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Abstract. LetI" be adistance-regular graph with diameter 3and height. = 2, whereh =max{i : pgii # 0}.
Suppose that for every in I" and every3 in I"4(cv), the induced subgraph dh; () N T'2(3) is isomorphic to a
complete multipartite grapK; x 2 with ¢ > 2. Thend = 4 andT" is isomorphic to the Johnson gragli10, 4).
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1. Introduction

LetI" be a connected finite undirected graph without loops or multiple edges. We identify
I' with the set of vertices. For verticesandv, let d(u,v) denote the distance between
andv, i.e., the length of a shortest path connectingndv in I'. Letd = d(T") denote the
diameterof I, i.e., the maximal distance of two verticeslin We set

Fi(u)={vel:d(uv)=1i} (0<i<d).

I is said to balistance-regulaif the cardinality of the sef;(x) N T';(y) depends only on
1, j and the distance betweerandy. In this case we write

phy =l () = [Ti(@) NT()| (0 <i,j,1 < d),
wherel = J(z,y). Let
ki = ki(T) = pi; = Ti(w)| (0 <i<d).
In particulark = k; is thevalencyof I'. Let
ci=c(l) =piic1s e = a(l) =pi;, b =bi(0) =pyg (0<i<ad).

They are called thintersection numbersf I', and

* €1 Cg - Gy ot Cg—1 C4d

(T)=< ap a1 az -++ a; -+ G4—1 Qq
bo by by -+ by --+ bg_q

is called thantersection arrayof I".
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The following are basic properties of intersection humbers, which we use implicitly in
this paper.
@Ql=c1<ca<c3<-<cg1<ca<k,
B)k=0bg>by >by>--->bgp>bg_12>1,

Lol L

(4)pz,j _p],z (OSZ7JaZSd)a
G)pl,; =0 1if I>i+jori<l|i—j,
©)pl; #0if l=i+j orl=[i—j,
Npio+piat-+pig=hk (0<il<d),
8) kupl ; = kipj ; = k;pl; (0<4d,j,1<d),
(9) k‘LbL = ki+1c7;+1 (O S 1 S d— 1),
(10)¢; <b; if i+j <d.

A graph is said to bstrongly regularif it is distance-regular with diameter 2.

A graph is called aliquewhen any two of its vertices are adjacentcécliqueis a graph
in which no two vertices are adjacent.

Information about the general theory of distance-regular graphs is given in [1], [2] and
[3].

For some positive integersande with n > 2¢, let X be a finite set of cardinality and
V ={T C X : |T| = e}. TheJohnson graph/(n,e) is a graph whose vertex setls
and two vertices andy are adjacent if and only itz N y| = e — 1. Itis well known that
J(n,e) is a distance-regular graph with diameter

Thecomplete multipartite grapli,,,, m.,.....m, iS & graph whose vertex set is partitioned
into t partsMy, Mo, - - -, My, where|M;| = m; (1 < i < t), and two vertices are adjacent
if and only if they belong to different parts. We writ&, ., if m; = mgs =--- =my = m.

In this paper we identify a subsdtof I with the induced subgraph afiand define the
following terminology.

A subgraphA of T" is called u-closedif for every pair of verticest andy in A with
d(z,y) =2inT, T1(z) NT1(y) C A, and)-closedif for all adjacent vertices: andy in

Leth = max{i : p¢, # 0} be theheightof I'. By definition, it is easy to see that< d.
Most known distance-regular graphs satisfy= d. The Johnson graph&n, d) (n < 3d)
are examples which satisty < d. A distance-regular graph is of height 0 if and only
if I" is an antipodal 2-cover, and is of height 1 if and only'if(«) is a nontrivial clique
for everya in T'. So if the height of" is 1, T is the distance-2 graph of a generalized odd
graph. (See Proposition 4.2.10 of [3] and Theorem 111.4.2 of [1].) The next question is
what kind of distance-regular graphs are of height 2. This question is not easy in general,
but it is very interesting, because there are several intersection arrays for which no graphs
are known. (See Chapter 14 of [3].) Also, K. Nomura conjectured that there is no bipartite
distance-regular graph with diametép 4 and height, = 2. (Conjecture 1.2 of [5].)

In [13] the author showed the following partial result on distance-regular graphs of height
2.
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Theorem 1.1 LetI" be a distance-regular graph with diametér> 3 and heighth = 2.
Suppose that for every in I and everys in T'y(«), T'y(a) N T'y(B) is isomorphic to a
clique. Theni = 3 andI" is isomorphic to the Johnson graptts, 3).

In this theorem, we give a condition tHag(«) NT'2(3) is isomorphic to a clique for every
a, B € T'with 9(«, 8) = d. A clique is one of the natural graphs, because each vertex is
adjacent to all the other vertices. Instead of a clique, we consider a graph in which each
vertex is adjacent to all the other vertices but except one. That is a complete multipartite
graphK;-. In this paper, we show the following theorem.

Theorem 1.2 LetT" be a distance-regular graph with diametér> 3 and heighth = 2.
Suppose that for every in I" and everyg in T'y(«), T'a(c) N T'2(B) is isomorphic to a
complete multipartite grapli’; > with¢ > 2. Thend = 4 andT is isomorphic to the
Johnson graphy (10, 4).

LetT" be a distance-regular graph with height 2 and suppo$e) is connected for every
a € T'. The diameter of ;(«) may be greater than 2. We consider the case the diameter of
T4(«) is 2. For example, it is isomorphic to the Hamming grapig(2, ¢) (¢ > 3), the
Johnson graphg(n,2) (n > 6) or J(2d + 2,d) (d > 2), thenT';(«) becomes strongly
regular. The known examples in which the diameter 3 and the diameter df ;(«) is
2 areJ(2d 4 2,d). For a given grapt\ whose diameter is 2, is it possible to classify the
distance-regular grapfiswhose antipodal structurd%;(«) are A? It is known that there
are finitely many distance-regular graphs in whi¢i{«) ~ A for everya € T'. (See [6]
and [7].)

Let A be a graph with diameter 2. Suppdiga) ~ A for everya € I'. Then the height
of I becomes 2. In this situation, it is easy to see thds distance-degree regular, i.e.,
|A1(B)] = p? 1, |A2(B)| = p? , do not depend on the choice 8fin A. So we have the
following corbllary of Theorem 1.2.

Corollary 1.3 LetI be a distance-regular graph with diametr> 3, and A a distance-
degree regular graph with diamet@rsuch thatA,(3) is isomorphic toK;xo with ¢t > 2
for everys in A. Supposé&;(«) is isomorphic toA for everya in I'. Thend = 4, T is
isomorphic taJ (10, 4) and A is isomorphic taJ (6, 2).

We note that there are many distance-degree regular geapigh thatd(A) = 2 and
Ao (B) ~ Ko foreverys € A. The complements of strongly regular graphs with= 1
are in this class. Itis not hard to construct graphs in this class which are not strongly regular.
For example, let a graph be in this class, then we can construct a new greamthis class
from A. The construction can be done as follows. Take a positive integad consider
the s copies of each vertex ih. Let K" = {uq, us,---,us} (v € A). Ais agraph whose
vertex set isJ,eA K™ and two distinct vertices; ¢ K* andv; € K" are adjacent if and
only if uw = v, oru andv are adjacent in\, or v andv are not adjacent i andi # j.
(In general, let\ be a graph with diameter 2 adxlthe graph constructed frohas above.
ThenAs (o) ~ As(«;) for everya € A anda; € A))
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Though there are infinitly many graphs in this class, of{g, 2) can be the antipodal
structrue of a distance-regular graph, and ofi(¥0, 4) has the antipodal structure in this
class.

2. Preliminaries

We shall introduce the intersection diagrams of ramliich we use as our main tool.
Letwu, v € T with 9(u,v) = . Set

D! = Di(u,v) =T;(u)NT;(v) (0<4,j<d).

It is easy to see the following.
(1) Di =oif I >i+jorl <li—jl,
(2)D;_, # ¢if 0<i<I,
Di, #¢if0<i<d-I,
(3) There is no edge betwed! andDg if li—f]>1or|j—g|>1.
An intersection diagram of rankwith respect to(u, v) is the collection{ D’ }; ; with
lines betweerD’’s and D/’s. We draw a line

DY

i
Dj g

if there is the possibility of existence of edges betwé!girandDg, and we erase the line
when we know there is no edge betwe@;d and Dg. We also erasé);ﬁ when we know

' = ¢. We say ranK diagram instead of intersection diagram of rank

For subsetst andB of T, lete( A, B) denote the number of edges betwetand B, and
9(A, B) = min{0(x,y) : x € A,y € B}. Lete(y,B) = e({v}, B). We writea: ~ g3,
wheng € T'y («), anda # 3, otherwise.

The following are straightforward and useful for determining the form of the intersection
diagrams.

For eachy € D¢, we have the following.

(4) e = ely, Dip1) + e(v,D’i*) +e(y, DiTh),

)
¢j = e(v, Dj1y) + e(y, Dj_y) + e(y, Dj 1),
(5) ai = e(v, Djyy) +e(y,D )+6(%D 1)
aj _6(77D2+1)+6(77D )+€(’7aDl 1)
(6) bs —e(V’Déﬂ)Jr (%DZH) +ely ,Dﬁl),

b] = 6(77 D;ill) + 6(77 D;-&-l) + (77 D;:—ll)

For the properties and applications of intersection diagrams, see for example [5], [6], [8],
[9] and [13].

Let o, 8 € T with 9(a, 8) = d. We mainly use intersection diagrams of rahkvith
respect to(«, 5). So in this paper rank diagram means rank diagram with respect to
(e, 8).

LetI" be a distance-regular graph with height 2. We determine the shapes of some
diagrams of* and prove some lemmas.
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First we consider the rankdiagram. Suppose there is a veriex D; for some;, j with
i+j>d+ 3. Thenwe cantakg € I'y(a) NT'y_;(x). Sinces,y € T'y(er) andh = 2,
9(B,y) < 2.0n the other hand)(5,y) > 9(8,z) — d(z,y) > 3, which is impossible.
Sowe getD;'- = ¢ fori, jwithi+ 5 > d + 3. Therefore the ranK diagram becomes as in
Figure 1.

LIS AN N A
e d\IL/ \l\)éil\)/ \’/ \1’9/ \
{11} {|ﬂ}

Take anyy € D2, thenl';(a) NT;j_2(7) C Dd _jpfor2z<j<d Asp?; , #0,we
get
D) i, #¢andpf, ;. #0 for 2<j<d

Sincek;pl, 4 ;.o = kaplq_; o # 0, We have
pil7d_j+2 #0 for 2<j<d.

Next take anyu, v € T" with 9(u, v) = i for 2 < ¢ < d, and consider the rankdiagram
with respect to(u, v). Suppose there is € Dg for somef + g > 2d —i + 3. Take
y € Ty(u) NT4—s(z). Theny € DY, wherej = d(v,y) > d(v,z) — d(x,y) > d—i+3.
We takew € D_,, sincep} ;_; # 0. S0d(y, w) > 3. This contradicty, w € T'y(u) and
h =2. Sowe haveDg = ¢for f+9g >2d—i+ 3. Hence the rankdiagram with respect
to (u, v) becomes as in Figure 2. A§_,,, , # 0, takez € D§~"*?. Then

L(2) NTacitay;(u) € D foro < j <i—2.
Sincep? t2_ . =0, we have

7,d—i+2+j

Dj:;’_+2+j #¢ and pl_; 00 #0 for 0<j<i—2.
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Dg__ﬂ—Q—Dgi%a ’ '_Dg:ilw Dg—z+2
. N SN S
Dg_H_l Dg:i+2 o Dgiil-m Dg—z-l-l
SN N NN S
Dgﬂ Dg:iﬂ Dg:éﬂ’ ’ ’_D57?+2 ngﬂ Dg—z
ANV A RNV RN A RNIVERN
D=5 D=5 - Di=fr—Di;
7N SN NS
Dy=—Di=3 Di=5™ —Di=f D=} Di~i,
ENPVANNVAA ANV ANZ
VAR NVARNVERNVA RN VAR
D} D? D} —Di= D} Dit!
NN N AN LN
i 7 - Dy 1
NN N NN
% i—1 DZQ_'“_Déi Dii D6
I I
{u} {v}

Figure 2.

Lemma 2.1 The following hold.

(1) For 0 < i < d—1, we havepll; . | < pi,_
bi = Cd—i-

(2) For2 < i < d, we havep] ;5> < pi ;.
(3)For2 <i < d—1,we havep , , , < piij_;,; andba_i11 < ciy1. Moreover
Phaiva = Pid_spr ifand only ifbg_iy1 = ¢y if and only if (D', DI~ +
e(D{ T, D¢=%) = 0/in the rankd diagram.

4 For0 < j<i—2<d-2 takeu, v € T' with 9(u,v) = 4. Then there is
S Fd7i+2+j (u) such thaTd(u) N Fd,i(ﬂ) - I‘d(u) N ]-—‘ifj (Z)

Proof: (1) By Lemma 4.1.7 of [3]

., and equality holds if and only if

K2

i bibigabigo-rbayr by iy
Pad—i = = Paag—i-1-
C1€2 -+ " Cd—i—1Cd—j Cd—i
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Sinceb; > c¢4_;, we get (1).
Letu, v € T'suchthad(u,v) = i, and consider the rarildiagram with respect t@, v).
(2) For anyx € D4+,

Ta(u) NTi2(x) C DYy
Sinced(u, z) = d — i + 2, we getpy ;"5* < pl 4, .

(3) Takey € Di™'. Foreach: € Dj_,,,d(z,y) > 8(v,z) — d(v,y) = d—i+1. Since
pit =0if j>d—i+2 wehaved(z,y) =d —i+1. So

D§ iyo CTa(u) NTa—it1(y),

i 7+1
and we havey, ; ;.o < py'y_

i+1"
Next we use the rank diagram. For any € D{ ", we get
ba—it1 = e(w, D)

b
civ1 = e(w, Dfﬂ“) + e(w, Dfﬂﬂ) + e(w, Dfﬂ).

Sowe haveé,; ;11 < ¢;11, and equality holds if and only if
d—i+1 pd—itl d—i+1 pyd—i
e(Di L DT ) +e(DE T D) =0
Since
i d
- bik'ipzlffprz = bikdpd73+2,i7
bikip;,d—i+1 = Ci+1ki+1pld,d—i+1 = Ciy1kaPg_iq1i415

; it : P _ d
Pad—it2 = Pyga—i1 tandonly ifb;pg_; o, = civ1pg i1 41
In the rankd diagram,

d—it1 pyd—it2 d—it1 pd—it+l d—i+1 pd—i d
e(DELL ™, D; ) +e(Di ™, D; ) +e(Di T, DY) Cit1Pg—i1,i41-

d—i+l pd—i+2y _ d
€(D¢+1 , Dj ) = bipd—i+2,i'

SObipd_; 45 = Cit1Pd_i 1141 iFandonlyife(DI T DI 1e(DE T DY) =0

if and Only if bd7i+1 = Ci+41-

(4) Sincep) ;19,4 ; 70, takez € Ty iyoy;(u) NTq_j(v). Intherankd —i + 2+ j

diagram with respecttay, z),v € D};_;. Sol4(u)NTy—;(v) € D¢ ; =Ta(u)NTi_;(2).
(I

Lemma 2.2 Suppos%’d = 1. Then for every pair of adjacent verticesandv, I'y(u) N
I4(v) is a clique.

Proof: Suppose there are distinct verticesy € T'y(u) N T'y(v) such thatr % y.
Thend(z,y) = 2ash = 2. We havepid > 2 becauseu,v € Ty(x) N Ty(y).
U
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Lemma 2.3 Supposé,_; = 1. Then for everyx € T, I'y(«) is u-closed and\-closed.
MoreoverT';(«)) becomes strongly regular with the intersection array

* 1 C2
t(Ta(a)) =< 0 ay aq — C2
ag ag—ap — 1 *

Proof: Take anya € T', and any3, v € T'y(«). Consider the rank diagram. Since
bg_1 = 1, we knowe(D¢™!, D$) + e(D{™*, D¢) = 0.

If 9(3,7) = 1, theny € D{ and we gef';(3) NT1(y) € D{ C I'y(a). So we have
[4(a)is A-closed. Ifd(3,v) = 2, theny € D andl"; (3)NT1(y) € DY C T'y(a). Hence
Iy() is u-closed. Therefor® () becomes strongly regular wit(T's(e)) = c2 and
aq (Fd(a)) = aq. U

Lemma 2.4 For somei with1 < i < d — 1 and everyu, v € I" with 9(u, v) = ¢, suppose
I'q(u) NTy—;(v) is a clique. Then the following hold.

(1) Inthe 'rankd diagram,e(Dﬁl,j,Dﬁlf;H) =0fori<j<d-1.

(2) T4(«) is u-closed andi(T'q(ar)) = 2 for everya € T.

Proof: Suppos&(Dﬁl_j, Déf}+1) # 0 for somej with i < j < d — 1. Then there is an

edger ~ ysuchthat € D)_,,y € D} . Takez € Tq(a)NT4—;_1(y). Thenz € DY.

Soz # (3. Takew € T';(a) NT;_;(x). Thenz, 5 € T'y(a) NTy—;(w). This contradicts

I'y(e) NT4_;(w) being a clique. So we have (1). (2) follows frariD¢~!, D) = 0.
O

Lemma 2.3 Supposel > 3. And suppos& () N Ty—;+2(y) is a cliqgue for somé with
3 <l <dandeveryr,y € T"with d(z,y) = I. Thenl';(u) NT'1(v) is a clique for every
u,v € I'with9(u,v) =d — 1.

Proof: By Lemma 2.1(4) withi = d — 1 andj = [ — 3, for everyu,v € T" with
d(u,v) =d —1, thereisz € T';(u) such thal"y(u) NTy(v) C Ty(u) NTy_;4+2(z). Since
Ta(u) NT4_142(2) is a clique, we get the assertion. O

Lemma 2.6 Supposel > 3. Then we haves > 1.

Proof: Supposecs; = 1. We use the rankl diagram. Then by Lemma 2.1(3) with
i=2,bs1=c3=cy=1lande(DS', DSY) 4 e(DI, DI=?) = 0. By Lemma 2.3,
e(DY71, DY) + (DY, DY) = 0 andT'4(a) is p-closed. The rank diagram becomes as
in Figure 3.

Takey € D} | and letA = Ty().
Claim. ACD{'uDItuD§uUD{, AnDI™ #¢pandlAN DY =1.

Takex € A. We haved(z,a) > 9(x,v) — 0(y,a) = d — 1. So we getA C
D3'u D3t u DIt UD§ U DY. Sincepjy' # 0, AN DFT" =Ta(y) NTs(B) # ¢.
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D3 Dy DIt pi=t
SN N IN T N
D; Dj— . D§=2 Dy=L DY
S N NN N
Dy ————D)———Dim - —D{=———DiE———pi-
[ |
{a} {6}

Figure 3.

Takey € A N DI'. Suppose there is some vertexc A N D¢~!. Thend(y,z) > 3,
which contradictgy, z € T'4(y) andh = 2. So we haveA N D{™! = ¢. |AND{| =
ITq(y) NT1(B)| = ba—1 = 1. Hence we have the claim.

Let{u} = AND{. SincgA; (u)| = aq > e(u, D{UDY), thereexists € DI~ 'NA; (u).
Thend(v,y) = 2ash = 2. By Lemma2.3Ais u-closed. By Claim['; (v)NT';(y) C D4.
Hence{u}U(T'y (v) NT1(y)) C Ta(a) N Ty (v). This contradictd, | = 1. O

Lemma 2.7 Supposel > 3 andT'y(z) NT'y_1(y) is a clique for everyr, y € I" with
d(z,y) = 3. Then for every € T'y_1(z) NT4(y) and everyy € Ty(z) NTy_1(y), we
haveu ~ v. Moreover we havé; 1 = pj ; ;.

Proof: Use the rank 3 diagram with respect(ta y).

Thenu € D4 andv € D¢ _,. By way of contradiction, we assunaey v. SinceD?_,
is a clique, we ged(u,v) = 2.

Asp] ; # 0, we takez € Ty(u) NTy(v). Sincer, z € Ty(v) andh = 2, d(z, z) < 2.
Similarly d(y, z) < 2. Soz € DY U D3 U D?. We may assumé(z, z) = 2.

SinceD?_, is a clique,l'; (v) 2 Iy(x) NIy (u). By Lemma 2.5 withl = 3 and 2.4(2)
withi =d — 1, T4(2) is u-closed. Since:, v € T'4(z) with d(u, v) = 2, we get

Pa(z) 2 (P1(u) NT1(v)) U {v} U {u}

(Ca(z) NTy(u) U {v}.

Jiv

Hence
La(x) NT4(z) 2 (Ta(z) NT1(u)) U {v}.

Claim 1. bg_1 = c3.
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Suppose thereig € D2, suchthaty ¢ I'y(x) NT4(2). Thend(z,v) = d — 1 because
D4 | isaclique and(z,v) = d. So

Pa(2)NT1(y) 2 ((Ca(z) NT1(w) U{o}) NT1(y
= (Ca(z) Ty (w) U {v}

In this caséy—1 > bg—1 + 1, which is impossible. HencE;(z) NTy(z) 2 Dg e,
Paa > Pia 1 By Lemma2.1(3) with = 2, we havep] ; = pj , , andbys 1 = cs.
Claim 2. Foranya, § € T such thaB(a, §) = 3, Tx(a) N T'1(6) is a clique.

For anya, § € T such thatd(a, d) = 3, take € T'y(a) NTy—1(d) and consider the
rank d diagram. Thery € D3 ;. By Claim 1 and Lemma 2.1(3) with = 2, we get
e(D3_,,D2 ) +e(D3_,D% ,)=0. Sol'y(a) NT1(8) = Ty(B) NT1(5). By Lemma
2.5with! = 3,T4(8) NT'1(J) is acliqgue. So we gdiz(a) NT'1(J) is a clique.

By Claim 2 and Lemma 5.5.2 of [3], we get = ¢, = 1. This contradicts Lemma
2.6. So we have, ~ v. Thereforeby_1 = [Ca(z) NTi(u)| = [DI_y| = pJ ;-

U

Lemma 2.8 Supposel > 3 andd(T'q(«)) = 2 for everya € I'. Then, in the rankl
diagram,e(Dg_iH,DZ“) # 0forl <i < d—1. Inparticular, D;,_, , # ¢ for
1<i<d.

Proof: Suppose(DY_,,, Dit}) = 0for somei with2 < i < d — 1. Take anyr € D{.
ThenT';(a) N Ty—i(z) C D}_,. Since both sizes arg,_;, we have

I‘i(a) N l"d,i(x) = Défl
Hence for any € DY_,,
Ta(a) NTq-i(y) 2 DY U {B}.

Sinced(Tq4(a)) = 2, for everyz € DY there isw € D{ such that: ~ w. S0d(y, z) <
d—i+1,andly(a) NTy_;12(y) = ¢. This contradictg)jm_,L.Jr2 =% 0. Hence we have
e(Dy_, .1, D54y # 0for2 < i < d—1. By symmetry we have(D},D3_,) # 0.
O

3. Some lemmas

In the rest of this paper, we assume the hypothesis of Theorem 1.2. In the dadcam,
we haveD4 ~ K.

Letky = p§, = aqgandsy = piQ = 2t. Thenky = 1+ k1 + k. Take anyy € D4, then
we have‘j("}/, Dg) = K9 — 2, 6(")/, Dil) =K1 —Ko+2 ande(’y, Dcli_l) = Co — (Iil — K2 +2)
by our assumption.

Lemma 3.1 For everya € T and every3, v € T'y(a) with 9(8, v) = 2, we have
{6 € Pa(a) : 0(6,8) = 9(6,7) =2} = 1.
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Proof: Consider the rankl diagram. Theny € D4. As D4 ~ K., we get|{§ €
Ta(a) : 9(6,8) = 0(6,7) =2} ={d € D§ : 6 £ 7} = 1. O

Lemma 3.2 We havey,_, > 2.

To prove Lemma 3.2, we need the following lemma.

Lemma 3.3 LetA be a strongly regular graph witp3 ,(A) = 1. Then we have,(A) > 2
andk;(A) > ko(A). Moreover one of the following holds.

(1) A is isomorphic to the complete multipartite grapfy ;.

(2) Ais isomorphic to the Hamming grapti(2, 3).

(3) Ay () is connected for every € A, i.e., A is locally connected.

Proof: Letk; = ki(A), ko = k2(A) andX = a1(A). Asp3,(A) = 1, we have
GQ(A> =Ky —2 andCQ(A) =K1 — ko + 2.

If co(A) = 1, thenk; + 1 = ko = Kk1b1(A), which is a contradiction. Se,(A) > 2
andm > Ko.

Take anyx € A andz,y € Aj(a)withz £ y. LetX = Aj(a)NA1(2),Y = A(a)N
Ai(y) and{z} = Ay(x) N Az(y). Then byps ,(A) =1, Ay(a) C {z,y,2} UX UY.
So we have:; < 2\ + 3.

Suppose:; = 2A+3. ThenXNY = ¢and{z} C Aj(«a). Since{z} = Ax(y)NAx(2),
X C Aq(2). SimilarlyY C Aq(z). Sowe haveX UY C A (a) NAq(z) and2) < .
Hence) = 0 andx; = 3. So we have\ ~ K33

Suppose:; = 2\ + 2. Then since

/QQCQ(A) 52(2()\ + 1) — Ko + 2)

Atl=r—2 bi(4) K1 2\ + 1)

we get
(ke — (A +2))2+ (X2 =2)=0.
Hencel = 1, ko = 4 and we easily gef\ ~ H (2, 3).
Supposes; < 2X\ + 1, thenX NY # ¢. SoA is locally connected. O

Proof of Lemma 3.2: Supposé;_; = 1. Takexz € I". Then by Lemma 2.3";(z)
becomes strongly regular. Lét = T';(z), then by Lemma 3.1A has the property that
p3.2(A) = 1. Hence by Lemma 3.3\ ~ K33 or A ~ H(2,3) or A is locally connected.
A. Hiraki and H. Suzuki showed that there is no distance-regular grapith diameter
d > 3 suchthal'y(o) ~ Kxs(t > 2,5 > 2). (See [13].) So the cask ~ K3 ; does not
occur.

Casel. A~ H(2,3).

Sincea; = 1 ande, = 2, we havek, = k(k — 2)/2. Sincekpl , = kdp‘li,d = 36,
kgpg,d = kdpgd = 36 and4 = aq < k, we getk = 6 andky = 12. Therefore we get
cq = 2. This is a contradiction becausg > 2 impliescy > ¢, (see Theorem 5.4.1 of [3]).
Case 2. Aislocally connected.
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Takey € T' with d(z,y) =i (i = 1,2). Supposd'4(z) N T'4(y) contains at least two
vertices, then it contains an edge~ v since it isuy-closed. SaA;(u) C I'g(x) N Ta(y)
becausd '4(z) N T'q(y) is A-closed. Since; > 1 andI'y(z) N I'y(y) is A-closed and

p- closed,A C T4(x) NTa(y). Hencep , = kq andp}; , ; = 0, which is impossible.
Therefore we gep}m = pjd = 1andk = kgk1, ks = kgro. By Lemma 3.3k > k.
This also contradicts Lemma 5.1.2 of [3]. O

Lemma 3.4 Supposel > 4. For3 < i < d — 1, take every, v € T with 9(u,v) = i.
Thenl'g(u) NTy_;(v) andT'y(u) N Ty—;42(v) are cliques of size at least 2.

Proof: By Lemmas2.1and 3.2, ; > py;' =bg—1 >2andpl, ;o > pi, 4 >
Pt =2

For someu, v € T" with 9(u, v) = 4, suppose there ang y € I'q(u) N T'4—;(v) such that
x 7 y. Use the rank diagram with respect tou, v). Thenz,y € D?_, with 0(z,y) = 2.

Sincep; 4_;,, > 2, there arez, w € Dj_, . Clearlyd(z,z) = 9(z,y) = d(w,x) =
d(w,y) = 2. SoinT'y(u) there are at least two vertices at distance 2 froamdy, which
contradicts Lemma 3.1. S&;(u) NT'y—;(v) is a clique.

Similarly T'4(u) N Ty—_;12(v) is a clique. O

Lemma 3.5 Supposel > 4. Then we have the following.

(1) In the rankd diagram,e(D},_;, Di", . ) =0for1 <i<d—1.

(2) Ty(e) is u-closed andi(T'y(«)) = 2 for everya € T.

(3)D}y_;q #¢forl <i<d.

Proof: (1) From Lemmas 3.4 and 2.4(D’,_;, D", ) =0for3 <i < d—1. Suppose
e(D%_,,D3 ) # 0. Then there are € D% ,,y € D3_, such thatt ~ y. By Lemma
3.4, we taker,w € T'y(a) NTy_3(y) € DY. By our assumption, (i.e., tha®d ~ K;»,)
for anyy € T4(a), (v,0) < 1ord(v,z) < 1ord(y,w) < 1. Therefore we get
Ta(e) NTy(z) = ¢. This is impossible becaugd , # 0. So we get(Dj_,, D ;) = 0.
By symmetrye(D]_,, D3) = 0.

(2)(3) Itis clear from Lemmas 2.4(2), 2.8 and 3.4. O

Lemma 3.6 Supposel > 4. Then we have; | < 2.

Proof: Consider the rank diagram. For anyy € Dg‘f*l,
La(a) NT1(y) € D5.

By Lemma 3.4 withi = d — 1, T'y(a) N Ty (7) is a clique. On the other han®g ~ K
by our assumption. Since the maximal cliqued®f,, are sizet, we have

K
bd_1§t=§.
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4. Thecasal > 5
In this section we assumg> 5 and show this case does not occur.

Proposition 4.1 LetI" be a distance-regular graph with diametérand heighth = 2.
Suppose that for everyin I" and everys in T'y(«), T'q(a) N T2(B) is isomorphic takK o
witht > 2. Thend < 4.

By Lemma 3.5, the ran diagram becomes as in Figure 4.

D’ D+ —Df=2—pi=t—f

SN N SN N N

Dy D= " D§=2 D= D¢
SN NN N N N
D} DDz —D§ D} D{F D}
[ [
{a} {8}
Figure 4.

Lemma 4.2 We have the following.
(1) b2 Z Cd—1-
(2) bag—2 = c3.

Proof: First we showb, > ¢4_1 andby_o > c¢3. From Lemma 2.1(3), we havg <
Cd—iro fori=2.d—2.If b; = c4_;12, then we get

bi = Ca—it2 > Ca—it1-

So we may assung < c¢q4_;+2. Then, in the ranki diagram, there is an edge~ y such
thatz € D¢~ andy € D=1,
Claim1. e(y,D{™") =0fori=2,d—2.

Suppose there is € DI~ such thaty ~ z. If i = 2, thens, = € Ty4(a) N Ty(z) with
8 7 x. This contradicts Lemma 3.4 with= d — 2. If i = d — 2, then from Lemma 3.4
with i = 4, we can takes, v € T'y(a) NTy_4(x). Thenu,v € D andu,v € Ty_a(2).
Take anyy € Ty(a). If v € D¢, thend(z,~) < d— 1. If v € DY, then by our assumption,
v ~ uofy~ v Sowe havé(z,v) < d— 1. Hence we havé(z,v) < d — 1 for any
v € Ty(a). 8(z,7) < d—1. Sol'y(a) NTy4(z) = ¢. This contradictp? ;, # 0. So we
have the claim. ’
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By Claim 1, fori = 2 andd — 2, we get

ca—iyr = e(y, D{Y) < ey, DY) + ey, DI) = bi.
So we have (1) and; < by_».
We knowby_3 > c3. If by_3 = c3, then we get

bg2 <bg-3=c3.

So we may assumi&;_3 > cs, then there is an edge ~ y such thatr € D§*3 and
Y € Dg*2.
Claim2. e(y,D§ ') =0.

Suppose there is € D§! such thaty ~ z. Then by Lemma 3.2, take, v € T'q(a) N
I'1(z) C D4. By our assumption, for any € T'y(a), d(z,7) < 4. Sol'y(a) NTs(x) = ¢.
This contradict3)gg3 # 0. Hence we have the claim.

By Claim 2, we have

bd72 = e(vagil) S e(yaDgil) + e(yaDgi2) = C3.

Lemma 4.3 In the rankd diagram, we have the following.

(1) Foreveryzr € D3_,,Ty(z) C DS 3uD§2uDy?uDy P uDy tuD{—

(2) For everyy € D3 ,, Ty(y) € D72 u D2 u D§~t U D§~" U D{. In particular
Ta(y) N (D§' U DY) is acliqueL'u(y) N DY # ¢ and|Ta(y) N D 2| > 2.

Proof: (1) Take any: € T'y(z). Sinced(a,x) =3 andp?yd =0ifi<d—4ori=d,we
knowd — 3 < 9(a, 2) < d— 1. Similarly 1 < 9(5, z) < 3. So we get (1).

(2) Take anyw € T'4(y). Sinced(a,y) = 2 andd(f,y) = d — 2, d(a,w) > d — 2 and
d(B,w) > 2. So we get

Ty(y) € DI2uD$2uDS?uDI UuDI U DS,

Claim. Tq4(y) N DY # ¢, Ty(y) N DI% = ¢ andTy(y) N (DI~' U DY) is a clique.
Takeu € Ty(y) NTy(a), thenu € Ty(y) N DY. SoTy(y) N DY # ¢. Sincel'y(y) N
(DI72 U D371 U DY) = Ty(y) NTo(B) is a clique by Lemma 3.4 with= d — 2, we get

the claim.
By Lemma 3.4 withh = d — 2 we get

Ta(y) N D2 = Ta(y) NTa(B)] > 2.

Lemma 4.4 In the rankd diagram, we havé(D?_,,D3_|) >3
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Proof: By way of contradiction, assume that there are D3_, andy € D?_,, such that
8(dx,§/) = 2. Then we can take € I'y(x) N Ty(y). By Lemma 4.3y € D' U DS U
D§~2.
Casel. we DI

Sincel'y(y) N (D3~ U DY) is a clique and 4(y) N D # ¢, there isv € D¢ such that
u ~ v. By Lemma 3.4 withi = 3, we take an edge ~ ¢ in T'y(a) NTy_5(z). Thenx,
§ € DY. By our assumptiony ~ ~ orv ~ §. Therefore we ged(u,r) < d — 1, which
contradictsu € T'y(z).
Case2. wue D§ .

We can takey € T'y(a) N Ty (u). Thenv € DY. Similar to Case 1, this case does not
occur.
Case3. wue€ D§ 2

Sincel'y(y) N DY # ¢ and|Ty(y) N D{7?| > 2, takez € Ty(y) N D¢ ande, ¢ €
Ta(y) N D{2 Thend(z,e) = d(z,¢) = d(z,u) = 2andz, ¢, ¢, u € Ty(y). Hence
by Lemma 3.1y ~ € oru ~ ¢. We may assume ~ ¢. Then we take an edgg~ 6 in
La(B) NTa—sa(e) and€ € Ty(B) NT1(z). Theng, n, 0 € D%, s0& ~ noré ~ 0 and
d(z,u) < d— 1. We get a contradiction.

Hence we have the assertion. O

Proof of Proposition 4.1: Supposé,_» > cs, then there is am ~ y such that: € D?_,
andy € D%_,. By Lemma 4.2(1),

b2 = €(y, D;—l) + e(y7 D2—2) .
>cq1 = ey, Dj_,) +e(y, Di_5) > e(y, Dj_,) +e(y, x).

So there isz € D3_, such thaty ~ z, which contradicts Lemma 4.4. Therefore we get
bq_o = co. By Lemma 4.2(2), we get

C3 = bd,Q = C3g.

c3 = co impliescs = 1. (See Theorem 5.4.1 of [3].) This contradicts Lemma 2.6.
O

5. Thecased =3
In this section we assumé= 3 and prove the following proposition.

Proposition 5.1 LetT" be a distance-regular graph with height= 2. For everya in T’
and every3 in T'y(a), Ta(a) N T2(B) is isomorphic toK; .o witht > 2. Thend # 3.

Lemma 5.2 For everyu, v € I with 9(u, v) = 2, I's(u) N T's(v) is a clique.

Proof: Supposethereargy € I's(u) NT's(v) such that: ¢ y. Thend(x,y) = 2. Since
by > 2, there arer, w € T'3(u) NT1(v). Thenz, y, z, w € T3(u) andd(z, x) = I(z,y) =
d(w,x) = O(w,y) = 2. This contradicts Lemma 3.1. O
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Lemma 5.3 We have the following.
(1) p§73 =1,ky = Hg(l + K1+ KZQ) and03 = Kobs.
(2) For every edge:. ~ v, I's(u) N T'3(v) is a clique.

Proof: (1) By way of contradiction, we assur;zbé3 > 2.

Similar to Lemma 5.2, we havBs;(u) N 'y (v) is a clique for everyu, v € T with
A(u,v) = 2.

Consider the rank 3 diagram. By Lemma 2.4 with 2, e(D3, D3) = e(D?,D3) = 0
andI's(«) is u-closed for everyy € T

Takez, y € D3 such thad(z,y) = 2. Sincep3 3 > 2, we takey € I's(x) N T3(y) with
v # «. Theny € D} or+y € D1 becausé&'s(z) NT'3(y) is a clique by Lemma 5.2.
Casel. ~e€ D..
Sincex, y € T'3(7), D3 ~ K;x2 andI'3(v) is u-closed, we geD3 C I'3(v). Since

pio=T3(7) NT2(B)| = [Ts(y)N (D3 U D3 U D3|
> [Ts(v) N D3| = D3| = p3 »,
we havel's(y) N (D3 U D) = ¢.

Takez € T'3(y) NTa(a). Thenz € D? becausd's(y) N D? = ¢. Sinced(z, z) = 2
andI's(v) is p-closed,

Iy (z)NTy(2) € DINTy(2) CTs(a) NTyi(2) \ {B}.

So
c2 = [I1(x) NT1(2)] < [Ts(e) NT1(2) \ {B} = b2 — 1.

Ifthereisé € D3 suchthaty ~ §,thenwetake € D3 suchthab ~ e. S0d(vy, Dj) = 2,
which contradictd's(y) 2 D3. Hencee(y, D3) = 0. So we can také € D3 such that
v ~ ¢. Sincel'z(y) 2 D3, we gete(¢, D3) = 0andb, < co. This contradicts, < by — 1.
Therefore this case does not occur.

Case2. ~e€ DJ.
Similar to Case 1, we geb3 C T'3(7).

Clearly we havé's(y) NT'3(3) C D3. Sincel's(y) NT'3(8) is aclique and? ~ K, o,
we takew € D3 such thatw ¢ T's(). Thend(w,~) = 2 because(D3, D3) = 0. By
P33 > 2, there are), 0 in 's(y) NT'3(6). Thenn, § € D3. SinceD3 ~ K, we have
w ~ norw ~ #. We may assume ~ 7. Then

So
b2 +1 = |(Ts(a) NT1(w)) U {n}| < |Ts(y) N T (w)] = b.

This is a contradiction. Hence this case is also impossible.

Therefore we gep3 ; = 1. So we haveky = kop3 3 = kspy = ka(l + K1 + K2).
Cc3 = Kaobsy follows from kobs = kscs. l
(2) Itis clear from (1) and Lemma 2.2. O
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Lemma 5.4 For everyu, v € I with 9(u, v) = 2, T'3(u) N T (v) ~ Ksxo for somes < ¢.

Proof: By Lemma 2.1(4) withi = 3,7 = 2, j = 0 and our assumptiofiz(u) N1 (v) is
a subgraph of<;>. So we may assuntg < ks.
Claim 1.  Inthe rank 3 diagram(+y, D3) < 1 for everyy € D?.

If e(y, D3) > 2 for somey € D7, thenl's(a) NT'3(y) = ¢ becauseDi ~ K;y». This
contradictg3 ; # 0. So we get the claim.

Suppose(vy, D3) = 1 for everya, 3 € T with 9(, 3) = 3 andy € D?. Then sincex
andg are arbitary, we gdis(a) NT'1 () ~ Ksx2 for everya, v with 9(a, y) = 2. So by
way of contradiction, we assuméy, D3) = 0 for someq, 3 € T with 9(«, 3) = 3 and
v € D3. Then by Claim 1,

P o(ca — (k1 — ko +2)) = (D}, D3) < pj ;.

So
Iig(CQ - (Iil — Ko + 2)) < 3 = Kobs.

So we have
CQ—(I{l—Ii2+2)§b2—1.

Claim 2. Co = (Iil — Ko + 2) + (b2 — 1)

In the rank 3 diagram, we can takee D%, y € D3 such thatd(z,y) = 2 because
by < ka. Let{z} = I's(z) NT3(y), thenz € DI U D3 U D?. So we may assume
d(a,z) = 2. We knowT'3(y) C {a} U D3 U D3 U D? becausd's(3) NTs(y) = {a}.
Sincez € I's(y) NTa(a) = T3(y) N (D3 U D?) ~ Kixo, e(z,'3(y) N D3) < 1. Hence
e(z, DY) > e(x,T3(y) N D3) > by — 1. Therefore we gety — (k1 — ko +2) = by — 1.
Claim 3. For everya € T'andg, v € T's(«) with 9(5,~) = 2, ba — 1 vertices of
I'1(B8) NT'1(y) are at distance 2 from andx; — k2 + 2 vertices ofl'; (3) N 'y (y) are at
distance 3 fromu

Consider the rank 3 diagram. There D3. Sincee(y, D}) = by — 1, by Claim 2, and
e(v, D3) = k1 — ko + 2, we get the claim.

Claim4. There arey, x € T with 9(«, z) = 2 such thaf's(«) N Ty () is not a clique.

Takea € T"andg, v € I's(«) with 9(5,~) = 2. By Claim 3 andb; > 2, we can take
x € I'y(a) such thate ~ v, z ~ .

Claim5b. by <t.

In the rank 3 diagram, take € D3, y € Dj such thatd(z,y) = 2. Let {z} =

I3(x) NT3(y). We may assumé(«, z) = 2. Let

A={ueTs(a)NTi(z):u~y},

B={uels(B)NT1i(y) : u~x}.

Sincel's(a) NT'y(z) C D3 ~ K,«2 andy € D3, we have A| = by or by — 1. Similarly
|B| = by orby — 1. As{y} = I's(a) NT'3(z), no vertex inl's(a)) N 'y (x) is at distance 3
from z. So all vertices inA are at distance 2 from. By Claim 3 witha = z, 8 = z and
~ =y, all vertices inB are at distance 3 from. Hence

[3(8)NT3(2) 2 BU{z}.
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By Lemma 5.3, we ged (53, z) = 1 andB U {z} is a clique of sizé, or by + 1. Since
BU {x} C D3 ~ K,y» and the maximal cliques dt, - are sizet, we haveh, < t.

By Claim 4, we taken, € T with 9(a,z) = 2 such thatl's(a) N Ty (z) is not a
clique. Let{3} = I's(a) N T'3(x) and consider the rank 3 diagram, thes D3. We can
takey € D3 such that's(a) N Ty (x) C Ty (y) becausd's(a) NTy(z) € D3 ~ Kixa,
I's(a) NIy (z) is not a clique and; < t.

Let A, B be as above. TheA = T';(a) NT1(z). Let{z} = I's(z) NT3(y). Then
z € DU D3U D3,

If = € Di, then by an arguement similar to that in the proof of Claimis, {y} C
I's(a) NT3(z). This is impossible becauskis not a clique and's (o) NT'3(z) is a clique.

If z € D3 U D2, then similarly all vertices i are at distance 2 from Since|A| = b,
this contradicts Claim 3.

Hence we have the assertion. O

Proof of Proposition 5.1: Consider the rank 3 diagram. 1#} ia a clique, theq 8} U D?
is a clique of sizeiz + 1. This contradictd’s(«) being diamete?. SoD? is not a clique.

Takez € D3. Sincel's(x) NT3(a)isacliquel's(z) NT's(a) € D3U{B}. D?isnota
clique, so we takg € D$ suchthat)(x,y) = 2. Let{z} = I's(z) NT'3(y), then we know
z € D3.

Claim. T's(z) € DiuDiu D3 U D?U D3,

Sinceps 5 = 1, {x} = T'3(2) NT3(8) and{y} = I's(z) N T'3(a), We get the claim.

By Lemma 5.4,'3(z) NT'1(a) ~ T'3(z) NT1(8) ~ Ksx2. SO we can take: €
I'3(z) N1 () suchthate £ uwandv € T3(z) NT'1(3) such that £ v. Thenu € D} and
v € D?. S00(u,z) = d(u,y) = d(v,x) = d(v,y) = 2, which contradicts Lemma 3.1.
Therefore we have the assertion. O

6. Proof of Theorem 1.2

In this section we prove our main theorem. By Proposition 4.1 and 5.1, we may assume
d=4.
By Lemma 3.5(1), the rank 4 diagram becomes as in Figure 5.

Lemma 6.1 Take every, y € T withd(x, y) = 3. Foreveryu € I's(z) NT4(y) and every
v € Ty(x) NTs(y), we haveu ~ v. Moreover we havés = pj ;.

Proof: Itis clear from Lemma 3.4 with = 3 and Lemma 2.7. |

Lemma 6.2 Take everyy, 5 € I with 9(«, 3) = 4. For everyz € T'2(a) NT4(B) and
everyy € I'y(«) NT5(3), we haved(x,y) = 2. Moreover we have] , = k.
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Figure 5.

Proof: Use the rank 4 diagram, thenc D? andy € D3. Supposé)(z,y) # 2. Since
bs > 2, we getd(z, y) = 3. Consided’y(x), then we know
I'y(z) € D3U D3 U D} U D} U{B}.
Similarly, we get
I'y(y) € D3UD3U DY UDjU{a}.
Supposd’y(z) NT'y(y) C Ty(z) N Di. Then
Pia = Ta(e) NTu(@)| = [Fa(z) N (D} U{B})]

Ta(z) NT1(y)| + {5}
b3+ 1> pi,3.

v

This contradicts Lemma 2.1(3) with= 2. Sothereis € D3 suchthat € T'y(z)NTy(y).
Suppose there is no vertexn T'y(z) N D3 such thad(y, u) = 3. Then

y(z) NT5(y) C (D3 U D3) NLy(x).

From Lemma 6.1|I'y(z) N 's(y)| = p} 3 = bs > 2. So there are at least two vertices
v, 8 € Ty(x) NT3(y). Thend(~,3) = 9(4,5) = 2 andd(~,z) = 9(,z) = 2. This
contradicts Lemma 3.1. So thereiis T'y(z) N D such that)(u, y) = 3. Similarly there
isv € T'4(y) N D3 such thad(v, z) = 3. Thenu £ v.

Now consider the rank diagram with respect t¢z, y). Thenu € D3, v € D} with
u 70 v. This contradicts Lemma 6.1.

Finally,

P} > = Ta(@) NTa(x)| = | DY = ko,
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Lemma 6.3 We have the following.

(1) p42174 =1landky = I€2(1 + K1+ lﬁlg).

(2) Cy = Rg — 2.

(3) For every edge: ~ v, I'y(u) NT'4(v) is a clique.

Proof: (1) In the rank 4 diagram take € D3. We can taker € T'y(3) N T'4(y) and
y € Ty(a) NT4(7). Thenz € D3 andy € D3. By Lemma 6.29(x,y) = 2. Hence there
is a unique vertex € I'y(v) such thatd(z, z) = d(y, z) = 2 by our assumption. Since
z € Ty(y)NT2(y) anda € Ta(v) NT4(y), we getd(«, z) = 2 from Lemma 6.2. Similarly
we getd (3, z) = 2. We have: € D2. Suppose? , > 2, then we takev € T'y(a) NT4(7)
with y # w. Thend(z,z) = d(y,z) = I(y,2) = Aw,z) = d(w,z) = 2, which
contradicts Lemma 3.1. So we hayg, = 1. Sinceks = kqpi, = kapj,, we have
ky = ka(1 + K1 + K2).

(2) Sincel'4() is p-closed and(D3, D3) = 0,

I'1(y) NT1(2) € Tu(y) N D3 € Ty(v) N (D5 U D3 UD3) CLa(v) NTa(x) = Kixa.

So we havey = ko — 2.
(3) Itis clear from Lemma 2.2. O

Lemma 6.4 In the rank4 diagram, for everyr € D? U D3 and everyu € D3, we have
O(z, u) # 4.

Proof: Supposé(z,u) = 4. If z € D3, thena € I'y(z)NT4(B) andu € T4(z)NT2(6).
By Lemma 6.2, we havé(«a, u) = 2. This contradictsy € D3. If 2 € D3, similarly by
Lemma 6.1, we have a contradiction. |

Lemma 6.5 In the rank4 diagram, for anyu € D3, e(u, D3) # 0.

Proof: Take anyu € D3.
Claim 1. T'y(u) € D} U D3 U D3 U D3 U Dj.
Take anyv € T'y(u), thenl < 9(a,v) < 3,2 < 9(B,v) < 4. If v € D3 U D3, then by
Lemma 6.49(v,u) # 4. Hence we get the claim.
Claim 2. Ty(u) N D3 # ¢.
By Lemma 3.6, 6.1 and 6.2,

ID3NTa(u)| = [Ts(e)NTy(w)] = pis = bs
(D5 UD3)NTy(u)| = [T2(B) NTa(u)| = p3, = K2 > bs.

Hence we hav&(u) N D3 # ¢.

Takey € T4(u) N D3 and takez, y, z € T4(7) as in the proof of Lemma 6.3. Then
y ~ u ~ zbecause, u,z € T4(y) NTa(z) ~ Kix2 andd(y, z) = 2. Therefore we get
e(u, D3) # 0. O
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Lemma 6.6 Takea, v € T with 9(«, v) = 3. In rank3 diagram with respect t¢, ), for
every edge: ~ y in D}, Ty(a) NTa(x) NT2(y) C Di.

Proof: Suppose there i§ € T'y(a) N Ty(z) N Ty(y) such that3 € D3. Consider the

rank 4 diagram. Then € D3, x,y € D3, v ~ x,v ~ y andr ~ y. By Lemma 6.5,

there is§ € D3 such that ~ ~. ThenI'y(a) NT'4(6) = ¢, which contradictj , # 0.
]

Lemma 6.7 For everya € T and every edgé ~ v inT'4(«), there is§ € T's(a) such that
§~ 3,0 ~n.

Proof: Consider the rank diagram. Theny € D7.
Claim1. Ty4(y) € {a}uD}uDiuD:

For everyz € T'4(v), (e, ) < 2 andd(B,x) > 3. If 9(8,z) = 4, thena ~ = by
Lemma 6.3(3). Hence we get the claim.

Takey € T'y(a) NT4 (7). Then by claimy € D2. Sincey € T4(y) NT'1(B) andbs > 2,
we cantaké € I'y(y)NI'1(3) suchthab # ~. Thens € D$ becausgy} = I'y(a)NC4(y).
By Lemma 3.4 withi = 3, v ~ 4. O

Lemma 6.8 For everya € T, T'y(«) is a strongly regular graph with intersection array

* 1 K1 — Ko + 2

2 2
KR]—K]1—K1Ko+K5—2Ko
L<F4(Oé)) = O ' K1 > K2 — 2
ra(k1—ra+2)
K1

K1 *

andpig(m(a)) = b3.

Proof: LetA =Ty(«). Itis clear thatt(A) = k1, ka(A) = Ko, c2(A) = K1 — Ko + 2.
We only need to showAz(x) N A;(y)| is constant for every edge ~ y in A. To show
this, we provg As(z) N Ay (y)| is constant agAs(z) N A1 (y)| + |Az(x) N As(y)| = ka.

By Lemma 6.7, there is € T's(«) such thaty ~ z, v ~ y. Consider the rank 3 diagram
with respect tq«, 7). Thenz, y € D}. By Lemma 6.1 and 6.6,

|A2(x) N Aa(y)| = |D5] = bs.

So |Aq(x) N Ay(y)| is constant for every edge ~ y in A. >Fromk(A)b(A) =
ka(A)ea(A), we haveb (A) = H2lii—rat2) O

K1

Now we complete the proof of Theorem 1.2.

Proof of Theorem 1.2:
By Lemmas 6.3, 3.5(2) and 6.8 — 2 = ¢ = c2(A) = k1 — k2 + 2. SO

K1 = 2%2 — 4.
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As ko = 2t, then the intersection array & = I'y(«) becomes

* 1 20t-1)
(A) = 0 3t—5 2(t—-1)
4t —-1) ¢t

Claim 1. Cy = 2(t — 1), ag = 4(t — 1), ks =6t — 3, ko = 2t(6t — 3) andb3 =1t.

Cy = CQ(A), ay = k(A), ky =1+ k(A) + kQ(A), ko = Iﬁ:g(l + K1 + lﬁ)g). Since
bs = p3o(A) = ka(A) — p3 1 (A) = t, therefore we get the claim.
Claim2.by =4(t — 1), ¢4 = 8(t — 1), k = 12(t — 1) andez = t2.

By Lemma 6.2p3 , = 2t. By Lemma4.1.7 of [3]p3 , = % Sowe geby = 4(t —1).
By Lemma 6.1p} ; = pj} 3. Sop] 3 = p3 3. Consider the rank 4 diagram, then

e(D3, D3) = pj 3bs = cabs

and
e(D§, D3) = pj obs = 2tbs.

Hence we get, = 8(t — 1) andk = 12(t — 1). Sinceksbybs = kycycs, We getes = t2.
Claim3.a; =5t —7,b; = 7t — 6 andt = 3.
In the rank 4 diagram, take anye D7. Then

e(D, D) = ps,(bs — 1) = 8(t —1)*

and
e(D?, D1) = piq(ar — ar(A)) = 4(t — 1)(ar — (3t = 5)).

Sowe gety; = 5t — 7andb; = 7t — 6. Sincekb; = koco, We gett = 3.
By these claims, we know all the intersection numberE.oBy the uniqueness ([4] and
[12]), we get
I ~ J(10,4).

Therefore we have completed the proof of Theorem 1.2. O

7. Remarks

In Theorem 1.2 we assume> 2, i.e.,I'y(a) N T'2(B) is not a coclique of size 2. If the
assumptiort > 2 is removed, does any other graph bt 0, 4) appear? More generally,
for everyq, 5 € T with 9(a, 38) = d, which distance-regular graph satisfies 3, h = 2
andT';(«) N T2(B) is a coclique of size? In this situation we do not have a complete
answer, but in the case= 2, i.e.,t = 1in Theorem 1.2, there is only one graph.

Lemma 7.1 LetT" be a distance-regular graph witth > 3 and heighth = 2. Suppose
T'y(a) NT2(p) is a coclique of size for everya, § € T with d(«, 8) = d. Thenl'y(«) is
a coclique of size + 1 for everya € T.
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Proof: Supposei; = p?, # 0. Then in the rankl diagram, for everyy € D¢ and every
§ € D}, v ~ 6. Sowe knowl'4(a) ~ K (s+1) With 7 > 2 for everya € T'. A. Hiraki
and H. Suzuki showed that there is no such graph. (See Appendix of [13].)

We may assume, = 0. In this case we gdt,(«) is a coclique of size + 1 for every
ael. U

Lemma 7.2 LetT" be a distance-regular graph witth > 3 and heighth = 2. Suppose
T'y(a) NT2(B) is a coclique of siz& for everya, 8 € T with 9(a, 5) = d. Then the
intersection array of* becomes

o) =

= O %
w o =
N O N
* O

Proof: By the previous lemmal';(«) is a coclique of size 3 for every € T'. Since
2 < k < kg and ko divideskdpgll’2 = 6, we getk, = 6. Sok = 3 or4orb5. Since
kb1 = kocoy = 6cg andeg < k, k # 5. Sincekb; - - -bg_1 = kqcqcq—1 - - c1 andeg = k,
3 dividesbhy - - -bg_1. SO0k # 3. Hencek = 4. Then fromkb; = koco, we haveb; = 3
andcy = 2. Sincecs = 2,¢ >33 <i<d-—1). (See5.4.1 of [3].) By using
kobo -+ - bg_1 = kgcqcq—1---c3,¢; > 3(3 Sigd—l) andb; < 2(2 <1< d—l),we
haved = 3 andb, = 2. Thus we have the assertion. O

Remarks. 1. The array in Lemma 7.2 uniquely determines a graph. (See [11] or Theorem
7.5.30f [3].)

2. Every bipartite distance-regular graplvith h = 2 satisfied";(a)) NT'2(8) is a coclique

for everyq, 8 € T with 9(«, ) = d.

3. K. Nomura conjectured that there is no bipartite distance-regular grapth diameter

d > 4 and heighth, = 2. (Conjecture 1.2 of [5].) But the following counter example is
known ford = 4. A graph with the array

satisfiesh = 2. (See Section 6 of [8].) In [10] H. Suzuki showed that this conjecture is true
if dis odd. Ifd is even, then each bipartite half Bfhas height 1.
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