A Note on Thin P-Polynomial and Dual-Thin Q-Polynomial Symmetric Association Schemes

GARTH A. DICKIE
dickie@win.tue.nl
University of Technology, Discrete Mathematics HG 9.53, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

PAUL M. TERWILLIGER
terwilli@math.wisc.edu
Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison WI 53706
Received December 18, 1995

Abstract

Let Y denote a d-class symmetric association scheme, with $d \geq 3$. We show the following: If Y admits a P-polynomial structure with intersection numbers $p_{i j}^{h}$ and Y is 1-thin with respect to at least one vertex, then $$
p_{11}^{1}=0 \Rightarrow p_{1 i}^{i}=0 \quad 1 \leq i \leq d-1
$$

If Y admits a Q-polynomial structure with Krein parameters $q_{i j}^{h}$, and Y is dual 1-thin with respect to at least one vertex, then

$$
q_{11}^{1}=0 \Rightarrow q_{1 i}^{i}=0 \quad 1 \leq i \leq d-1
$$

Keywords: Association scheme, distance-regular graph, intersection number, Q-polynomial

1. Introduction

Let Y denote a d-class symmetric association scheme, with $d \geq 3$. It is well-known that if Y admits a P-polynomial structure with intersection numbers $\overline{p_{i j}^{h}}$, then

$$
\begin{equation*}
p_{11}^{1} \neq 0 \Rightarrow p_{1 i}^{i} \neq 0 \quad 1 \leq i \leq d-1 \tag{1}
\end{equation*}
$$

[1, Theorem 5.5.1]. The first author shows in [3] that if Y admits a Q-polynomial structure with Krein parameters $q_{i j}^{h}$, then

$$
\begin{equation*}
q_{11}^{1} \neq 0 \Rightarrow q_{1 i}^{i} \neq 0 \quad 1 \leq i \leq d-1 \tag{2}
\end{equation*}
$$

In the present paper we show the following: If Y admits a P-polynomial structure with intersection numbers $p_{i j}^{h}$, and Y is 1 -thin with respect to at least one vertex, then

$$
\begin{equation*}
p_{11}^{1}=0 \Rightarrow p_{1 i}^{i}=0 \quad 1 \leq i \leq d-1 \tag{3}
\end{equation*}
$$

If Y admits a Q-polynomial structure with Krein parameters $q_{i j}^{h}$, and Y is dual 1-thin with respect to at least one vertex, then

$$
\begin{equation*}
q_{11}^{1}=0 \Rightarrow q_{1 i}^{i}=0 \quad 1 \leq i \leq d-1 \tag{4}
\end{equation*}
$$

The 1-thin and dual 1-thin conditions are defined in Section 1.4. Our main results are in Theorems 2.1 and 2.2.

In the following sections we introduce notation and recall basic results, following [1, Section 2.1] and [4, Section 3].

1.1. Symmetric association schemes

By a d-class symmetric association scheme we mean a pair $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$, where X is a non-empty finite set, and where
(i) $\left\{R_{i}\right\}_{0 \leq i \leq d}$ is a partition of $X \times X$;
(ii) $R_{0}=\{x x \mid x \in X\}$;
(iii) $R_{i}=R_{i}^{t}$ for $0 \leq i \leq d$, where $R_{i}^{t}=\left\{y x \mid x y \in R_{i}\right\}$;
(iv) there exist integers $p_{i j}^{h}$ such that for all integers h with $0 \leq h \leq d$ and all vertices $x, y \in X$ with $x y \in R_{h}$,

$$
\begin{equation*}
p_{i j}^{h}=\left|\left\{z \in X \mid x z \in R_{i}, y z \in R_{j}\right\}\right| \quad 0 \leq i, j \leq d \tag{5}
\end{equation*}
$$

We refer to X as the vertex set of Y, and refer to the integers $p_{i j}^{h}$ as the intersection numbers of Y. Abbreviate $k_{i}=p_{i i}^{0}$, and observe k_{i} is non-zero for $0 \leq i \leq d$.

1.2. The Bose-Mesner algebra

Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$ denote a symmetric association scheme. Let Mat ${ }_{X}(\mathbb{R})$ denote the algebra of matrices over \mathbb{R} with rows and columns indexed by X. The associate matrices for Y are the matrices $A_{0}, \ldots, A_{d} \in \operatorname{Mat}_{X}(\mathbb{R})$ defined by

$$
\left(A_{i}\right)_{x y}=\left\{\begin{array}{ll}
1 & \text { if } x y \in R_{i}, \tag{6}\\
0 & \text { otherwise }
\end{array} \quad x, y \in X\right.
$$

From (i)-(iv) above we obtain

$$
\begin{align*}
A_{0}+\cdots+A_{d} & =J, \tag{7}\\
A_{i} \circ A_{j} & =\delta_{i j} A_{i} \quad 0 \leq i, j \leq d, \tag{8}\\
A_{0} & =I, \tag{9}\\
A_{i} & =A_{i}^{t} \quad 0 \leq i \leq d, \tag{10}\\
A_{i} A_{j} & =\sum_{h=0}^{d} p_{i j}^{h} A_{h} \quad 0 \leq i, j \leq d, \tag{11}
\end{align*}
$$

where J is the all-1s matrix and \circ denotes the entry-wise matrix product.
By the Bose-Mesner algebra of Y we mean the subalgebra M of Mat ${ }_{X}(\mathbb{R})$ generated by the associate matrices A_{0}, \ldots, A_{d}. Observe by (8) and (11) that the associate matrices form a basis for M. In particular, M is symmetric and closed under \circ.

The algebra M has a second basis E_{0}, \ldots, E_{d} such that

$$
\begin{align*}
E_{0}+\cdots+E_{d} & =I \tag{12}\\
E_{i} E_{j} & =\delta_{i j} E_{i} \quad 0 \leq i, j \leq d \tag{13}\\
E_{0} & =\frac{1}{|X|} J \tag{14}\\
E_{i} & =E_{i}^{t} \quad 0 \leq i \leq d \tag{15}
\end{align*}
$$

[1, Theorem 2.6.1]. We refer to E_{0}, \ldots, E_{d} as the primitive idempotents of Y. Since M is closed under \circ, there exist real numbers $q_{i j}^{h}$ satisfying

$$
\begin{equation*}
E_{i} \circ E_{j}=\frac{1}{|X|} \sum_{h=0}^{d} q_{i j}^{h} E_{h} \quad 0 \leq i, j \leq d \tag{16}
\end{equation*}
$$

The numbers $q_{i j}^{h}$ are the Krein parameters for Y. Abbreviate $k_{i}^{*}=q_{i i}^{0}$ for $0 \leq i \leq d$.
By (8), (9), and the fact that A_{0}, \ldots, A_{d} is a basis for M, the primitive idempotents have constant diagonal; in fact

$$
\begin{equation*}
\left(E_{i}\right)_{x x}=\frac{k_{i}^{*}}{|X|} \quad 0 \leq i \leq d, x \in X \tag{17}
\end{equation*}
$$

and $k_{i}^{*} \neq 0[1$, p. 45]. We apply (17) in the proof of Lemma 4.1.

1.3. The dual Bose-Mesner algebra

Let Y denote a d-class symmetric association scheme with vertex set X, associate matrices A_{0}, \ldots, A_{d}, primitive idempotents E_{0}, \ldots, E_{d}, and Bose-Mesner algebra M. Fix a vertex $x \in X$.

For each integer i with $0 \leq i \leq d$ let $A_{i}^{*}=A_{i}^{*}(x)$ denote the diagonal matrix in $\operatorname{Mat}_{X}(\mathbb{R})$ defined by

$$
\begin{equation*}
\left(A_{i}^{*}\right)_{y y}=|X|\left(E_{i}\right)_{x y} \quad y \in X \tag{18}
\end{equation*}
$$

We refer to $A_{0}^{*}, \ldots, A_{d}^{*}$ as the dual associate matrices for Y with respect to x. Let $M^{*}=M^{*}(x)$ denote the subalgebra of $\operatorname{Mat}_{X}(\mathbb{R})$ generated by the dual associate matrices. We refer to M^{*} as the dual Bose-Mesner algebra for Y with respect to x. From (16) we obtain

$$
\begin{equation*}
A_{i}^{*} A_{j}^{*}=\sum_{h=0}^{d} q_{i j}^{h} A_{h}^{*} \quad 0 \leq i, j \leq d \tag{19}
\end{equation*}
$$

In particular, the dual associate matrices form a basis for M^{*}.

For each integer i with $0 \leq i \leq d$ let $E_{i}^{*}=E_{i}^{*}(x)$ denote the diagonal matrix in $\operatorname{Mat}_{X}(\mathbb{R})$ defined by

$$
\begin{equation*}
\left(E_{i}^{*}\right)_{y y}=\left(A_{i}\right)_{x y} \quad y \in X \tag{20}
\end{equation*}
$$

From (7), (8) we obtain

$$
\begin{align*}
E_{0}^{*}+\cdots+E_{d}^{*} & =I \tag{21}\\
E_{i}^{*} E_{j}^{*} & =\delta_{i j} E_{i}^{*} \quad 0 \leq i, j \leq d . \tag{22}
\end{align*}
$$

We refer to $E_{0}^{*}, \ldots, E_{d}^{*}$ as the dual idempotents for Y with respect to x. Note that the dual idempotents form a second basis for M^{*}.

1.4. The thin and dual-thin conditions

Let Y denote a d-class symmetric association scheme with vertex set X. Fix a vertex $x \in X$, and write $M^{*}=M^{*}(x)$.

Let $T=T(x)$ denote the subalgebra of $\operatorname{Mat}_{X}(\mathbb{R})$ generated by M and M^{*}. We refer to T as the subconstituent algebra for Y with respect to x. By a T-module we mean a subspace of the standard module $V=\mathbb{R}^{X}$ which is closed under multiplication by T. A T-module is said to be irreducible if it properly contains no T-modules other than 0 . Recall that T is semi-simple, so that V may be decomposed as a direct sum of irreducible T-modules [4, Lemma 3.4].

An irreducible T-module W is said to be thin if

$$
\begin{equation*}
\operatorname{dim} E_{i}^{*} W \leq 1 \quad 0 \leq i \leq d \tag{23}
\end{equation*}
$$

and dual thin if

$$
\begin{equation*}
\operatorname{dim} E_{i} W \leq 1 \quad 0 \leq i \leq d \tag{24}
\end{equation*}
$$

We say Y is i-thin with respect to x if every irreducible T-module W with $E_{i}^{*} W \neq 0$ is thin. We say Y is dual i-thin with respect to x if every irreducible T-module W with $E_{i} W \neq 0$ is dual thin.

1.5. $\quad P$ - and Q-polynomial structures

Let Y denote a d-class symmetric association scheme, with vertex set X, intersection numbers $p_{i j}^{h}$, and Krein parameters $q_{i j}^{h}$. We say that an ordering A_{0}, \ldots, A_{d} of the associate matrices is a P-polynomial structure for Y whenever

$$
\begin{array}{ll}
p_{i j}^{h}=0 \quad \text { if one of } h, i, j \text { is greater than the sum of the other two, } \\
p_{i j}^{h} \neq 0 & \text { if one of } h, i, j \text { is equal to the sum of the other two } \tag{26}
\end{array}
$$

for $0 \leq h, i, j \leq d$. Recall that if A_{0}, \ldots, A_{d} is a P-polynomial structure for Y, then A_{1} generates M [4, Lemma 3.8].

We say that an ordering E_{0}, \ldots, E_{d} of the primitive idempotents is a Q-polynomial structure for Y whenever

$$
\begin{align*}
& q_{i j}^{h}=0 \quad \text { if one of } h, i, j \text { is greater than the sum of the other two, } \tag{27}\\
& q_{i j}^{h} \neq 0 \quad \text { if one of } h, i, j \text { is equal to the sum of the other two } \tag{28}
\end{align*}
$$

for $0 \leq h, i, j \leq d$. Recall that if E_{0}, \ldots, E_{d} is a Q-polynomial structure for Y, then for each $x \in X$ the dual associate matrix $A_{1}^{*}(x)$ generates $M^{*}(x)$ [4, Lemma 3.11].

2. Results

Our main results are the following:
Theorem 2.1 Let Y denote a d-class symmetric association scheme, with $d \geq 3$. Suppose A_{0}, \ldots, A_{d} is a P-polynomial structure for Y with intersection numbers $p_{i j}^{h}$, and suppose Y is 1-thin with respect to at least one vertex. Then

$$
\begin{equation*}
p_{11}^{1}=0 \Rightarrow p_{1 i}^{i}=0 \quad 1 \leq i \leq d-1 \tag{29}
\end{equation*}
$$

We prove Theorem 2.1 in Section 3.
Theorem 2.2 Let Y denote ad-class symmetric association scheme, with $d \geq 3$. Suppose E_{0}, \ldots, E_{d} is a Q-polynomial structure for Y with Krein parameters $q_{i j}^{h}$, and suppose Y is dual 1-thin with respect to at least one vertex. Then

$$
\begin{equation*}
q_{11}^{1}=0 \Rightarrow q_{1 i}^{i}=0 \quad 1 \leq i \leq d-1 \tag{30}
\end{equation*}
$$

We prove Theorem 2.2 in Section 4.

3. Proof of Theorem 2.1

Define a symmetric bilinear form on $\operatorname{Mat}_{X}(\mathbb{R})$ (where X is any set) by

$$
\begin{equation*}
\langle B, C\rangle=\operatorname{tr}\left(B^{t} C\right) \quad B, C \in \operatorname{Mat}_{X}(\mathbb{R}) \tag{31}
\end{equation*}
$$

Observe that $\langle B, C\rangle$ is just the sum of the entries of $B \circ C$. In particular, the form is positive definite.

Lemma 3.1 (Terwilliger [4]) Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$ denote a symmetric association scheme with associate matrices A_{0}, \ldots, A_{d} and intersection numbers $p_{i j}^{h}$. Fix a vertex $x \in X$, and write $E_{i}^{*}=E_{i}^{*}(x)$ for $0 \leq i \leq d$. Then:
(i) for $0 \leq h, h^{\prime}, i, i^{\prime}, j, j^{\prime} \leq d$,

$$
\begin{equation*}
\left\langle E_{i}^{*} A_{h} E_{j}^{*}, E_{i^{\prime}}^{*} A_{h^{\prime}} E_{j^{\prime}}^{*}\right\rangle=\delta_{h h^{\prime}} \delta_{i i^{\prime}} \delta_{j j^{\prime}} k_{h} p_{i j}^{h} ; \tag{32}
\end{equation*}
$$

(ii) for $0 \leq h, i, j \leq d$,

$$
\begin{equation*}
E_{h}^{*} A_{i} E_{j}^{*}=0 \Leftrightarrow p_{i j}^{h}=0 \tag{33}
\end{equation*}
$$

Proof of (i): Observe

$$
\begin{align*}
\left(E_{i}^{*} A_{h} E_{j}^{*}\right)_{y z} & =\left(E_{i}^{*}\right)_{y y}\left(A_{h}\right)_{y z}\left(E_{j}^{*}\right)_{z z} \tag{34}\\
& =\left(A_{i}\right)_{x y}\left(A_{h}\right)_{y z}\left(A_{j}\right)_{x z} \tag{35}
\end{align*}
$$

so that $\left(E_{i}^{*} A_{h} E_{j}^{*}\right)_{y z} \neq 0$ if and only if $x y \in R_{i}, y z \in R_{h}$, and $x z \in R_{j}$. Since the relations R_{0}, \ldots, R_{d} are disjoint, the matrices $E_{i}^{*} A_{h} E_{j}^{*}$ and $E_{i^{\prime}}^{*} A_{h^{\prime}} E_{j^{\prime}}^{*}$ have no non-zero entries in common unless $h=h^{\prime}, i=i^{\prime}, j=j^{\prime}$. In this case there are precisely $k_{h} p_{i j}^{h}$ non-zero entries, each equal to 1 . The result follows.

Proof of (ii): Immediate from (i).
Let Y denote a d-class symmetric association scheme, with vertex set X. Suppose A_{0}, \ldots, A_{d} is a P-polynomial structure for Y, with intersection numbers $p_{i j}^{h}$. Fix a vertex $x \in X$, and write $T=T(x), M^{*}=M^{*}(x)$, and $E_{i}^{*}=E_{i}^{*}(x)$ for $0 \leq i \leq d$.

There are three matrices in T which are of particular interest to us (their duals will be used in Section 4). These are the lowering matrix $L=L(x)$, the flat matrix $F=F(x)$, and the raising matrix $R=R(x)$, defined by

$$
\begin{align*}
L & =\sum_{i=1}^{d} E_{i-1}^{*} A_{1} E_{i}^{*} \tag{36}\\
F & =\sum_{i=0}^{d} E_{i}^{*} A_{1} E_{i}^{*} \tag{37}\\
R & =\sum_{i=0}^{d-1} E_{i+1}^{*} A_{1} E_{i}^{*} \tag{38}
\end{align*}
$$

It is easily shown using (25), (21), and (33) that

$$
\begin{equation*}
A_{1}=L+F+R . \tag{39}
\end{equation*}
$$

Recall that A_{1} generates the Bose-Mesner algebra M, so that A_{1} and $E_{0}^{*}, \ldots, E_{d}^{*}$ generate T. In particular, L, F, R, and $E_{0}^{*}, \ldots, E_{d}^{*}$ generate T by (39).

Lemma 3.2 Let Y denote a d-class symmetric association scheme, with vertex set X. Suppose A_{0}, \ldots, A_{d} is a P-polynomial structure for Y, with intersection numbers $p_{i j}^{h}$. Fix
a vertex $x \in X$, and write $T=T(x), L=L(x)$, and $E_{i}^{*}=E_{i}^{*}(x)$ for $0 \leq i \leq d$. If Y is 1-thin with respect to x, then:
(i) for any irreducible T-module W with $E_{1}^{*} W \neq 0$,

$$
\begin{equation*}
L E_{i}^{*} W=0 \Rightarrow E_{i}^{*} W=0 \quad 2 \leq i \leq d ; \tag{40}
\end{equation*}
$$

(ii) for $w \in T E_{1}^{*} V$,

$$
\begin{equation*}
L E_{i}^{*} w=0 \Rightarrow E_{i}^{*} w=0 \quad 2 \leq i \leq d \tag{41}
\end{equation*}
$$

(iii) for $B \in T E_{1}^{*}$,

$$
\begin{equation*}
L E_{i}^{*} B=0 \Rightarrow E_{i}^{*} B=0 \quad 2 \leq i \leq d \tag{42}
\end{equation*}
$$

Proof of (i): Let W be given. Fix an integer i with $2 \leq i \leq d$, and suppose $L E_{i}^{*} W=0$. Let W^{\prime} denote the subspace of W defined by

$$
\begin{equation*}
W^{\prime}=E_{i}^{*} W+\cdots+E_{d}^{*} W \tag{43}
\end{equation*}
$$

Observe by (36)-(38) and (13) that W^{\prime} is closed under multiplication by L, F, R, and $E_{0}^{*}, \ldots, E_{d}^{*}$. Since T is generated by these matrices, W^{\prime} is a T-module. Since $E_{1}^{*} W^{\prime}=0$ and $E_{1}^{*} W \neq 0, W^{\prime}$ is a proper submodule of W. Since W is irreducible, we now have $W^{\prime}=0$, and $E_{i}^{*} W \subseteq W^{\prime}$ is zero as desired.

Proof of (ii): Since V may be decomposed into a direct sum of irreducible T-modules, it suffices to show that the result holds for $w \in T E_{1}^{*} W$ where W is an irreducible T-module. Fix an integer i with $2 \leq i \leq d$ and an irreducible T-module W, and suppose $w \in T E_{1}^{*} W$ has $L E_{i}^{*} w=0$.

Suppose $E_{i}^{*} w \neq 0$. Observe $E_{1}^{*} W \neq 0$, since $0 \neq E_{i}^{*} w \in E_{i}^{*} T E_{1}^{*} W$. Since Y is l-thin with respect to x, W is thin and $\operatorname{dim} E_{i}^{*} W \leq 1$. In particular, $E_{i}^{*} w \in E_{i}^{*} W$ spans $E_{i}^{*} W$, and $L E_{i}^{*} W=0$. By (i) we have $E_{i}^{*} W=0$, and $E_{i}^{*} w=0$ for a contradiction. Thus $E_{i}^{*} w=0$ as desired.

Proof of (iii): Immediate from (ii).
Lemma 3.3 Let Y denote a d-class symmetric association scheme, with vertex set X. Suppose A_{0}, \ldots, A_{d} is a P-polynomial structure for Y, with intersection numbers $p_{i j}^{h}$. Fix a vertex $x \in X$, and write $L=L(x)$ and $E_{i}^{*}=E_{i}^{*}(x)$ for $0 \leq i \leq d$. Then:
(i) for $1 \leq i \leq d-1$,

$$
\begin{equation*}
L E_{i}^{*} A_{i+1} E_{1}^{*}=p_{1, i+1}^{i} E_{i-1}^{*} A_{i} E_{1}^{*} \tag{44}
\end{equation*}
$$

(ii) for $1 \leq i \leq d$, if $p_{1, i-1}^{i-1}=0$ then

$$
\begin{equation*}
L E_{i}^{*} A_{i} E_{1}^{*}=p_{1 i}^{i} E_{i-1}^{*} A_{i} E_{1}^{*} \tag{45}
\end{equation*}
$$

Proof of (i): Let i be given. Observe by (22), (25), (33), (21), and (11) that

$$
\begin{align*}
L E_{i}^{*} A_{i+1} E_{1}^{*} & =E_{i-1}^{*} A E_{i}^{*} A_{i+1} E_{1}^{*} \tag{46}\\
& =E_{i-1}^{*} A\left(\sum_{h=0}^{d} E_{h}^{*}\right) A_{i+1} E_{1}^{*} \tag{47}\\
& =E_{i-1}^{*} A A_{i+1} E_{1}^{*} \tag{48}\\
& =E_{i-1}^{*}\left(\sum_{h=0}^{d} p_{1, i+1}^{h} A_{h}\right) E_{1}^{*} \tag{49}\\
& =p_{1, i+1}^{i} E_{i-1}^{*} A_{i} E_{1}^{*}, \tag{50}
\end{align*}
$$

as desired.
Proof of (ii): Let i be given, with $p_{1, i-1}^{i-1}=0$. Observe as in (i) that

$$
\begin{align*}
L E_{i}^{*} A_{i} E_{1}^{*} & =E_{i-1}^{*} A E_{i}^{*} A_{i} E_{1}^{*} \tag{51}\\
& =E_{i-1}^{*} A\left(\sum_{h=0}^{d} E_{h}^{*}\right) A_{i} E_{1}^{*} \tag{52}\\
& =E_{i-1}^{*} A A_{i} E_{1}^{*} \tag{53}\\
& =E_{i-1}^{*}\left(\sum_{h=0}^{d} p_{1 i}^{h} A_{h}\right) E_{1}^{*} \tag{54}\\
& =p_{1 i}^{i} E_{i-1}^{*} A_{i} E_{1}^{*}, \tag{55}
\end{align*}
$$

as desired.
Proof of Theorem 2.1: Suppose Y is 1-thin with respect to x, and write $L=L(x)$ and $E_{i}^{*}=E_{i}^{*}(x)$ for $0 \leq i \leq d$. Suppose $p_{11}^{1}=0$, and suppose for a contradiction that $p_{1 i}^{i} \neq 0$ for some i with $2 \leq i \leq d-1$. Fix $i \geq 2$ minimal with $p_{1 i}^{i} \neq 0$. Then by Lemma 3.3,

$$
\begin{equation*}
0=L\left(p_{1 i}^{i} E_{i}^{*} A_{i+1} E_{1}^{*}-p_{1, i+1}^{i} E_{i}^{*} A_{i} E_{1}^{*}\right) \tag{56}
\end{equation*}
$$

and by Lemma 3.2(iii),

$$
\begin{equation*}
0=p_{1 i}^{i} E_{i}^{*} A_{i+1} E_{1}^{*}-p_{1, i+1}^{i} E_{i}^{*} A_{i} E_{1}^{*} \tag{57}
\end{equation*}
$$

The summands in (57) are nonzero by (33) and orthogonal by (32), for a contradiction. Thus $p_{1 i}^{i}=0$ for $2 \leq i \leq d-1$, as desired.

4. Proof of Theorem $\mathbf{2 . 2}$

Our proof is based upon the following result:

Lemma 4.1 (Cameron, Goethals, Seidel [2]) Let Y denote a d-class symmetric association scheme, with vertex set X, primitive idempotents E_{0}, \ldots, E_{d}, and Krein parameters $q_{i j}^{h}$. Fix a vertex $x \in X$, and write $A_{i}^{*}=A_{i}^{*}(x)$ for $0 \leq i \leq d$. Then:
(i) for $0 \leq h, h^{\prime}, i, i^{\prime}, j, j^{\prime} \leq d$,

$$
\begin{equation*}
\left\langle E_{i} A_{h}^{*} E_{j}, E_{i^{\prime}} A_{h^{\prime}}^{*} E_{j^{\prime}}\right\rangle=\delta_{h h^{\prime}} \delta_{i i^{\prime}} \delta_{j j^{\prime}} k_{h}^{*} q_{i j}^{h} ; \tag{58}
\end{equation*}
$$

(ii) for $0 \leq h, i, j \leq d$,

$$
\begin{equation*}
E_{h} A_{i}^{*} E_{j}=0 \Leftrightarrow q_{i j}^{h}=0 \tag{59}
\end{equation*}
$$

Proof of (i): $\quad \operatorname{Recall} \operatorname{tr}(B C)=\operatorname{tr}(C B)$, and observe by (15), (13), (18), (16), and (17) that

$$
\begin{align*}
\left\langle E_{i} A_{h}^{*} E_{j}, E_{i^{\prime}} A_{h^{\prime}}^{*} E_{j^{\prime}}\right\rangle & =\operatorname{tr}\left(E_{j} A_{h}^{*} E_{i} E_{i^{\prime}} A_{h^{\prime}}^{*} E_{j^{\prime}}\right) \tag{60}\\
& =\operatorname{tr}\left(E_{j^{\prime}} E_{j} A_{h}^{*} E_{i} E_{i^{\prime}} A_{h^{\prime}}^{*}\right) \tag{61}\\
& =\delta_{i i^{\prime}} \delta_{j j^{\prime}} \operatorname{tr}\left(E_{j} A_{h}^{*} E_{i} A_{h^{\prime}}^{*}\right) \tag{62}\\
& =\delta_{i i^{\prime}} \delta_{j j^{\prime}} \sum_{y, z \in X}\left(E_{j}\right)_{y z}\left(A_{h}^{*}\right)_{z z}\left(E_{i}\right)_{z y}\left(A_{h^{\prime}}^{*}\right)_{y y} \tag{63}\\
& =\delta_{i i^{\prime}} \delta_{j j^{\prime}}|X|^{2} \sum_{y, z \in X}\left(E_{j}\right)_{y z}\left(E_{h}\right)_{x z}\left(E_{i}\right)_{z y}\left(E_{h^{\prime}}\right)_{x y} \tag{64}\\
& =\delta_{i i^{\prime}} \delta_{j j^{\prime}}|X|^{2} \sum_{y \in X}\left(\left(E_{i} \circ E_{j}\right) E_{h}\right)_{y x}\left(E_{h^{\prime}}\right)_{x y} \tag{65}\\
& =\delta_{i i^{\prime}} \delta_{j j^{\prime}}|X| q_{i j}^{h} \sum_{y \in X}\left(E_{h}\right)_{y x}\left(E_{h^{\prime}}\right)_{x y} \tag{66}\\
& =\delta_{i i^{\prime}} \delta_{j j^{\prime}}|X| q_{i j}^{h}\left(E_{h^{\prime}} E_{h}\right)_{x x} \tag{67}\\
& =\delta_{h h^{\prime}} \delta_{i i^{\prime}} \delta_{j j^{\prime}}|X| q_{i j}^{h}\left(E_{h}\right)_{x x} \tag{68}\\
& =\delta_{h h^{\prime}} \delta_{i i^{\prime}} \delta_{j j^{\prime}} k_{h}^{*} q_{i j}^{h} \tag{69}
\end{align*}
$$

as desired.

Proof of (ii): Immediate from (i).
Let Y denote a d-class symmetric association scheme, with vertex set X. Suppose E_{0}, \ldots, E_{d} is a Q-polynomial structure for Y, with Krein parameters $q_{i j}^{h}$. Fix a vertex $x \in X$, and write $T=T(x), M^{*}=M^{*}(x)$, and $A_{i}^{*}=A_{i}^{*}(x)$ for $0 \leq i \leq d$.

The dual lowering matrix $L^{*}=L^{*}(x)$, the dual flat matrix $F^{*}=F^{*}(x)$, and the dual raising matrix $R^{*}=R^{*}(x)$ are defined by

$$
\begin{equation*}
L^{*}=\sum_{i=1}^{d} E_{i-1} A_{1}^{*} E_{i} \tag{70}
\end{equation*}
$$

$$
\begin{align*}
F^{*} & =\sum_{i=0}^{d} E_{i} A_{1}^{*} E_{i}, \tag{71}\\
R^{*} & =\sum_{i=0}^{d-1} E_{i+1} A_{1}^{*} E_{i} . \tag{72}
\end{align*}
$$

It is easily shown using (27), (12), and (59) that

$$
\begin{equation*}
A_{1}^{*}=L^{*}+F^{*}+R^{*} \tag{73}
\end{equation*}
$$

Recall that A_{1}^{*} generates the dual Bose-Mesner algebra M^{*}, so that A_{1}^{*} and E_{0}, \ldots, E_{d} generate T. In particular, L^{*}, F^{*}, R^{*}, and $E_{0}^{*}, \ldots, E_{d}^{*}$ generate T by (73).

Lemma 4.2 Let Y denote a d-class symmetric association scheme, with vertex set X. Suppose E_{0}, \ldots, E_{d} is a Q-polynomial structure for Y, with Krein parameters $q_{i j}^{h}$. Fix a vertex $x \in X$, and write $T=T(x), L^{*}=L^{*}(x)$, and $A_{i}^{*}=A_{i}^{*}(x)$ for $0 \leq i \leq d$. If Y is dual 1-thin with respect to x, then:
(i) for any irreducible T-module W with $E_{1} W \neq 0$,

$$
\begin{equation*}
L^{*} E_{i} W=0 \Rightarrow E_{i} W=0 \quad 2 \leq i \leq d ; \tag{74}
\end{equation*}
$$

(ii) for $w \in T E_{1} V$,

$$
\begin{equation*}
L^{*} E_{i} w=0 \Rightarrow E_{i} w=0 \quad 2 \leq i \leq d ; \tag{75}
\end{equation*}
$$

(iii) for $B \in T E_{1}$,

$$
\begin{equation*}
L^{*} E_{i} B=0 \Rightarrow E_{i} B=0 \quad 2 \leq i \leq d . \tag{76}
\end{equation*}
$$

Proof: Similar to the proof of Lemma 3.2.
Lemma 4.3 Let Y denote a d-class symmetric association scheme, with vertex set X. Suppose E_{0}, \ldots, E_{d} is a Q-polynomial structure for Y, with Krein parameters $q_{i j}^{h}$. Fix a vertex $x \in X$, and write $L^{*}=L^{*}(x)$ and $A_{i}^{*}=A_{i}^{*}(x)$ for $0 \leq i \leq d$. Then:
(i) for $1 \leq i \leq d$,

$$
\begin{equation*}
L^{*} E_{i} A_{i+1}^{*} E_{1}=q_{1, i+1}^{i} E_{i-1} A_{i}^{*} E_{1} ; \tag{77}
\end{equation*}
$$

(ii) for $1 \leq i \leq d$, if $q_{1, i-1}^{i-1}=0$ then

$$
\begin{equation*}
L^{*} E_{i} A_{i}^{*} E_{1}=q_{1 i}^{i} E_{i-1} A_{i}^{*} E_{1} \tag{78}
\end{equation*}
$$

Proof: Similar to the proof of Lemma 3.3.
Proof of Theorem 2.2: \quad Similar to the proof of Theorem 2.1.

References

1. A.E. Brouwer, A.M. Cohen, and A. Neumaier. Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
2. P. Cameron, J. Goethals, and J. Seidel, "The Krein condition, spherical designs, Norton algebras, and permutation groups," Indag. Math. 40 (1978), 196-206.
3. G. Dickie. "A note on Q-polynomial association schemes," J. Alg. Combin. Submitted.
4. P. Terwilliger. "The subconstituent algebra of an association scheme. I," J. Alg. Combin. 1(4) (1992), 363-388.
