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Abstract. It is well known that imprimitive P-polynomial association schemés = (X, {R;}o<i<q) With
k1 > 2 are either bipartite or antipodal, i.e., intersection numbers satisfy either0 for all 7, orb;, = c4_; for
alli # [d/2]. Inthis paper, we show that imprimitiv@-polynomial association schemés= (X, {R;}o<i<a)
with d > 6 andk} > 2 are either dual bipartite or dual antipodal, i.e., dual intersection numbers satisfy either

ay = 0foralls,orby =c}_, foralli# [d/2].
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1. Introduction

A d-class symmetric association scheme pair¥’ = (X, {R; }o<i<q), WhereX is afinite
set, eaclR; is a nonempty subset of x X fori =0,1,...,d satisfying the following.
(1) Ry ={(z,z)|x € X}.

(73) {Ri}o<i<a is a partition ofX x X, i.e.,

XXxX=RyURiU---URy, RiNR; =0if i # j.

(15i) 'Ry = R;fori =0,1,...,d, where'R; = {(y,2)|(z,y) € R;}.

(iv) There exist integers] ; such that for allz,y € X with (x,y) € Ry,

Pl ={z € X|(z,2) € Ri, (z,y) € R;}I.

We refer toX as thevertex sebf X, and to the integerpﬁj as theintersection numbers
of X.

Let ¥ = (X, {R;}o<i<q) be a symmetric association scheme. Meitx (R) denote
the algebra of matrices over the red&swith rows and columns indexed by. Thei-th
adjacency matrid; € Matx (R) of X is defined by

N _ J1if(z,y) € Ry
(Ai)ay = { 0 otherwise (@y € X).
From(¢) — (iv) above, itis easy to see the following.

* This research was partially supported by the Grant-in-Aid for Scientific Research (N0.06640075,
No. 09640062), the Ministry of Education, Science and Culture, Japan.
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(i) Ay =1.

(i1) Ao+ A1 +---+ Ag = J, whereJ is the allds matrix, and4, o A; = ¢; ; A; for
0 <1i,j < d, whereo denotes the entry-wise matrix product.

d
(iv) AiA; => pfApfor0<i,j<d.
h=0

By theBose-Mesner algebraf X we mean the subalgehrd of Mat x (R) generated by
the adjacency matricety, A4, ..., A;. Observe byiv)’ above that the adjacency matrices
form a basis fotM. Moreover, M consists of symmetric matrices and it is closed under
In particular,M is commutative in both multiplications.

Since the algebra consists of commutative symmetric matrices, there is a second basis
Ey, F1, ..., Ey satisfying the following.

1
()" Fp= .
| X|
(ii)” Eo+FE1+---+E;=1, andEiEj = 6i,jEi for0 < 1,7 < d.

(iii)// tEi =F; for0 < <d.

d

1

(iv)" EjoBj = > q}';En, (0 < i,j < d) for some real numberg',.
X =

Ey, F4, ..., E,4 are the primitive idempotents of the Bose-Mesner algebra. The parameters

qgfj are calleKrein parameters

Conventionally, we assunﬁj andqﬁj are zero if one of the indices i, j is out of range
{0,1,...,d} otherwise mentioned clearly.

A symmetric association schene = (X, {R;}o<i<q) With respect to the ordering
Ry, Ry, ..., Rqoftherelationsis called B-polynomial association scherifi¢he following
conditions are satisfied.

(P1) pﬁj = 0 if one ofh, i,  is greater than the sum of the other two.

(P2) pﬁfj # 0 if one of h, 4, j is equal to the sum of the other two for< h, i, 5 < d.

In this case we write; = p;_, |, a; = p} ;, bi = pj,, ; andk; = p, fori =10,1,...,d.

A symmetric association schenme = (X, {R;}o<i<q) With respect to the ordering
Ey, E4, ..., E; of the primitive idempotents of the Bose-Mesner algebra is calléd a
polynomial association scherifehe following conditions are satisfied.

(Q1) qffj = (0 if one of h, 4, j is greater than the sum of the other two.

(Q2) qffj # 0 if one of h, ¢, j is equal to the sum of the other two for< h,4, 7 < d.
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In this case we write; = ¢;_, ;,a; = ¢}, b} = ¢}, ; andk} = ¢}, fori =0,1,...,d.

If X = (X, {Ri}o<i<a) isaP-polynomial association scheme with respectto the ordering
Ro, Ry, ..., Ry, then the grapi® = (X, R;) with vertex setX, edge set defined bi;
becomes a distance-regular graph. In this case,

R, ={(z,y) € X x X|9(z,y) =i},

whered(z, y) denotes the distance betweemndy. Conversely, every distance-regular
graph is obtained in this way.

Q-polynomial association schemes appear in design theory in connection with tight condi-
tions, but it is not much studied compared withpolynomial association schemes, though
there are extensive studies Bf and@Q-polynomial association schemes.

A symmetric association schendé = (X, {R;}o<i<q) is said to bemprimitive if it
satisfies one of the following equivalent conditions.

(A) By asuitable rearrangement of indiceg, . . ., d, there exists an index(0 < s < d)
such that4; A, is a linear combination afly, A4, ..., A forall 4,5 (0 <4,j < s).

(E) By asuitable rearrangement of indice?, . . . , d, there exists an index(0 < t < d)
such thatt; o E; is a linear combination ok, E1, . .., E; forall 4,5 (0 <1,j <1).

The imprimitivity of association schemes including the equivalence of the above defini-
tions were first studied in [3]. We also refer the readers to sections 2.4, 2.9 and 3.6 in [1]
and sections 2.4, 4.1 and 4.2 in [2].

The following is well known. See the references above.

Theorem 1 LetX = (X, {R;}o<i<q4) be animprimitiveP-polynomial association scheme
with respect to the orderindey, R, ..., Ry of the relations. Ift; > 2, then one of the
following holds.

(i) a;=0foralli=0,1,...,d.
(i1) b; = cq—; foralli=0,1,...,d except possibly for = [d/2].
If the condition(i) is satisfied, the scheme is callbippartite, and if the conditior{i?) is
satisfied, it is calleéntipodal by adopting the terminologies of the distance-regular graph

associated with th&-polynomial structure.
The following is our main result in this paper.

Theorem 2 LetX = (X, {R; }o<i<q) be animprimitive))-polynomial association scheme
with respect to the orderind’y, E1, . .., E4 of the primitive idempotents. & > 6 and
kT > 2, then one of the following holds.

(1) af =0foralli=0,1,...,d.

(i3) bf =cj_,foralli=0,1,...,dexcept possibly for = [d/2].
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If the condition(7) is satisfied, the scheme is callddal bipartite and if the condition
(ii) is satisfied, it is calledual antipodal It is known that ifk; = 2, thenX is an ordinary
polygon.

The proof of Theorem 1 is relatively easy and uses the inequalities based on the combi-
natorial structure of distance-regular graphs. We substitute that part by matrix identities to
prove Theorem 2. These identities were used in Dickie’s paper [5], which is a part of [4,
Chapter 4].

2. P-polynomial C-algebra

We begin with a definition oPP-polynomialC-algebra.
Letd be apositive integerandlet, 1, a;, b;—1 (i = 0,1, ..., d) bereal numbers satisfying
the following.

(’L) apg = b_1 = Cd+1 :Oand61 = 1.
(i) c;+a;+bi=by=cqg+aqgfori=1,...,d—1.
(Z’LZ) bici+1 >0fori=0,1,...,d— 1.

A P-polynomialC-algebra is an algebra over the reRawith basiszg, x4, .. ., x4, which
satisfies the following.

Toxo = Lo, T1%; = bi_1Ti—1 + a;T; + i1, (0 <3 < d), 1)

wherez_; andz,; are indeterminates. Themn can be written as a polynomial af of
degree andxg = 1, the unit elementin this algebra. Define const@ﬁg-éay the following.

d

TiT; = Zpﬁjxh, 0<4,j<d. (2
h=0

Since the algebra becomes commutat}ix’[g,: p;.’;i. Lethk; = p{,,n=ko+ki+--+ka,
andneg = xg +x1 + - - - + 4. Then itis easy to check by) and(ii) thatk; = by and
that:rl(neo) =k (nel).

The algebraM =< zq, x4, ...,z4 > defined above becomeg’&algebra in the sense
defined in [1, Section 2.5]. See also [1, Section 3.6] &)dn the following lemma. In
particular, M has another basi&, e1, ..., eq} consisting of primitive idempotents and
the dual algebra\t* defined byx; o z; = 6; ;2; becomes &'-algebra with respect to the
basisneg = xg + x1 + - + x4, ne1, ..., neEq. Let

d
e-oev*lg qhe;
196 = i,jCh
n
h=0

As the intersection numbers and the Krein parameters, by convention we assume the pa-
rameterspf;j and q{fj of C-algebras are zero if one of the indicks, j is out of range
{0,1,...,d}.
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Lemmal Let M =< xg,z1,...,24 > be aP-polynomialC-algebra. Letk; = p?’i.
Then the following hold.

h _ . h h h h
(1) Piyr civr = pij_1bj—1 +pij(a; — ai) + P j1¢ier — piq jbio1.

(2) pY; = bijki knplt; = kip! , andk; > 0fori=0,1,...,d. In particular, p}'; = 0 if
and only ifpj, ; = 0.

(3) pi‘J = 0 if one ofh, i, j is greater than the sum of the other two.

(4) pﬁj # 0 if one ofh, i, j is equal to the sum of the other two o £, 7,5 < d.
(5) Py icnir = Pih (@i + -+ ain —ar — -+ —ap).

Proof: (1) Compute the coefficient af;, in the expression ofziz;)z; = (z1x;)x; by
applying (1) and then (2), and we obtain the formula.

(2) First we prove that;, 1p, , ;,; = d; ;b;p}; for 0 < i < j < d — 1 by induction
oni. If ¢ = 0, then this is obvious. Compute the coefficientzgfin the expression of
(z12;)z; = xi(2124) in two ways. By induction hypothesjﬁ’m =0fori <i+1,m,
we havec;1py, ;. = b;p{ ;. Sincep); = d; ;p);, we have the assertion. Hence we
havepgj = 0;,;k; andk;b; = ki1ci41. By our assumptioh;c; 1 > 0, we havek; > 0 as
ko = 1.

Next compute the coefficient afy in the expression ofz;z;)xy, = (z;xp)z; in two
ways using the formulp?’j = ¢, ;k; just shown above, and we obtain the second formula
knpll; = kil -

(3) By (2), we may assume that> i + j. Sincexz; is expressed as a polynomial of
of degreei, we have the assertion. o o

(4) By (2), we may assume that=i + j. Then by(1), p; 7 ¢c; = pﬁf{’jﬂcjﬂ. Hence
we have the assertion by induction ©n

(5) This follows by induction ork using(1). O

By definition, it is easy to see that the Bose-Mesner algadraf a P-polynomial associ-
ation scheme becomegrapolynomialC-algebra with respect to the basig, A1, ..., Aq4.
Moreover, if we take product, the dual Bose-Mesner algelvet of Q-polynomial associ-
ation scheme becomesPapolynomialC-algebra with respect to the basl|Ey, | X |E1,
. | X|Eg.

In both of these cases, the structure constants and Krein parameters are nonnegative, i.e.,
p}'; > 0andg)'; > 0. The latter inequality is called the Krein condition.

Lemma2 Let M =< zg,z1,...,24 > be a P-polynomial C-algebra. Suppose the
structure constantﬁﬁj are all nonnegative. Then the following hold.

(1) If pﬁl’jfl = p?+1,j = p?+17j+1 =0for0<i<d, thenp?’j = p?+2,j = 0.

(2) Wpl's iy = Py gyipr = - = Dlyy = 0fori < land0 < i < d, then

h . h _
Pij = DPo—ij = 0.
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(3) Forall4,jwith0 <i,h,i+h <d,a; =aj+1 =" = a;4p = 0impliesa; =--- =
ah:O.

(4) Forall handi with0 < h,i,7+ h < d, the following hold.
(i) W pliyn_y =0, thena; < a;;y. Moreover ifa; = a;yp, thenpl,, .., = 0.
(i) W ply,yp =0, thena; > a;yy. Moreover ifa; = a;yp, thenpl, , , =0.
(4ig) If pZHh_l = pfﬂ,”h =0, thena; = a;1p-
(5) Forall handiwith0 < i < h < d, the following hold.
(i) If pfﬁh_iﬂ =0, thena; < ay_;. Moreover ifa; = aj_;, thenp?+17h_i =0.
(i7) If pfﬂ,h% =0, thena; > aj_;. Moreover ifa; = aj,_;, thean}H+1 =0.

(iid) Wply sy =Dy py =0, thena; = ap_;.
Proof: (1) Replacingi by i + 1, by Lemma 1(1) we have

h h _ .k h h
Piibi + Pitva jCite = Piy1jo1bi—1 + pita (a5 — @ip1) + i it

Sincei < d by our assumptiori; > 0 and we have the assertion. Note that= p} ,
with ¢ < d is nonzero by the definition aP-polynomial C-algebra and it is nonnegative
by our assumption.

(2) We prove the assertion by induction on= [ — . If [ = 4, there is nothing to prove.
Suppose the assertion holds far=1 —¢ — 1 > 0. Then

p?—&-l,j—l = p?—ﬁ-l,j = p?+1,j+1 = pgl—i—l,j—l = pgl—i—l,j = pgl—i—l,j-‘rl =0.
By (1), we havep; = p,_, ; = 0.
(3) This follows from Lemma 14), (5) and the nonnegativity of the;’s.
(4) Sincep!" , ;. = pl's p = 0 by Lemma 1(3), it follows from Lemma 1(1) by
settingj = i + h that

h h _ . h h
Dit1,i+nCit1 T Di jpn @i = pi,i+h71bi+h71 + Di it nQith-

Sincep}, ., # 0, we have the assertion.
(5) This is similar to(4). Consider the following.

h h h h
Dit1,h—iCi+1 +Dj p—iGi = Pi h—jp1Ch—it1 + Di pp—i@h—i- U

Lemma3 Let M =< zg,x1,...,24 > be a P-polynomial C-algebra such that the
structure constantpﬁf ; are all nonnegative. Suppose for a positive integeps;, # 0
onlyif i=0 (mod a). Thenpy, #0Oonlyif I=m or —m (mod «a).

Proof: It suffices to considep’,, with 0 < m —I < a by Lemma 1(3). We may assume
that (2i — 1)a < I +m < 2ia Or 2icc < I+ m < (2i + 1)c. In the first case, there
exists0 < 8 < [a/2] — 1 such thatm = ia — B oria + § asl < m. Similarly, in the
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latter case, there exists< 8 < [«/2] — 1 such that = ia — 8 or i + 3. Definey by

the following: I = (¢ — 1)a + B + «y in the first case anéh = (¢ + 1)ae — § — v in the
latter. Sinced < m — I < « andm + [ is in the corresponding range, in each case we have
1 <~y < a-1andthas + v < «a. Thus there are four cases.

(1) l=({—-1a+F+yandm =ia — .
(it) 1= (i—1)a+ B +yandm = ia + (.
(791) l=ia—FBandm = (i +1)a— 5 —1.
(iv) l=tia+Bandm = (i+ 1)a—F—1.

We apply Lemma 22). SINCepf; ), 0 = = Pli_1)at2stryia = 0 Pl = 0100
the first two cases. Singg!, (i41)a28y =" = e (4o = 0,pf =0 in the last
two cases. O

The following is Proposition 6.2 in [1] but the description of it involves an error. Hence
we restate the corrected version below. Note that we do not knéw # ;1 when
a=2t+1.

Proposition 1 Let M =< z; | 0 < i < d > be aP-polynomialC-algebra with respect to
the basisro, z1,...,zq4. Assume]; > 0andq)'; > 0forall h,i,j. Let< 23| 3T >
be a properC-subalgebra ofM. Then

d 2d+1 2d

T =10, a,2a,3a, ...} for somex 2,d, —, ———
{)a7 a? a) } 6{7 ’8’23+172S+1

Let the following be the array of defining parameters,

.

Ci * 1 ¢co -++ cqg—1 Cq
a; p =44 0 ay az -+ aq-1 aq
b; bg by by - b1 *

ThenM has aC-subalgebra< z5 | 8 € T > with (i) o = 2, (i) a = d, (i)

a € {4,241 241 respectively if and only if the following hold.

(Z) as =ay = ---=0anda; =Qaz ="---.
(i) b; = cq—; for all i except possibly for = [d/2].
(#i1) The parametersy, ay, by, satisfy the following fo < h < d — 1. b; = co—i =
bjati = C(j+1)a—i forall1 <i < a—1andl < jexceptfori = [o/2], a; = aq—i =

Ajati = A(j+1)a—; fOrall0 <i < aandl < jexceptfori = [a/2], [(a+1)/2] with
odda. Moreover,

(bo, 0) if o = 4
(caraa) = 4 (Cla—1)/2:A(a—1)/2 + ba—1)/2) if a =515
(ca/2+ba/2vaa/2) ifa = 23—?—1'

Note that(i) and (i¢) are special cases @tii) for « = 2 anda = d, respectively.
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3. Vanishing Conditions of Krein Parameters

Only a few restrictions of the Krein paramete;j% of symmetric association schemes
are known except those derived algebraically using Lemma 1. We first list them in the
following.

Proposition 2 LetX = (X, {R;}o<i<a) be a symmetric association scheme. EgtE1 ,
., E4 be primitive idempotents and I@jlfj be the Krein parameters. Then the following
hold.

(1) ¢; > 0forall 0 < h,i,j <d.

(2) For0 < h,i,j <d, we have

@' =04 > (Bn)uz(Ei)uy(Ej)u- = 0forall z,y,z € X.
ueX

Proposition 2(1) is known as Krein condition an) is in [3]. See also [1, Theorem
2.3.8, Proposition 2.8.3].

Lemma4 LetX = (X, {R;}o<i<a) be a symmetric association scheme. Let

Ey, Fy, ..., Ey be primitive idempotents and Ief’j be the Krein parameters. Suppose
{i | 4,44, # 0} C {h}. Then for all integer$) < h,i,j,k,1,m < d and all vertices
a,a’, b, b, the following hold.

(1) Z(E )ea(Ek)ea (El)eb( eb TthT Z ea Ek ea’ (Eh)

eeX e€eX

(2) Z(Ej)ea(Ek)ea’(El)eb(Em)eb’ = Z (Ej)ea(Ek)ea/(Eh)ee/(El)e/b(Em)e/b’~

eeX e,e’eX

Proof: (1) By Proposition 22), we have

Z (Ej)ea(Ek:)ea’ (El)eb(Em)eb

ecX

= Z(Ej)ea(Ek)ea’ (Eio Em)eb

ecX

= ‘X| qu m Z ea(Ek)ea (El)eb

ecX

ql,m
- ‘X‘ Z ea Ek ea (Eh)
eeX
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(2) Sincel = Ey + Ey + - - - + Ey4, similarly we have

Z (Ej)ea(Ek:)ea’ (El)eb(Em>eb’

ecX

= Z (Ej)ea(Ek:)ea’(I)ee’(El)e’b(Em)e’b’

e,e’eX
d

= > > (BealBr)ew (Bd)ee (Bi)en(Bm)erw
i=0e,e’€X
d

= Z <Z(Ej)ea(Ek)ea’(Ei)ee’> (El)e’b(Em)e’b’
1=0e'€eX \ecX
d

= > > (Bj)ea(Br)ea (Z (Enee/(Ez)e/b(Em)e/b/) :
1=0 ec X e'eX

Comparing the last two expressions using Propositi¢2) 2ve have the right hand side of
(2) by our assumption. O

Proposition 3 Let ¥ = (X, {R;}o<i<a) be aQ-polynomial association scheme with
respect to the orderindyy, E1, . .., E,4 of primitive idempotents. Suppose that

{] qé‘,thiqﬁfj,thj #0} C{h+i—j}
Thenforh > 0,i > j > 1withh +i+j <d,¢"/ . =0 impliesthat¢"7 =0

i,h+j J h+j ’

h+1

Proof:  Sinceg;’;,\ ; = 0, by Proposition 2,

g,
0 = 130=J Z(Eh+z)uz(E1)uy(Eh+J)uz

‘X| u€X

- UEZX <qi;(_|] (Ez)uy) (Eh+i)uz(Eh+j)uz

= Y (i o Ei ))E)uy(Enti)uz(Bnyj)uz
ueX

= Z Z(Ej)uv(Ei—j)uv(Ei)vy(Eh-i-i)uw(Eh-i-j)uz
ueX veX

= Z(Ez)vy (Z(Ej)uv(Eh+i)uw(Eij)uv(Eh+j>uz> .
veX ueX

Since{l | ¢\ ¢! _;ny; # 0} C {h+i—j}, by Lemma42),
- Z Z Z (Ei)vy(Ej)uv(Ethi)uz(Ethifj)uw(Eifj)wv(thtj)wr

ueX veX weX
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Since this holds for arbitrary, y, z, we have

0 = Z (Entitj)ay(Entj)yz(Ej)az X

z,y,2€X

Z (Ez)vy (Eg)uv(Ethz)ua: (Ethifj)uw (Eifj)wv (Ethj)wz

u,v,weX

Z (Bnti)yz(Ei)vy (i j)wo(Entj)ws X

Y,2,0,weX
Z (Eh+i+j)xy(Ej)a:z(Eh+i)ux(Ej)uv(thLifj)uuw
z,ueX
Since{l | ¢} 4154 niij # 0} C {h+1i}, by Lemma 4(2) we have
= > (Bri)y=(B)oy(Bie o (Bngs)uws X

Y,2,0,weX

Z (Eh+i+j)xy (E])azz (Ej)zv (Eh+i7j)a:w
reX

D (Bnti)ws(B))az(Bnsiej)ew %

z,z,weX
Z (Eh+i+j)ya:(Ethj)yz(Ei)yv(Ej)a:v(Eifj)w'u-
y,veX
since{l | @i jny;45.4_; # 0} C {i}, by Lemma 4(2) we have
= Z (Eh+j)wz(Ej)zz(Eh+i—j)zw X

z,z,weX

> Bnrit)ya(Bnts)yz(Bs)ay (Bie i uy
yeX

Z (E}L+j)wz (Ej)xz (Eh+i—j)xw X

z,z,weEX
> Bnii)y=(Bies)yw(Ey)ye(Bnsits)ya-
yeX
Since{l | ¢} ;i ;¢ nris; # 0} C {h+1i}, by Lemma 4(1) we have
heti

95, h+i+j
= W Z (Eh+j)wz(Ej)xz(Eh+i—j)xw X
z,z,weX

> (Ens)yz(Bimi)yw(Bnii)ye
yeX
qh+i
i hitg
= ]|X| = Z (Entj)ys X
y,2€X

> (Bnti)ay(Ej)az(Entivj)aw(Eiej Jwy (B )ws-
z,weX

SUZUKI
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Since{l | ¢}y ;¢ _jni; # 0} C{h+i—j}, by Lemma4(2), we have
h+i
95, h+i+j
= ﬁ Z (Eh+j)yz Z(Eh+i)fcy(Ej)rZ(Eifj)zy(Ethj)mz
y,z€X zeX
i
= % > (E)az(Bnij)ez Y (Bimj)ay(Bngi)ay(Bnts)ye
x,z€X yeX
o
= % Z (Ej)M(Ethj)wz Z((Eifj) © (Eh+i))$y(Eh+j)yz
x,z€X yeX
h+i h+j

95, hvits%i—j,nyi
= % Z (Ej)zZ(Eh+j)rZ(Elz+j)rz
z,z€X

qh+i qh+j
jshtitj2i—g, h+i
_ %} (E ((Ej)O(EhH))xz(Ehﬂ')”)
zeX \zeX
hti  hti o he
_ qjl,hii+jqi*j7h+iqj’h+j§ (Bhtj)an-
Xp o

rzeX

SinceE, . ; is a nonzero idempotent,

Z (Entj)es = trace(Ep4;) = rank(Ep1;) # 0.
rzeX

Moreover,q! 1%, . # 0andg/"7, .. +# 0 by (Q2). Henceq!}7 . = 0. O

Corollary 1 LetX = (X, {R;}o<i<a) be aQ-polynomial association scheme with respect
to the orderingEy, E1, . . ., E4 of primitive idempotents.

(1) Forh >0,i > 1withh +i+1<d,

QZZL = CJﬁii =0 implies that qﬁ}H —0.
(2) Forh >0,i>2withh +i+2 < d,
qZﬁ_Q = qgﬁﬂ = qﬂﬂri_l =0 implies that qgﬁrz =0.

Proof: (1) Sinceqfﬁii =0, by (Q2) we have the following.

{t] ql1,h+iq§71,h+1 #0y C{h+i-1}.

Hence we have the assertion from Proposition 3 by sejtiagl.
(2) Sincegy %, = ¢b 1,1, by (Q2) we have the following.

{1 b psid_oppn #0} C{h+i—2}.
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Hence we have the assertion from Proposition 3 by sejtiag. |

By settingh = 0 in Corollary 1, we obtain the result of G. A. Dickie in [4, 5]. Hence
the proposition is a generalization of it. The following result f6polynomial association
schemes is not used elsewhere in this paper but it is the dual of the result above, which can
be proved very similarly. The proof suggests a possible way to find vanishing conditions
and its proof inQ-polynomial association schemes.

Proposition 4 Let X = (X, {R;}o<i<a) be a P-polynomial association scheme with
respect to the orderin®y, R+, . .., Rq of relations. Suppose that

{] pé‘,h+ipli—j,h+j #0} C{h+i—j}.
Thenforh >0,i>j>1,andh +i+j <d,plt’ . =0 impliesthatp"t? . =o0.

i,h+j J:h+3j

h+j

Proof:  Suppose; ;,° ; # 0. Then there are vertices 3,y € X such that

(aaﬂ)z (Oéa’Y) € Rh—i—j and (6,’7) S Rj.

Sincep?_*ﬁh“ # 0 by (P2), there exists a vertex € X such that(a, ) € R;_; and
(6,) € Ry, Consider two triplegd, 3,v) and (9, a, ). Since{l | p}, ., ;pt_;n.; #
0} C {h+i—j}, (6,7) € Ruyi_;. Since(B,6) € Ryy; andp; T, . . # 0 by (P2), there
exists a vertex € X such that(3,¢) € Rp4.1; and(e,6) € R;. Consider two triples
(e, 8, ) and(e, 6, ). Since{l | p}, ;4 py ;05 # 0} C {i}, we have(e, ) € R;.

Next consider two triplese, 5,~) and (e, d,v). Since{l | p2+i+j}jp§’h+i7j # 0} C
{h + i}, we have(e, v) € Ry4;. Finally consider a triplée, «, v). Since

(657) € Rh+i7 (670[) € Ria and (Oé,’}/) € Rh-‘rja

P+, # 0, which is a contradiction. O

4. Proof of Main Theorem

In this section, we prove the following result. It is obvious that Theorem 2 is a direct
consequence of it.

Theorem 3 LetX = (X, {R;}o<i<q) be aQ-polynomial association scheme with respect
to the orderingEy, E1, . . ., E4 of the primitive idempotents. Suppokes imprimitive. Or
more precisely, suppose the linear spa{ Bf | i € T'} is closed undes product for some
proper subsef” of {0,1,...,d} with T # {0}. In addition, assume thdt; > 2. Then

T ={0,0,2a,3a,...} for somea > 2, and one of the following holds.

(1) a=2anda; =0 forall 4.

(i1) a=dandbf =¢j;_,foralli=0,1,...,dexcept possibly for = [d/2].
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(#i7) d =4, a = 3, and the parameters satisfy the following conditions.

ct s 1 g 1
aj p=4¢ 0 0 a3 0 k*—1
b} E* k*—1 1 b5 =

(iv) d =6, a = 3, and the parameters satisfy the following conditions.

c; * 1 ¢ 5 1 cg k*
aij p=4¢ 0 0 aj+a;i 0 aj af O
by E* k*—1 1 by by 1«

It is not difficult to see from Proposition 1 that if one of the conditidfis— (iv) of the
theorem above holds, then the linear spafi6f | « € T'} is closed undes product, where
T ={0,0,2a,3a,...}. In particular, the association scheriras imprimitive.

Throughout this section assume the following:

X = (X, {R;}o<i<aq) is aQ-polynomial association scheme with respect to the ordering
Ey, E, ..., E4 of the primitive idempotents such that the linear spaf®Bf | i € T} is
closed undep product for some proper subsétof {0, 1, ...,d} with T # {0}.

Under the assumption abowt* =< | X |Ey, |X|E1, ..., |X|E4 > with o product is a
P-polynomial C-algebra with nonnegatlvpf andg? i Hence we can apply Proposition
1. In particular, we have the following two Iemmas as direct consequences.

Lemma5 (1) T ={0,«,2a,3a,...} for somex > 2.
(2) Letg =[a/2]. Thend =00r 3 (mod «).
Lemma 6 Letg = [«/2]. Then the following hold.

1 n Zoonlyifl=m or —m (mod «).

(1) g

(2) a5 _pyi1 =0, unlessa =23+ 1withh = 5+ 1.

(3) a5 1 =0,unlesse =28+ 1withh =5+1 (mod a).
(4)

4) Supposer > 2and2 < h < a. Thengg_,, ., , # 0, unlessoe = 26 withh = 3 + 1.

Proof: (1) By Proposition 2q£fj > 0forall h,iandj. Hence this is a direct consequence
of Lemma 3.

(2) By (1) we have thath — 1 =0 (mod «), if the value is not zero. Henceis odd
andh = 5+ 1.

(3) This is similar to(2).

(4) By (1) we havetha2h—2 =0 (mod «), ifthe value is not zero. Sine< h < «,
aisevenanch = G + 1. O
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Lemma7 If & < d, thena} = 0 forall i = 0,1,...,« except fori = [ + 1 with
a=20+1.

Proof: By Lemma 6(2), ¢5_;.;,; = 0, unlessa = 23 + 1 withi = 3 + 1. Since
qf', = 0 by our assumption, we havg = ¢j; = 0 by Corollary 1(1) as desired.
(I

Lemma 8 The following hold.
(1) Supposex = 23. Then foreact) < h < aandi > 0 with0 < h 4+ ia < d,

a;kl = altntia'
(2) Supposer = 23 + 1. Then for eacl) < h < aandi > 0 with0 < h +ia < d,
ap = aj ;o Unlessh = B, 6 + 1. Moreoveray;_q),, 5 < ajq g andag;_q),, 5.4 >

.
iat+B+1

Proof: By Lemma 6(3), we have thag;,,,, ;, =0, unlesso =28+ 1withh = +1
(mod «).

(1) Supposex = 23. Thengy ;, , ;, = 0 for everyh. Hence by Lemma 24)(iii), we
have thau;, = aj ;. foreach0 < h < aandi > 0with 0 < h +ia < d.

(2) Supposex = 28 + 1. Thengg,;, ,, = 0, unlessh = f+1 (mod «). Hence
by Lemma 2(4), aj; = aj,;, unlessh = 3,3+ 1, for each0 < h < aandi > 0

with 0 < h +ia < d. Moreover,af, .5 < ai, g andaf, ;). 511 > @joypi-
Lemma 9 If o = 28 with o < d, thena] = 0 for all .

Proof: By Lemma 7,af = Oforalli =0,1,...,a. Hence we have the assertion by
Lemma 8(1). O

Lemma 10 Supposex = 23+ 1. If a; = O0forall » = 0,1,...,a. Thena} # 0 only
whenj =dandd=0 (mod «).

Proof: Choose an integerso thatia + 1 < j < (¢ + 1)ae. We prove by induction on
There is nothing to prove when= 0.
By induction hypothesis and Lemma 8, we may assumegthata+ 5 orj = ia+6+1.
Sinceaa_l).awﬂ BN NI a%+ﬂ+1 = 0 by induction hypoihesis. )
Supposea + < d. Thenqi_1y,1 51501541 = 0@NAaG 1), 1500 = Glatpi
IMpliesqy; 1)1 p41,i0+5 = 00y Lemma 24)(ii). Sinceq; ;.. 504 5-1 = 0, We have
0=10a{;_1)atp = @jatp DY Lemma 2(4)(iii) as desired. d

Lemma 11 Supposer = 23 + 1 > 5 with a < d. Thena} = 0 for all i < d. Moreover,
ai #0onlyifd=4 (mod o).

Proof: By Lemma 10 and Lemma 7, it suffices to show thigt, = 0.
Assume thate > 7. Then we have

* _ _ * * _ *
ppo = 1" = Qg = Qgp1 = Ooq2
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by Lemma 82) asaj = a3 = 0. Note thatd > o+ 2 by Lemma 52). Sinced > a + 2,
we have by Lemma 23) thataj;,; =0as(a+2) - (6+2) =4+ 1.
Supposey = 5. Then we have

* * * * *
ai =ay =ay =as = ag = 0.

Now ¢3 , = 0 by Lemma 6. Since; ; = 0 andaj = af, by Lemma 2(4)(i), we have
436 = 0. Hencey 3 = ¢f = 0,and by Corollary 11), a3 = 0asd > 7by Lemmaj2).
U

Lemma 12 Supposer = 3 < d. Then one of the following holds.
(1) af =0foralli < d,anda); #0onlyifd=4 (mod 3).
(2) d=6,a] =a} =af=0,anda; = a} +af #0.

(3) d=4,a] =a} =0,anda} # 0.

Proof: It is easy to see that; = a3, = 0 for everyi. Supposel > 7. Sincqu,4 =0,
aj = 0 by Corollary 1(1). Sinceq} ; = 0 andaj = aj = 0, ¢3 , = 0 anda} = a} by
Lemma 2(4) (i), (#77). Moreover,qs, = 0 with a = 0 impliesa3 = 0 by Corollary 1
(1). Therefore we have; = a3 = a5 = 0. Hence we hav¢l) in this case.

If d <6, thend = 4 or 6 by Lemma 5(2). If d = 4 or 6, then we have;; = a3, = 0 for
everyi. Moreover, sinces3 ; = 0, a} + ai = a3. Clearly ifaj = 0, we have casél) by
Lemma 10. Hence we have one of the three cases above. O

Lemma 13 Supposel > a + 2 witha > 2anda; =0foralli =1,2,...,d— 1. Then
kT =2.

Proof: Supposé:] > 2. Observe by Lemma 6 thaf, ,,,, = 0, unlessoe = 23 and
h =p3+1for2 < h < a. Moreovergs', = q5,_, = 0 by our assumption. Hence by
Corollary 1(2), ¢, = 0 wheng$_,, 5, = 0.

Supposer = 23+ 1. Theng , = 0 for 2 < h < a. Hence

* 7 % * % *
chbh—l + thh+1 — kl = O

Now by induction we show that! < 1 whenh is odd. The assertion is trivial i = 1.
Suppose’,_; < 1. Sincegy , = 0, we have

0 = cpbp_y +bjch — kT

= ¢ (k] — ch—1) + bpchyr — K1
cp(ky = 1) + b + by (chgr — 1) — k7
cp by, — ki + b, (chyq — 1)

by (¢ — 1)

(A\VARAVARLY]
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Thusc;, | —1 < 0. Sincea is 0odd,c},_, < 1. Now by Proposition 15 = ¢;,_, < 1.
Note that this holds forr = 5 as well because; = 0 in our case. Sincg; , = 0, we have

0 = cib +bycy — kT > chby — ki > (k7 — 1)% — k.

This is impossible. Hence we have the assertion whéenodd.
Supposexr = 283. Then the argument above shows that< 1 whenh is odd and

h < 3+ 1. Note thatqg’[j = 0. Supposé is odd andh < 3. Then
0=cpby_y + by — kT > (k] —1)cj 1 — K.

Sincek; > 3 askj is an integerg; |, < 3/2. Therefore, we have the following.
c; < 1if hisodd andh < 3+ 1.
cp < 3/2if hisevenandh < 3+ 1.
Supposes is odd. Thenb; , = cj,, < 3/2 by Proposition 1. Sincej_; < 3/2,
3/2> b5 =ki —cj_; > ki —3/2. Thuskj < 3. This contradicts our assumption.
Supposé€s is even. Thera:,’gf1 <1 andb*@f1 = CZ§+1 < 1. Thus we obtain that} < 2.
This proves the assertion. O

Proof of Theorem 3: Supposex = 2. Then by Lemma 9, we hayg). Supposex = d.
Then by Proposition 1, we hayéi). Suppose < a < d. If «is even, therm] = 0 for
everyi by Lemma 9. Ifo is odd, then by Lemma 11, Lemma 12 and Proposition 1, we have
af =0foralli =1,2,...,d — 1 unlessae = 3 and (i) or (iv) holds. Now by Lemma
13, we cannot have other cases.

This completes the proof of Theorem 3. |
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