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Abstract. It is well known that imprimitiveP -polynomial association schemesX = (X, {Ri}0≤i≤d) with
k1 > 2 are either bipartite or antipodal, i.e., intersection numbers satisfy eitherai = 0 for all i, or bi = cd−i for
all i 6= [d/2]. In this paper, we show that imprimitiveQ-polynomial association schemesX = (X, {Ri}0≤i≤d)
with d > 6 andk∗1 > 2 are either dual bipartite or dual antipodal, i.e., dual intersection numbers satisfy either
a∗i = 0 for all i, or b∗i = c∗d−i for all i 6= [d/2].
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1. Introduction

A d-class symmetric association schemeis a pairX = (X, {Ri}0≤i≤d), whereX is a finite
set, eachRi is a nonempty subset ofX ×X for i = 0, 1, . . . , d satisfying the following.

(i) R0 = {(x, x)|x ∈ X}.

(ii) {Ri}0≤i≤d is a partition ofX ×X, i.e.,

X ×X = R0 ∪R1 ∪ · · · ∪Rd, Ri ∩Rj = ∅ if i 6= j.

(iii) tRi = Ri for i = 0, 1, . . . , d, wheretRi = {(y, x)|(x, y) ∈ Ri}.

(iv) There exist integersphi,j such that for allx, y ∈ X with (x, y) ∈ Rh,

phi,j = |{z ∈ X|(x, z) ∈ Ri, (z, y) ∈ Rj}|.

We refer toX as thevertex setof X , and to the integersphi,j as theintersection numbers
of X .

Let X = (X, {Ri}0≤i≤d) be a symmetric association scheme. LetMatX(R) denote
the algebra of matrices over the realsR with rows and columns indexed byX. The i-th
adjacency matrixAi ∈ MatX(R) of X is defined by

(Ai)xy =
{

1 if (x, y) ∈ Ri
0 otherwise

(x, y ∈ X).

From(i)− (iv) above, it is easy to see the following.
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(i)′ A0 = I.

(ii)′ A0 + A1 + · · · + Ad = J , whereJ is the all-1s matrix, andAi ◦ Aj = δi,jAi for
0 ≤ i, j ≤ d, where◦ denotes the entry-wise matrix product.

(iii)′ tAi = Ai for 0 ≤ i ≤ d.

(iv)′ AiAj =
d∑

h=0

phi,jAh for 0 ≤ i, j ≤ d.

By theBose-Mesner algebraofX we mean the subalgebraM of MatX(R) generated by
the adjacency matricesA0, A1, . . . , Ad. Observe by(iv)′ above that the adjacency matrices
form a basis forM. Moreover,M consists of symmetric matrices and it is closed under◦.
In particular,M is commutative in both multiplications.

Since the algebraM consists of commutative symmetric matrices, there is a second basis
E0, E1, . . . , Ed satisfying the following.

(i)′′ E0 =
1
|X|J .

(ii)′′ E0 + E1 + · · ·+ Ed = I, andEiEj = δi,jEi for 0 ≤ i, j ≤ d.

(iii)′′ tEi = Ei for 0 ≤ i ≤ d.

(iv)′′ Ei ◦ Ej =
1
|X|

d∑
h=0

qhi,jEh, (0 ≤ i, j ≤ d) for some real numbersqhi,j .

E0, E1, . . . , Ed are the primitive idempotents of the Bose-Mesner algebra. The parameters
qhi,j are calledKrein parameters.

Conventionally, we assumephi,j andqhi,j are zero if one of the indicesh, i, j is out of range
{0, 1, . . . , d} otherwise mentioned clearly.

A symmetric association schemeX = (X, {Ri}0≤i≤d) with respect to the ordering
R0, R1, . . . , Rd of the relations is called aP -polynomial association schemeif the following
conditions are satisfied.

(P1) phi,j = 0 if one ofh, i, j is greater than the sum of the other two.

(P2) phi,j 6= 0 if one ofh, i, j is equal to the sum of the other two for0 ≤ h, i, j ≤ d.

In this case we writeci = pii−1,1, ai = pii,1, bi = pii+1,1 andki = p0
i,i for i = 0, 1, . . . , d.

A symmetric association schemeX = (X, {Ri}0≤i≤d) with respect to the ordering
E0, E1, . . . , Ed of the primitive idempotents of the Bose-Mesner algebra is called aQ-
polynomial association schemeif the following conditions are satisfied.

(Q1) qhi,j = 0 if one ofh, i, j is greater than the sum of the other two.

(Q2) qhi,j 6= 0 if one ofh, i, j is equal to the sum of the other two for0 ≤ h, i, j ≤ d.
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In this case we writec∗i = qii−1,1, a∗i = qii,1, b∗i = qii+1,1 andk∗i = q0
i,i for i = 0, 1, . . . , d.

If X = (X, {Ri}0≤i≤d) is aP -polynomial association scheme with respect to the ordering
R0, R1, . . . , Rd, then the graphΓ = (X,R1) with vertex setX, edge set defined byR1

becomes a distance-regular graph. In this case,

Ri = {(x, y) ∈ X ×X|∂(x, y) = i},

where∂(x, y) denotes the distance betweenx andy. Conversely, every distance-regular
graph is obtained in this way.
Q-polynomial association schemes appear in design theory in connection with tight condi-

tions, but it is not much studied compared withP -polynomial association schemes, though
there are extensive studies ofP - andQ-polynomial association schemes.

A symmetric association schemeX = (X, {Ri}0≤i≤d) is said to beimprimitive if it
satisfies one of the following equivalent conditions.

(A) By a suitable rearrangement of indices1, 2, . . . , d, there exists an indexs (0 < s < d)
such thatAiAj is a linear combination ofA0, A1, . . . , As for all i, j (0 ≤ i, j ≤ s).

(E) By a suitable rearrangement of indices1, 2, . . . , d, there exists an indext (0 < t < d)
such thatEi ◦ Ej is a linear combination ofE0, E1, . . . , Et for all i, j (0 ≤ i, j ≤ t).

The imprimitivity of association schemes including the equivalence of the above defini-
tions were first studied in [3]. We also refer the readers to sections 2.4, 2.9 and 3.6 in [1]
and sections 2.4, 4.1 and 4.2 in [2].

The following is well known. See the references above.

Theorem 1 LetX = (X, {Ri}0≤i≤d) be an imprimitiveP -polynomial association scheme
with respect to the orderingR0, R1, . . . , Rd of the relations. Ifk1 > 2, then one of the
following holds.

(i) ai = 0 for all i = 0, 1, . . . , d.

(ii) bi = cd−i for all i = 0, 1, . . . , d except possibly fori = [d/2].

If the condition(i) is satisfied, the scheme is calledbipartite, and if the condition(ii) is
satisfied, it is calledantipodal, by adopting the terminologies of the distance-regular graph
associated with theP -polynomial structure.

The following is our main result in this paper.

Theorem 2 LetX = (X, {Ri}0≤i≤d) be an imprimitiveQ-polynomial association scheme
with respect to the orderingE0, E1, . . . , Ed of the primitive idempotents. Ifd > 6 and
k∗1 > 2, then one of the following holds.

(i) a∗i = 0 for all i = 0, 1, . . . , d.

(ii) b∗i = c∗d−i for all i = 0, 1, . . . , d except possibly fori = [d/2].
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If the condition(i) is satisfied, the scheme is calleddual bipartite, and if the condition
(ii) is satisfied, it is calleddual antipodal. It is known that ifk∗1 = 2, thenX is an ordinary
polygon.

The proof of Theorem 1 is relatively easy and uses the inequalities based on the combi-
natorial structure of distance-regular graphs. We substitute that part by matrix identities to
prove Theorem 2. These identities were used in Dickie’s paper [5], which is a part of [4,
Chapter 4].

2. P -polynomial C-algebra

We begin with a definition ofP -polynomialC-algebra.
Letdbe a positive integer and letci+1, ai, bi−1 (i = 0, 1, . . . , d) be real numbers satisfying

the following.

(i) a0 = b−1 = cd+1 = 0 andc1 = 1.

(ii) ci + ai + bi = b0 = cd + ad for i = 1, . . . , d− 1.

(iii) bici+1 > 0 for i = 0, 1, . . . , d− 1.

A P -polynomialC-algebra is an algebra over the realsR with basisx0, x1, . . . , xd, which
satisfies the following.

x0x0 = x0, x1xi = bi−1xi−1 + aixi + ci+1xi+1, (0 ≤ i ≤ d), (1)

wherex−1 andxd+1 are indeterminates. Thenxi can be written as a polynomial ofx1 of
degreei andx0 = 1, the unit element in this algebra. Define constantsphi,j by the following.

xixj =
d∑

h=0

phi,jxh, 0 ≤ i, j ≤ d. (2)

Since the algebra becomes commutative,phi,j = phj,i. Letki = p0
i,i, n = k0 +k1 + · · ·+kd,

andne0 = x0 + x1 + · · · + xd. Then it is easy to check by(i) and(ii) thatk1 = b0 and
thatx1(ne0) = k1(ne1).

The algebraM =< x0, x1, . . . , xd > defined above becomes aC-algebra in the sense
defined in [1, Section 2.5]. See also [1, Section 3.6] and(2) in the following lemma. In
particular,M has another basis{e0, e1, . . . , ed} consisting of primitive idempotents and
the dual algebraM∗ defined byxi ◦ xj = δi,jxi becomes aC-algebra with respect to the
basisne0 = x0 + x1 + · · ·+ xd, ne1, . . . , ned. Let

ei ◦ ej =
1
n

d∑
h=0

qhi,jeh.

As the intersection numbers and the Krein parameters, by convention we assume the pa-
rametersphi,j andqhi,j of C-algebras are zero if one of the indicesh, i, j is out of range
{0, 1, . . . , d}.
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Lemma 1 LetM =< x0, x1, . . . , xd > be aP -polynomialC-algebra. Letki = p0
i,i.

Then the following hold.

(1) phi+1,jci+1 = phi,j−1bj−1 + phi,j(aj − ai) + phi,j+1cj+1 − phi−1,jbi−1.

(2) p0
i,j = δi,jki, khphi,j = kip

i
j,h andki > 0 for i = 0, 1, . . . , d. In particular,phi,j = 0 if

and only ifpih,j = 0.

(3) phi,j = 0 if one ofh, i, j is greater than the sum of the other two.

(4) phi,j 6= 0 if one ofh, i, j is equal to the sum of the other two for0 ≤ h, i, j ≤ d.

(5) pi+hi,h+1ch+1 = pi+hi,h (ai + · · ·+ ai+h − a1 − · · · − ah).

Proof: (1) Compute the coefficient ofxh in the expression of(x1xi)xj = (x1xj)xi by
applying (1) and then (2), and we obtain the formula.

(2) First we prove thatci+1p
0
i+1,j+1 = δi,jbjp

0
i,j for 0 ≤ i ≤ j ≤ d − 1 by induction

on i. If i = 0, then this is obvious. Compute the coefficient ofx0 in the expression of
(x1xi)xj = xi(x1xj) in two ways. By induction hypothesisp0

l,m = 0 for l < i + 1,m,
we haveci+1p

0
i+1,j+1 = bjp

0
i,j . Sincep0

i,j = δi,jp
0
i,i, we have the assertion. Hence we

havep0
i,j = δi,jki andkibi = ki+1ci+1. By our assumptionbici+1 > 0, we haveki > 0 as

k0 = 1.
Next compute the coefficient ofx0 in the expression of(xixj)xh = (xjxh)xi in two

ways using the formulap0
i,j = δi,jki just shown above, and we obtain the second formula

khp
h
i,j = kip

i
j,h.

(3) By (2), we may assume thath > i+ j. Sincexi is expressed as a polynomial ofx1

of degreei, we have the assertion.
(4) By (2), we may assume thath = i+ j. Then by(1), pi+ji,j ci = pi+ji−1,j+1cj+1. Hence

we have the assertion by induction oni.
(5) This follows by induction onh using(1).

By definition, it is easy to see that the Bose-Mesner algebraM of aP -polynomial associ-
ation scheme becomes aP -polynomialC-algebra with respect to the basisA0, A1, . . . , Ad.
Moreover, if we take◦ product, the dual Bose-Mesner algebraM∗ ofQ-polynomial associ-
ation scheme becomes aP -polynomialC-algebra with respect to the basis|X|E0, |X|E1,
. . . , |X|Ed.

In both of these cases, the structure constants and Krein parameters are nonnegative, i.e.,
phi,j ≥ 0 andqhi,j ≥ 0. The latter inequality is called the Krein condition.

Lemma 2 LetM =< x0, x1, . . . , xd > be aP -polynomialC-algebra. Suppose the
structure constantsphi,j are all nonnegative. Then the following hold.

(1) If phi+1,j−1 = phi+1,j = phi+1,j+1 = 0 for 0 ≤ i < d, thenphi,j = phi+2,j = 0.

(2) If phl,j−l+i = phl,j−l+i+1 = · · · = phl,j+l−i = 0 for i ≤ l and 0 ≤ i < d, then
phi,j = ph2l−i,j = 0.
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(3) For all i, j with 0 ≤ i, h, i+ h ≤ d, ai = ai+1 = · · · = ai+h = 0 impliesa1 = · · · =
ah = 0.

(4) For all h andi with 0 ≤ h, i, i+ h ≤ d, the following hold.

(i) If phi,i+h−1 = 0, thenai ≤ ai+h. Moreover ifai = ai+h, thenphi+1,i+h = 0.

(ii) If phi+1,i+h = 0, thenai ≥ ai+h. Moreover ifai = ai+h, thenphi,i+h−1 = 0.

(iii) If phi,i+h−1 = phi+1,i+h = 0, thenai = ai+h.

(5) For all h andi with 0 ≤ i ≤ h ≤ d, the following hold.

(i) If phi,h−i+1 = 0, thenai ≤ ah−i. Moreover ifai = ah−i, thenphi+1,h−i = 0.

(ii) If phi+1,h−i = 0, thenai ≥ ah−i. Moreover ifai = ah−i, thenphi,h−i+1 = 0.

(iii) If phi,h−i+1 = phi+1,h−i = 0, thenai = ah−i.

Proof: (1) Replacingi by i+ 1, by Lemma 1(1) we have

phi,jbi + phi+2,jci+2 = phi+1,j−1bj−1 + phi+1,j(aj − ai+1) + phi+1,j+1cj+1.

Sincei < d by our assumption,bi > 0 and we have the assertion. Note thatbi = pi1,i+1

with i < d is nonzero by the definition ofP -polynomialC-algebra and it is nonnegative
by our assumption.

(2) We prove the assertion by induction onm = l− i. If l = i, there is nothing to prove.
Suppose the assertion holds form = l − i− 1 ≥ 0. Then

phi+1,j−1 = phi+1,j = phi+1,j+1 = ph2l−i−1,j−1 = ph2l−i−1,j = ph2l−i−1,j+1 = 0.

By (1), we havephi,j = ph2l−i,j = 0.
(3) This follows from Lemma 1(4), (5) and the nonnegativity of theaj ’s.
(4) Sincephi−1,i+h = phi,i+h+1 = 0 by Lemma 1(3), it follows from Lemma 1(1) by

settingj = i+ h that

phi+1,i+hci+1 + phi,i+hai = phi,i+h−1bi+h−1 + phi,i+hai+h.

Sincephi,i+h 6= 0, we have the assertion.
(5) This is similar to(4). Consider the following.

phi+1,h−ici+1 + phi,h−iai = phi,h−i+1ch−i+1 + phi,h−iah−i.

Lemma 3 LetM =< x0, x1, . . . , xd > be aP -polynomialC-algebra such that the
structure constantsphi,j are all nonnegative. Suppose for a positive integerα, pαi,jα 6= 0
only if i ≡ 0 (mod α). Thenpαl,m 6= 0 only if l ≡ m or −m (mod α).

Proof: It suffices to considerpαl,m with 0 < m− l < α by Lemma 1(3). We may assume
that (2i − 1)α < l + m < 2iα or 2iα < l + m < (2i + 1)α. In the first case, there
exists0 ≤ β ≤ [α/2] − 1 such thatm = iα − β or iα + β asl < m. Similarly, in the
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latter case, there exists0 ≤ β ≤ [α/2] − 1 such thatl = iα − β or iα + β. Defineγ by
the following: l = (i − 1)α + β + γ in the first case andm = (i + 1)α − β − γ in the
latter. Since0 < m− l < α andm+ l is in the corresponding range, in each case we have
1 ≤ γ ≤ α− 1 and that2β + γ < α. Thus there are four cases.

(i) l = (i− 1)α+ β + γ andm = iα− β.

(ii) l = (i− 1)α+ β + γ andm = iα+ β.

(iii) l = iα− β andm = (i+ 1)α− β − γ.

(iv) l = iα+ β andm = (i+ 1)α− β − γ.

We apply Lemma 2(2). Sincepα(i−1)α+γ,iα = · · · = pα(i−1)α+2β+γ,iα = 0, pαl,m = 0 in
the first two cases. Sincepαiα,(i+1)α−2β−γ = · · · = pαiα,(i+1)α−γ = 0, pαl,m = 0 in the last
two cases.

The following is Proposition 6.2 in [1] but the description of it involves an error. Hence
we restate the corrected version below. Note that we do not know ifbt = ct+1 when
α = 2t+ 1.

Proposition 1 LetM =< xi | 0 ≤ i ≤ d > be aP -polynomialC-algebra with respect to
the basisx0, x1, . . . , xd. Assumephi,j ≥ 0 andqhi,j ≥ 0 for all h, i, j. Let< xβ | β ∈ T >
be a properC-subalgebra ofM. Then

T = {0, α, 2α, 3α, . . .} for someα ∈ {2, d, d
s
,

2d+ 1
2s+ 1

,
2d

2s+ 1
}.

Let the following be the array of defining parameters, ci
ai
bi

 =

 ∗ 1 c2 · · · cd−1 cd
0 a1 a2 · · · ad−1 ad
b0 b1 b2 · · · bd−1 ∗

 .

ThenM has aC-subalgebra< xβ | β ∈ T > with (i) α = 2, (ii) α = d, (iii)
α ∈ {ds , 2d+1

2s+1 ,
2d

2s+1} respectively if and only if the following hold.

(i) a2 = a4 = · · · = 0 anda1 = a3 = · · ·.

(ii) bi = cd−i for all i except possibly fori = [d/2].

(iii) The parametersch, ah, bh satisfy the following for0 ≤ h ≤ d − 1. bi = cα−i =
bjα+i = c(j+1)α−i for all 1 ≤ i ≤ α− 1 and1 ≤ j except fori = [α/2], ai = aα−i =
ajα+i = a(j+1)α−i for all 0 ≤ i ≤ α and1 ≤ j except fori = [α/2], [(α+ 1)/2] with
oddα. Moreover,

(cd, ad) =


(b0, 0) if α = d

s

(c(α−1)/2, a(α−1)/2 + b(α−1)/2) if α = 2d+1
2s+1

(cα/2 + bα/2, aα/2) if α = 2d
2s+1 .

Note that(i) and(ii) are special cases of(iii) for α = 2 andα = d, respectively.
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3. Vanishing Conditions of Krein Parameters

Only a few restrictions of the Krein parametersqhi,j of symmetric association schemes
are known except those derived algebraically using Lemma 1. We first list them in the
following.

Proposition 2 LetX = (X, {Ri}0≤i≤d) be a symmetric association scheme. LetE0, E1,
. . . , Ed be primitive idempotents and letqhi,j be the Krein parameters. Then the following
hold.

(1) qhi,j ≥ 0 for all 0 ≤ h, i, j ≤ d.

(2) For 0 ≤ h, i, j ≤ d, we have

qhi,j = 0⇔
∑
u∈X

(Eh)ux(Ei)uy(Ej)uz = 0 for all x, y, z ∈ X.

Proposition 2(1) is known as Krein condition and(2) is in [3]. See also [1, Theorem
2.3.8, Proposition 2.8.3].

Lemma 4 LetX = (X, {Ri}0≤i≤d) be a symmetric association scheme. Let
E0, E1, . . . , Ed be primitive idempotents and letqhi,j be the Krein parameters. Suppose
{i | qij,kqil,m 6= 0} ⊂ {h}. Then for all integers0 ≤ h, i, j, k, l,m ≤ d and all vertices
a, a′, b, b′, the following hold.

(1)
∑
e∈X

(Ej)ea(Ek)ea′(El)eb(Em)eb =
qhl,m
|X|

∑
e∈X

(Ej)ea(Ek)ea′(Eh)eb.

(2)
∑
e∈X

(Ej)ea(Ek)ea′(El)eb(Em)eb′ =
∑

e,e′∈X
(Ej)ea(Ek)ea′(Eh)ee′(El)e′b(Em)e′b′ .

Proof: (1) By Proposition 2(2), we have∑
e∈X

(Ej)ea(Ek)ea′(El)eb(Em)eb

=
∑
e∈X

(Ej)ea(Ek)ea′(El ◦ Em)eb

=
1
|X|

d∑
i=0

qil,m
∑
e∈X

(Ej)ea(Ek)ea′(Ei)eb

=
qhl,m
|X|

∑
e∈X

(Ej)ea(Ek)ea′(Eh)eb.
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(2) SinceI = E0 + E1 + · · ·+ Ed, similarly we have∑
e∈X

(Ej)ea(Ek)ea′(El)eb(Em)eb′

=
∑

e,e′∈X
(Ej)ea(Ek)ea′(I)ee′(El)e′b(Em)e′b′

=
d∑
i=0

∑
e,e′∈X

(Ej)ea(Ek)ea′(Ei)ee′(El)e′b(Em)e′b′

=
d∑
i=0

∑
e′∈X

(∑
e∈X

(Ej)ea(Ek)ea′(Ei)ee′

)
(El)e′b(Em)e′b′

=
d∑
i=0

∑
e∈X

(Ej)ea(Ek)ea′

(∑
e′∈X

(Ei)ee′(El)e′b(Em)e′b′

)
.

Comparing the last two expressions using Proposition 2(2) we have the right hand side of
(2) by our assumption.

Proposition 3 Let X = (X, {Ri}0≤i≤d) be aQ-polynomial association scheme with
respect to the orderingE0, E1, . . . , Ed of primitive idempotents. Suppose that

{l | qlj,h+iq
l
i−j,h+j 6= 0} ⊂ {h+ i− j}.

Then forh ≥ 0, i ≥ j ≥ 1 with h+ i+ j ≤ d, qh+i
i,h+j = 0 implies that qh+j

j,h+j = 0.

Proof: Sinceqh+i
i,h+j = 0, by Proposition 2,

0 =
qij,i−j
|X|

∑
u∈X

(Eh+i)ux(Ei)uy(Eh+j)uz

=
∑
u∈X

(
qij,i−j
|X| (Ei)uy

)
(Eh+i)ux(Eh+j)uz

=
∑
u∈X

((Ej ◦ Ei−j)Ei)uy(Eh+i)ux(Eh+j)uz

=
∑
u∈X

∑
v∈X

(Ej)uv(Ei−j)uv(Ei)vy(Eh+i)ux(Eh+j)uz

=
∑
v∈X

(Ei)vy

(∑
u∈X

(Ej)uv(Eh+i)ux(Ei−j)uv(Eh+j)uz

)
.

Since{l | qlj,h+iq
l
i−j,h+j 6= 0} ⊂ {h+ i− j}, by Lemma 4(2),

=
∑
u∈X

∑
v∈X

∑
w∈X

(Ei)vy(Ej)uv(Eh+i)ux(Eh+i−j)uw(Ei−j)wv(Eh+j)wz.
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Since this holds for arbitraryx, y, z, we have

0 =
∑

x,y,z∈X
(Eh+i+j)xy(Eh+j)yz(Ej)xz ×∑

u,v,w∈X
(Ei)vy(Ej)uv(Eh+i)ux(Eh+i−j)uw(Ei−j)wv(Eh+j)wz

=
∑

y,z,v,w∈X
(Eh+j)yz(Ei)vy(Ei−j)wv(Eh+j)wz ×∑

x,u∈X
(Eh+i+j)xy(Ej)xz(Eh+i)ux(Ej)uv(Eh+i−j)uw.

Since{l | qlh+i+j,jq
l
j,h+i−j 6= 0} ⊂ {h+ i}, by Lemma 4(2) we have

=
∑

y,z,v,w∈X
(Eh+j)yz(Ei)vy(Ei−j)wv(Eh+j)wz ×∑

x∈X
(Eh+i+j)xy(Ej)xz(Ej)xv(Eh+i−j)xw

=
∑

x,z,w∈X
(Eh+j)wz(Ej)xz(Eh+i−j)xw ×∑

y,v∈X
(Eh+i+j)yx(Eh+j)yz(Ei)yv(Ej)xv(Ei−j)wv.

Since{l | qlh+i+j,h+jq
l
j,i−j 6= 0} ⊂ {i}, by Lemma 4(2) we have

=
∑

x,z,w∈X
(Eh+j)wz(Ej)xz(Eh+i−j)xw ×∑

y∈X
(Eh+i+j)yx(Eh+j)yz(Ej)xy(Ei−j)wy

=
∑

x,z,w∈X
(Eh+j)wz(Ej)xz(Eh+i−j)xw ×∑

y∈X
(Eh+j)yz(Ei−j)yw(Ej)yx(Eh+i+j)yx.

Since{l | qlh+j,i−jq
l
j,h+i+j 6= 0} ⊂ {h+ i}, by Lemma 4(1) we have

=
qh+i
j,h+i+j

|X|
∑

x,z,w∈X
(Eh+j)wz(Ej)xz(Eh+i−j)xw ×∑

y∈X
(Eh+j)yz(Ei−j)yw(Eh+i)yx

=
qh+i
j,h+i+j

|X|
∑
y,z∈X

(Eh+j)yz ×∑
x,w∈X

(Eh+i)xy(Ej)xz(Eh+i−j)xw(Ei−j)wy(Eh+j)wz.
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Since{l | qlh+i,jq
l
i−j,h+j 6= 0} ⊂ {h+ i− j}, by Lemma 4(2), we have

=
qh+i
j,h+i+j

|X|
∑
y,z∈X

(Eh+j)yz
∑
x∈X

(Eh+i)xy(Ej)xz(Ei−j)xy(Eh+j)xz

=
qh+i
j,h+i+j

|X|
∑
x,z∈X

(Ej)xz(Eh+j)xz
∑
y∈X

(Ei−j)xy(Eh+i)xy(Eh+j)yz

=
qh+i
j,h+i+j

|X|
∑
x,z∈X

(Ej)xz(Eh+j)xz
∑
y∈X

((Ei−j) ◦ (Eh+i))xy(Eh+j)yz

=
qh+i
j,h+i+jq

h+j
i−j,h+i

|X|2
∑
x,z∈X

(Ej)xz(Eh+j)xz(Eh+j)xz

=
qh+i
j,h+i+jq

h+j
i−j,h+i

|X|2
∑
x∈X

(∑
z∈X

((Ej) ◦ (Eh+j))xz(Eh+j)zx

)

=
qh+i
j,h+i+jq

h+j
i−j,h+iq

h+j
j,h+j

|X|3
∑
x∈X

(Eh+j)xx.

SinceEh+j is a nonzero idempotent,∑
x∈X

(Eh+j)xx = trace(Eh+j) = rank(Eh+j) 6= 0.

Moreover,qh+i
j,h+i+j 6= 0 andqh+j

i−j,h+i 6= 0 by (Q2). Henceqh+j
j,h+j = 0.

Corollary 1 LetX = (X, {Ri}0≤i≤d) be aQ-polynomial association scheme with respect
to the orderingE0, E1, . . . , Ed of primitive idempotents.

(1) For h ≥ 0, i ≥ 1 with h+ i+ 1 ≤ d,

qh+i
i,h+1 = qh+i

1,h+i = 0 implies that qh+1
1,h+1 = 0.

(2) For h ≥ 0, i ≥ 2 with h+ i+ 2 ≤ d,

qh+i
i,h+2 = qh+i

2,h+i = qh+i
2,h+i−1 = 0 implies that qh+2

2,h+2 = 0.

Proof: (1) Sinceqh+i
1,h+i = 0, by (Q2) we have the following.

{l | ql1,h+iq
l
i−1,h+1 6= 0} ⊂ {h+ i− 1}.

Hence we have the assertion from Proposition 3 by settingj = 1.
(2) Sinceqh+i

2,h+i = qh+i
2,h+i−1, by (Q2) we have the following.

{l | ql2,h+iq
l
i−2,h+2 6= 0} ⊂ {h+ i− 2}.
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Hence we have the assertion from Proposition 3 by settingj = 2.

By settingh = 0 in Corollary 1, we obtain the result of G. A. Dickie in [4, 5]. Hence
the proposition is a generalization of it. The following result forP -polynomial association
schemes is not used elsewhere in this paper but it is the dual of the result above, which can
be proved very similarly. The proof suggests a possible way to find vanishing conditions
and its proof inQ-polynomial association schemes.

Proposition 4 Let X = (X, {Ri}0≤i≤d) be aP -polynomial association scheme with
respect to the orderingR0, R1, . . . , Rd of relations. Suppose that

{l | plj,h+ip
l
i−j,h+j 6= 0} ⊂ {h+ i− j}.

Then forh ≥ 0, i ≥ j ≥ 1, andh+ i+ j ≤ d, ph+i
i,h+j = 0 implies that ph+j

j,h+j = 0.

Proof: Supposeph+j
j,h+j 6= 0. Then there are verticesα, β, γ ∈ X such that

(α, β), (α, γ) ∈ Rh+j and (β, γ) ∈ Rj .

Sinceph+j
i−j,h+i 6= 0 by (P2), there exists a vertexδ ∈ X such that(α, δ) ∈ Ri−j and

(δ, β) ∈ Rh+i. Consider two triples(δ, β, γ) and(δ, α, γ). Since{l | plh+i,jp
l
i−j,h+j 6=

0} ⊂ {h+ i− j}, (δ, γ) ∈ Rh+i−j . Since(β, δ) ∈ Rh+i andph+i
h+i+j,j 6= 0 by (P2), there

exists a vertexε ∈ X such that(β, ε) ∈ Rh+i+j and(ε, δ) ∈ Rj . Consider two triples
(ε, β, α) and(ε, δ, α). Since{l | plh+i+j,h+jp

l
j,i−j 6= 0} ⊂ {i}, we have(ε, α) ∈ Ri.

Next consider two triples(ε, β, γ) and(ε, δ, γ). Since{l | plh+i+j,jp
l
j,h+i−j 6= 0} ⊂

{h+ i}, we have(ε, γ) ∈ Rh+i. Finally consider a triple(ε, α, γ). Since

(ε, γ) ∈ Rh+i, (ε, α) ∈ Ri, and (α, γ) ∈ Rh+j ,

ph+i
i,h+j 6= 0, which is a contradiction.

4. Proof of Main Theorem

In this section, we prove the following result. It is obvious that Theorem 2 is a direct
consequence of it.

Theorem 3 LetX = (X, {Ri}0≤i≤d) be aQ-polynomial association scheme with respect
to the orderingE0, E1, . . . , Ed of the primitive idempotents. SupposeX is imprimitive. Or
more precisely, suppose the linear span of{Ei | i ∈ T} is closed under◦ product for some
proper subsetT of {0, 1, . . . , d} with T 6= {0}. In addition, assume thatk∗1 > 2. Then
T = {0, α, 2α, 3α, . . .} for someα ≥ 2, and one of the following holds.

(i) α = 2 anda∗i = 0 for all i.

(ii) α = d andb∗i = c∗d−i for all i = 0, 1, . . . , d except possibly fori = [d/2].
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(iii) d = 4, α = 3, and the parameters satisfy the following conditions. c∗i
a∗i
b∗i

 =

 ∗ 1 c∗2 c∗3 1
0 0 a∗2 0 k∗ − 1
k∗ k∗ − 1 1 b∗3 ∗

 .

(iv) d = 6, α = 3, and the parameters satisfy the following conditions. c∗i
a∗i
b∗i

 =

 ∗ 1 c∗2 c∗3 1 c∗5 k∗

0 0 a∗4 + a∗5 0 a∗4 a∗5 0
k∗ k∗ − 1 1 b∗3 b∗4 1 ∗

 .

It is not difficult to see from Proposition 1 that if one of the conditions(i) − (iv) of the
theorem above holds, then the linear span of{Ei | i ∈ T} is closed under◦ product, where
T = {0, α, 2α, 3α, . . .}. In particular, the association schemeX is imprimitive.

Throughout this section assume the following:

X = (X, {Ri}0≤i≤d) is aQ-polynomial association scheme with respect to the ordering
E0, E1, . . . , Ed of the primitive idempotents such that the linear span of{Ei | i ∈ T} is
closed under◦ product for some proper subsetT of {0, 1, . . . , d} with T 6= {0}.

Under the assumption above,M∗ =< |X|E0, |X|E1, . . . , |X|Ed > with ◦ product is a
P -polynomialC-algebra with nonnegativephi,j andqhi,j . Hence we can apply Proposition
1. In particular, we have the following two lemmas as direct consequences.

Lemma 5 (1) T = {0, α, 2α, 3α, . . .} for someα ≥ 2.

(2) Letβ = [α/2]. Thend ≡ 0 or β (mod α).

Lemma 6 Letβ = [α/2]. Then the following hold.

(1) qαl,m 6= 0 only if l ≡ m or −m (mod α).

(2) qαα−h+1,h = 0, unlessα = 2β + 1 with h = β + 1.

(3) qαα+h−1,h = 0, unlessα = 2β + 1 with h ≡ β + 1 (mod α).

(4) Supposeα > 2 and2 ≤ h ≤ α. Thenqαα−h+2,h 6= 0, unlessα = 2β with h = β + 1.

Proof: (1) By Proposition 2,qhi,j ≥ 0 for all h, i andj. Hence this is a direct consequence
of Lemma 3.

(2) By (1) we have that2h− 1 ≡ 0 (mod α), if the value is not zero. Henceα is odd
andh = β + 1.

(3) This is similar to(2).
(4) By (1) we have that2h−2 ≡ 0 (mod α), if the value is not zero. Since2 ≤ h ≤ α,

α is even andh = β + 1.



178 SUZUKI

Lemma 7 If α < d, thena∗i = 0 for all i = 0, 1, . . . , α except fori = β + 1 with
α = 2β + 1.

Proof: By Lemma 6(2), qαα−i+1,i = 0, unlessα = 2β + 1 with i = β + 1. Since
qα1,α = 0 by our assumption, we havea∗i = qi1,i = 0 by Corollary 1(1) as desired.

Lemma 8 The following hold.

(1) Supposeα = 2β. Then for each0 ≤ h ≤ α and i ≥ 0 with 0 ≤ h + iα ≤ d,
a∗h = a∗h+iα.

(2) Supposeα = 2β + 1. Then for each0 ≤ h ≤ α and i ≥ 0 with 0 ≤ h + iα ≤ d,
a∗h = a∗h+iα unlessh = β, β + 1. Moreover,a∗(i−1)α+β ≤ a∗iα+β , anda∗(i−1)α+β+1 ≥
a∗iα+β+1.

Proof: By Lemma 6(3), we have thatqαα+h−1,h = 0, unlessα = 2β + 1 with h ≡ β + 1
(mod α).

(1) Supposeα = 2β. Thenqαα+h−1,h = 0 for everyh. Hence by Lemma 2(4)(iii), we
have thata∗h = a∗h+iα, for each0 ≤ h ≤ α andi ≥ 0 with 0 ≤ h+ iα ≤ d.

(2) Supposeα = 2β + 1. Thenqαα+h−1,h = 0, unlessh ≡ β + 1 (mod α). Hence
by Lemma 2(4), a∗h = a∗h+iα unlessh = β, β + 1, for each0 ≤ h ≤ α and i ≥ 0
with 0 ≤ h + iα ≤ d. Moreover,a∗(i−1)α+β ≤ a∗iα+β , anda∗(i−1)α+β+1 ≥ a∗iα+β+1.

Lemma 9 If α = 2β with α < d, thena∗i = 0 for all i.

Proof: By Lemma 7,a∗i = 0 for all i = 0, 1, . . . , α. Hence we have the assertion by
Lemma 8(1).

Lemma 10 Supposeα = 2β + 1. If a∗h = 0 for all h = 0, 1, . . . , α. Thena∗j 6= 0 only
whenj = d andd ≡ β (mod α).

Proof: Choose an integeri so thatiα + 1 ≤ j ≤ (i+ 1)α. We prove by induction oni.
There is nothing to prove wheni = 0.

By induction hypothesis and Lemma 8, we may assume thatj = iα+β or j = iα+β+1.
Sincea∗(i−1)α+β+1 ≥ a∗iα+β+1, a∗iα+β+1 = 0 by induction hypothesis.

Supposeiα + β < d. Thenqα(i−1)α+β+2,iα+β+1 = 0 anda∗(i−1)α+β+1 = a∗iα+β+1

impliesqα(i−1)α+β+1,iα+β = 0 by Lemma 2(4)(ii). Sinceqα(i−1)α+β,iα+β−1 = 0, we have
0 = a∗(i−1)α+β = a∗iα+β by Lemma 2(4)(iii) as desired.

Lemma 11 Supposeα = 2β + 1 ≥ 5 with α < d. Thena∗i = 0 for all i < d. Moreover,
a∗d 6= 0 only if d ≡ β (mod α).

Proof: By Lemma 10 and Lemma 7, it suffices to show thata∗β+1 = 0.
Assume thatα ≥ 7. Then we have

a∗β+2 = · · · = a∗α = a∗α+1 = a∗α+2
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by Lemma 8(2) asa∗1 = a∗2 = 0. Note thatd ≥ α+ 2 by Lemma 5(2). Sinced ≥ α+ 2,
we have by Lemma 2(3) thata∗β+1 = 0 as(α+ 2)− (β + 2) = β + 1.

Supposeα = 5. Then we have

a∗1 = a∗2 = a∗4 = a∗5 = a∗6 = 0.

Now q5
2,4 = 0 by Lemma 6. Sinceq4

2,5 = 0 anda∗2 = a∗6, by Lemma 2(4)(i), we have
q4
3,6 = 0. Henceq6

4,3 = q6
1,6 = 0, and by Corollary 1(1), a∗3 = 0 asd ≥ 7 by Lemma 5(2).

Lemma 12 Supposeα = 3 < d. Then one of the following holds.

(1) a∗i = 0 for all i < d, anda∗d 6= 0 only if d ≡ β (mod 3).

(2) d = 6, a∗1 = a∗3 = a∗6 = 0, anda∗2 = a∗4 + a∗5 6= 0.

(3) d = 4, a∗1 = a∗3 = 0, anda∗2 6= 0.

Proof: It is easy to see thata∗1 = a∗3i = 0 for everyi. Supposed ≥ 7. Sinceq6
3,4 = 0,

a∗4 = 0 by Corollary 1(1). Sinceq3
1,3 = 0 anda∗1 = a∗4 = 0, q3

2,4 = 0 anda∗2 = a∗5 by
Lemma 2(4) (i), (iii). Moreover,q4

3,2 = 0 with a∗4 = 0 impliesa∗2 = 0 by Corollary 1
(1). Therefore we havea∗1 = a∗2 = a∗3 = 0. Hence we have(1) in this case.

If d ≤ 6, thend = 4 or 6 by Lemma 5(2). If d = 4 or 6, then we havea∗1 = a∗3i = 0 for
everyi. Moreover, sinceq5

3,3 = 0, a∗4 + a∗5 = a∗2. Clearly if a∗2 = 0, we have case(1) by
Lemma 10. Hence we have one of the three cases above.

Lemma 13 Supposed ≥ α + 2 with α > 2 anda∗i = 0 for all i = 1, 2, . . . , d− 1. Then
k∗1 = 2.

Proof: Supposek∗1 > 2. Observe by Lemma 6 thatqαα−h+2,h = 0, unlessα = 2β and
h = β + 1 for 2 ≤ h ≤ α. Moreoverqα2,α = qα2,α−1 = 0 by our assumption. Hence by
Corollary 1(2), qh2,h = 0 whenqαα−h+2,h = 0.

Supposeα = 2β + 1. Thenqh2,h = 0 for 2 ≤ h ≤ α. Hence

c∗hb
∗
h−1 + b∗hc

∗
h+1 − k∗1 = 0.

Now by induction we show thatc∗h ≤ 1 whenh is odd. The assertion is trivial ifh = 1.
Supposec∗h−1 ≤ 1. Sinceqh2,h = 0, we have

0 = c∗hb
∗
h−1 + b∗hc

∗
h+1 − k∗1

= c∗h(k∗1 − c∗h−1) + b∗hc
∗
h+1 − k∗1

≥ c∗h(k∗1 − 1) + b∗h + b∗h(c∗h+1 − 1)− k∗1
≥ c∗h + b∗h − k∗1 + b∗h(c∗h+1 − 1)
≥ b∗h(c∗h+1 − 1)
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Thusc∗h+1 − 1 ≤ 0. Sinceα is odd,c∗α−2 ≤ 1. Now by Proposition 1,b∗2 = c∗α−2 ≤ 1.
Note that this holds forα = 5 as well becausea∗2 = 0 in our case. Sinceq2

2,2 = 0, we have

0 = c∗2b
∗
1 + b∗2c

∗
3 − k∗1 > c∗2b

∗
1 − k∗1 ≥ (k∗1 − 1)2 − k∗1 .

This is impossible. Hence we have the assertion whenα is odd.
Supposeα = 2β. Then the argument above shows thatc∗h ≤ 1 whenh is odd and

h ≤ β + 1. Note thatqβ2,β = 0. Supposeh is odd andh ≤ β. Then

0 = c∗hb
∗
h−1 + b∗hc

∗
h+1 − k∗1 > (k∗1 − 1)c∗h+1 − k∗1 .

Sincek∗1 ≥ 3 ask∗1 is an integer,c∗h+1 < 3/2. Therefore, we have the following.
c∗h ≤ 1 if h is odd andh ≤ β + 1.
c∗h < 3/2 if h is even andh ≤ β + 1.
Supposeβ is odd. Thenb∗β−1 = c∗β+1 < 3/2 by Proposition 1. Sincec∗β−1 < 3/2,

3/2 > b∗β−1 = k∗1 − c∗β−1 > k∗1 − 3/2. Thusk∗1 < 3. This contradicts our assumption.
Supposeβ is even. Thenc∗β−1 ≤ 1 andb∗β−1 = c∗β+1 ≤ 1. Thus we obtain thatk∗1 ≤ 2.
This proves the assertion.

Proof of Theorem 3: Supposeα = 2. Then by Lemma 9, we have(i). Supposeα = d.
Then by Proposition 1, we have(ii). Suppose2 < α < d. If α is even, thena∗i = 0 for
everyi by Lemma 9. Ifα is odd, then by Lemma 11, Lemma 12 and Proposition 1, we have
a∗i = 0 for all i = 1, 2, . . . , d − 1 unlessα = 3 and(iii) or (iv) holds. Now by Lemma
13, we cannot have other cases.

This completes the proof of Theorem 3.
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