) and (13) thatW′ is closed under multiplication byL, F , R, and
E∗0, . . . , E∗d. SinceT is generated by these matrices,W′ is aT-module. SinceE∗1W′ = 0
and E∗1W 6= 0, W′ is a proper submodule ofW. SinceW is irreducible, we now have
W′ = 0, andE∗i W ⊆ W′ is zero as desired.

Proof of (ii): SinceV may be decomposed into a direct sum of irreducibleT-modules, it
suffices to show that the result holds forw ∈ T E∗1W whereW is an irreducibleT-module.
Fix an integeri with 2≤ i ≤ d and an irreducibleT-moduleW, and supposew ∈ T E∗1W
hasL E∗i w = 0.

SupposeE∗i w 6= 0. ObserveE∗1W 6= 0, since 06= E∗i w ∈ E∗i T E∗1W. SinceY is 1-thin
with respect tox, W is thin and dimE∗i W ≤ 1. In particular,E∗i w ∈ E∗i W spansE∗i W, and
L E∗i W = 0. By (i) we haveE∗i W = 0, andE∗i w = 0 for a contradiction. ThusE∗i w = 0
as desired.

Proof of (iii): Immediate from (ii). 2

Lemma 3.3 Let Y denote a d-class symmetric association scheme, with vertex set X.
Suppose A0, . . . , Ad is a P-polynomial structure for Y, with intersection numbers ph

i j . Fix
a vertex x∈ X, and write L= L(x) and E∗i = E∗i (x) for 0≤ i ≤ d. Then:
(i) for 1≤ i ≤ d − 1,

L E∗i Ai+1E∗1 = pi
1,i+1E∗i−1Ai E

∗
1; (44)

(ii) for 1≤ i ≤ d, if pi−1
1,i−1 = 0 then

L E∗i Ai E
∗
1 = pi

1i E
∗
i−1Ai E

∗
1. (45)
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Proof of (i): Let i be given. Observe by (22), (25), (33), (21), and (11) that

L E∗i Ai+1E∗1 = E∗i−1AE∗i Ai+1E∗1 (46)

= E∗i−1A

(
d∑

h=0

E∗h

)
Ai+1E∗1 (47)

= E∗i−1AAi+1E∗1 (48)

= E∗i−1

(
d∑

h=0

ph
1,i+1Ah

)
E∗1 (49)

= pi
1,i+1E∗i−1Ai E

∗
1, (50)

as desired.

Proof of (ii): Let i be given, withpi−1
1,i−1 = 0. Observe as in (i) that

L E∗i Ai E
∗
1 = E∗i−1AE∗i Ai E

∗
1 (51)

= E∗i−1A

(
d∑

h=0

E∗h

)
Ai E

∗
1 (52)

= E∗i−1AAi E
∗
1 (53)

= E∗i−1

(
d∑

h=0

ph
1i Ah

)
E∗1 (54)

= pi
1i E
∗
i−1Ai E

∗
1, (55)

as desired. 2

Proof of Theorem 2.1: SupposeY is 1-thin with respect tox, and writeL = L(x) and
E∗i = E∗i (x) for 0≤ i ≤ d. Supposep1

11 = 0, and suppose for a contradiction thatpi
1i 6= 0

for somei with 2≤ i ≤ d − 1. Fix i ≥ 2 minimal with pi
1i 6= 0. Then by Lemma 3.3,

0= L
(
pi

1i E
∗
i Ai+1E∗1 − pi

1,i+1E∗i Ai E
∗
1

)
, (56)

and by Lemma 3.2(iii),

0= pi
1i E
∗
i Ai+1E∗1 − pi

1,i+1E∗i Ai E
∗
1. (57)

The summands in (57) are nonzero by (33) and orthogonal by (32), for a contradiction.
Thus pi

1i = 0 for 2≤ i ≤ d − 1, as desired. 2

4. Proof of Theorem 2.2

Our proof is based upon the following result:
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Lemma 4.1 (Cameron, Goethals, Seidel [2]) Let Y denote a d-class symmetric associ-
ation scheme, with vertex set X, primitive idempotents E0, . . . , Ed, and Krein parameters
qh

i j . Fix a vertex x∈ X, and write A∗i = A∗i (x) for 0≤ i ≤ d. Then:
(i) for 0≤ h, h′, i, i ′, j, j ′ ≤ d,

〈Ei A∗hEj , Ei ′A
∗
h′Ej ′ 〉 = δhh′δi i ′δ j j ′k

∗
hqh

i j ; (58)

(ii) for 0≤ h, i, j ≤ d,

Eh A∗i E j = 0 ⇔ qh
i j = 0. (59)

Proof of (i): Recall tr(BC) = tr(C B), and observe by (15), (13), (18), (16), and (17) that

〈Ei A∗hEj , Ei ′A
∗
h′Ej ′ 〉 = tr(Ej A∗hEi Ei ′A

∗
h′Ej ′) (60)

= tr(Ej ′Ej A∗hEi Ei ′A
∗
h′) (61)

= δi i ′δ j j ′ tr(Ej A∗hEi A∗h′) (62)

= δi i ′δ j j ′
∑

y,z∈X

(Ej )yz(A
∗
h)zz(Ei )zy(A

∗
h′)yy (63)

= δi i ′δ j j ′ |X|2
∑

y,z∈X

(Ej )yz(Eh)xz(Ei )zy(Eh′)xy (64)

= δi i ′δ j j ′ |X|2
∑
y∈X

((Ei ◦ Ej )Eh)yx(Eh′)xy (65)

= δi i ′δ j j ′ |X|qh
i j

∑
y∈X

(Eh)yx(Eh′)xy (66)

= δi i ′δ j j ′ |X|qh
i j (Eh′Eh)xx (67)

= δhh′δi i ′δ j j ′ |X|qh
i j (Eh)xx (68)

= δhh′δi i ′δ j j ′k
∗
hqh

i j , (69)

as desired.

Proof of (ii): Immediate from (i). 2

Let Y denote ad-class symmetric association scheme, with vertex setX. Suppose
E0, . . . , Ed is a Q-polynomial structure forY, with Krein parametersqh

i j . Fix a vertex
x ∈ X, and writeT = T(x), M∗ = M∗(x), andA∗i = A∗i (x) for 0≤ i ≤ d.

Thedual loweringmatrix L∗ = L∗(x), thedual flat matrix F∗ = F∗(x), and thedual
raisingmatrix R∗ = R∗(x) are defined by

L∗ =
d∑

i=1

Ei−1A∗1Ei , (70)
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F∗ =
d∑

i=0

Ei A∗1Ei , (71)

R∗ =
d−1∑
i=0

Ei+1A∗1Ei . (72)

It is easily shown using (27), (12), and (59) that

A∗1 = L∗ + F∗ + R∗. (73)

Recall thatA∗1 generates the dual Bose-Mesner algebraM∗, so thatA∗1 and E0, . . . , Ed

generateT . In particular,L∗, F∗, R∗, andE∗0, . . . , E∗d generateT by (73).

Lemma 4.2 Let Y denote a d-class symmetric association scheme, with vertex set X.
Suppose E0, . . . , Ed is a Q-polynomial structure for Y, with Krein parameters qhi j . Fix a
vertex x∈ X, and write T= T(x), L∗ = L∗(x), and A∗i = A∗i (x) for 0 ≤ i ≤ d. If Y is
dual 1-thin with respect to x, then:

(i) for any irreducible T -module W with E1W 6= 0,

L∗Ei W = 0 ⇒ Ei W = 0 2≤ i ≤ d; (74)

(ii) for w ∈ T E1V,

L∗Eiw = 0 ⇒ Eiw = 0 2≤ i ≤ d; (75)

(iii) for B ∈ T E1,

L∗Ei B = 0 ⇒ Ei B = 0 2≤ i ≤ d. (76)

Proof: Similar to the proof of Lemma 3.2. 2

Lemma 4.3 Let Y denote a d-class symmetric association scheme, with vertex set X.
Suppose E0, . . . , Ed is a Q-polynomial structure for Y, with Krein parameters qhi j . Fix a
vertex x∈ X, and write L∗ = L∗(x) and A∗i = A∗i (x) for 0≤ i ≤ d. Then:
(i) for 1≤ i ≤ d,

L∗Ei A∗i+1E1 = qi
1,i+1Ei−1A∗i E1; (77)

(ii) for 1≤ i ≤ d, if qi−1
1,i−1 = 0 then

L∗Ei A∗i E1 = qi
1i Ei−1A∗i E1. (78)

Proof: Similar to the proof of Lemma 3.3. 2

Proof of Theorem 2.2: Similar to the proof of Theorem 2.1. 2



       

P1: PMR

Journal of Algebraic Combinatorics KL507-01-Dickie November 6, 1997 13:58

THIN P-POLYNOMIAL AND DUAL-THIN Q-POLYNOMIAL 15

References

1. A.E. Brouwer, A.M. Cohen, and A. Neumaier.Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
2. P. Cameron, J. Goethals, and J. Seidel, “The Krein condition, spherical designs, Norton algebras, and permu-

tation groups,”Indag. Math.40 (1978), 196–206.
3. G. Dickie. “A note on Q-polynomial association schemes,”J. Alg. Combin.Submitted.
4. P. Terwilliger. “The subconstituent algebra of an association scheme. I,”J. Alg. Combin.1(4) (1992), 363–388.


