;“ Journal of Algebraic Combinatoriés(1998), 157-163
'. (© 1998 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Family of Optimal Packings
iIn Grassmannian Manifolds

P.W. SHOR
N.J.A. SLOANE njas@research.att.com
Information Sciences Research, AT&T Labs-Research, Florham Park, NJ 07932-0971

Received April 3, 1996; Revised December 31, 1996
Abstract. A remarkable coincidence has led to the discovery of a family of packings?et m — 2 m/2-

dimensional subspacesmfdimensional space, whenevaiis a power of 2. These packings meet the “orthoplex
bound” and are therefore optimal.
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1. Introduction

LetG(m, n) denote the Grassmannian space afalimensional subspaces of real Euclidean
m-dimensional spac®™. The principal angless, ..., 6, € [0, 7/2] between two sub-
spaced, Q € G(m, n) are defined by

COSf; = maxmaxu -v = Uu; - v,
ueP veQ

fori =1,...,n,subjecttau-u=v-v=1u-u;=0,v-v; =01 <j<i-1).We
define the distanéebetweenP andQ to be

d(P, Q) = \/sin201+~~+sin29n.

In [11] we discussed the problem of finding good packing&im, n), that is, for given
N =1,2,...,ofchoosingPy,..., Py € G(m, n) so that mif,; d(P,, P;) is maximized.
It was shown that foN > m(m+ 1)/2 the highest achievable distandg,(m, n), satisfies

@)

n(m —n)
di(m,n) < —
A necessary condition for equality to hold in (1) is thdt< (m — 1)(m + 2). An es-
pecially interesting case occurs whemis even,n = m/2, andN = (m — 1)(m + 2),
where we found optimal packings fon = 2,4 and 8; that is, packings of 4 lines in
R?, 18 2-spaces ifR* and 70 4-spaces iR®. The first is the familiar configuration seen
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on the British flag (the Union Jack), the second is the “double-nine”, a classic configu
ration from nineteenth-century geometry (see (3) below and also the reference in [11]
but the third was discovered only after a very considerable computer-assisted search.
the time [11] was written we believed that there would be no further examples in this
series.

It came as a considerable surprise therefore when we discovered that such packings e
whenevem is a power of 2.

These packings were discovered by a remarkable coincidence. One of us (P.W.S.) h
discovered a family of groups in connection with quantum coding theory [10], and askec
the other (N.J.A.S.) for the best way to determine their orders. N.J.A.S. explained to P.W.
that the Magma computer system [6—8] was ideal for this, and gave as an example tf
symmetry group of above-mentioned set of 70 4-spac&$ jmn eight-dimensional group
of order 28! = 5160960. To our astonishment, the first of his groups that P.W.S. testec
turned out to be (almost) exactly the same group.

The version of the group that arises from quantum coding in fact has the coordinate
in a slightly nicer order, and produces the 70 planes as the orbit of the plane spanned |
the first four coordinate vectors. With the help of our colleague R.H. Hardin we verified
that the next three groups in the series produced packings meeting the bound in 16, :
and 64 dimensions. Further investigation then produced the general construction given
Section 3. The groups are described in Section 2.

2. The group

The groupg; that arises from quantum coding theory is a subgroup of the real orthogona
groupO(V, R), whereV denoteR™, m = 2',i > 1, with coordinates indexed by binary
i-tuplesx = (X1, ..., X)) € F', andF is the field of order 2¢; is generated by the following

2 x 2 orthogonal matrices:

(i) all permutation matrices  p corresponding to affine transformatioxs> Ax + b of
Fi, whereA is any invertibld x i matrix overF andb € F', and

(i) the matrix H = diag{Ho, Ho, ..., Hy}, whereH, = %(f_’) (and + denotes+1,
— denotes-1).

By multiplying these generators it is easy to see that, for 2, G; contains the matrix
H = dlag{ Ha, Ha, ..., H4}, where

+ o+
+_

- -

1
H4:§

+ 4+ +
I+ 1+

Let H; be the group generated by the permutationstdhdTheng; = H; | HH;.
The packings described in Section 3 can be obtained by writing the coordinates in th
natural lexicographic order and taking the orbit un@epof the subspace spanned by the
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Figure 1  The first pair of Barnes-Wall lattice® W, (small circles) and8W, (large circles).

first 21 coordinate vectors (i.e., those in whigh= 0). However, the construction now
given in Section 3 is a recursive one that no longer explicitly mentions the group. The grou
is only needed in the analysis, where we make use of the fact that it acts transitively on tt
subspaces. In the rest of this section we shall therefore give only a brief discussion of the
groups, in order to show their connection with the Barnes-Wall lattices.

It turns out thatH; andg; are well-known groups; is the Clifford groupCZ;"(2')
studied in [4, 5, 14], which in recent years has been used in the classification of finit
simple groups (see the references in [9}).is relevant for the present work because of its
connection with the Barnes-Wall lattices.

Although the original paper of Barnes and Wall [3] describes a family of lattices in each
dimensiorm = 2' (i > 1), the most interesting lattices are the pair with the highest number
of minimal vectors (this number is given by the formula displayed in (4)). We denote this
pair of 2-dimensional lattices bW and BW'. A construction of these lattices using
Reed-Muller codes is given in [2] and in [12], p. 234, example (f) (see also [13]).

BW andBW are geometrically similar lattices, differing only by a rotation and change
of scale. When = 1, for example, we can takBW, to be the square latticg? (figure 1,
solid circles), andB W to be its sublattice of index 2 (figure 1, double circles). In this case
the matrixD = +/2H, acts as an endomorphism sendB'd4 to BW,. In exactly the same
way, the matrixy/2H sendsBW to BW/, a geometrically similar sublattice of inde®/2
(cf. [12], pp. 240-241). Applying/2H twice sendsBW to 2- BW.

Wall [14] showed that for # 3, H; is the full automorphism group of the lattic83M
andBW. (The casé = 3 is special, sinc8Ws; andB W are copies of the root lattideg.)

The groupH; has a normal subgrou which is an extra-special 2-group of ordér 2,
and™; /E is isomorphic to the orthogonal grow; (2) = D;(2). The order ofH; is

i—1
2241 gi(-D o _ 1y 1_[(4j —-1. )
j=1
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By adjoining the irrational matrixd we obtain the full groug;, twice the size ofH;.
The groupg; also appears in an apparently totally different context in [9] (see the droup
defined in Eq. (2.13)).

The way the grou; arises in quantum coding theory is as follows. The quantum state
space of 2-state quantum systems is the complex spaem = 2'. Quantum computation
involves making unitary transformations in this space (see [1, 10]). Some transformation
may be much easier to realize than others, and itis therefore important to know which sets
transformations are sufficient for quantum computation, that is, which sets generate a grol
denseirSU(2). An interesting set of transformations which generate a finite group are the
linear Boolean functions on quantum bits (the permutation matrices in our gkdpupnd
certain rotations of quantum bits /2. To obtain the corresponding subgroup of the or-
thogonal grougs O(2'), only one rotation is required, which can be taken to be the mitrix

3. The construction

We specify a subspade € G(m, n) by giving a generator matrix, that is, anx m matrix
whose rows spar®. We will use the same symbol for the subspace and the generatol
matrix, andP+ will denote the subspace orthogonalRo(or a generator matrix thereof).
| denotes an identity matrix.

The construction is recursive. We define a@gtontaining 2 -1 monomial matrices of
size 27 x 271 by Q1 = {(H), ()},

+ 0 + 0 0 +
o ={(3 %)ea (s 2)ee(® §)ea
(0 §)eaeeanl,

fori > 2. ThenC; is defined by

€1 = ((+0). (O4). (+). (+)].
a={ao.on. (g p).(§ &).0@iPeciqeal.

fori > 2. For example(, consists of the 18 matrices
+000 00+0 +000 +000 0400
0400/’ \ 000+ /’ \ 00+0/)’ \ OO0+ )" \ 00O+ /)~
0+00 ++00 ++00 +-00 +-00
0040)" \00++ /> \00+—/)" \00+—/" \00++ /"
+0+0 +0+0 +0-0 +0-0
0+0+ /)’ \0+0—/)’ \ 040+ )’ \ O+0- )"

+0 0+ +0 0+ +00- +00-
0+4+0)’ \0+-0)/)" \0O++0 /)" \ O+-0 /"

3)
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(The last two rows of matrices in (3) are the matrice®).) These are generator matrices
for 18 2-spaces iiR*.

Theorem Letm 2 ,i > 1. The generator matrice% define a set ofm— 1)(m+2) =
22 42 21 5m- dlmen5|onal subspaceskf'. The distance between any two subspaces

is elther./m/4 or

Proof: The number of subspaces is, by induction,
242272427 422t =2" 12 2,

as claimed.

Since the recursive definition of tifementions the matricgs 0) and(0l ), the coordinate
positions ofC; can be labeled from left to right with binaiytuples in the natural order,
and the grou; then acts by multiplication on the right. It is now easy to find matrices in
G; that permute the subspaces transitively. We leave the details to the reader. Therefo
to determine the distances between the planes, we may assume that one of the planes
generator matrix

1 0

C1 Sl
Co S
B = C3 $3 ’
Cn S
wherec? + s = ... = 2 +s2 = 1,n = 271, then the principal angles betwedrand B
are arccos, arccosy, . . ., arccos.

The principal angles betweexand(0l ) arerr /2 (ntimes). Betweer and the subspaces

P O or P O

0o P 0 P+
they are 014/2 times),7/2 (n/2 times); and betweeA and (I Q) they arer /4 (n times).
The distance fronA to any other plane is therefore eithgn/2 or \/n. O

Since the bound (1) is achieved, this is an optimal packing.
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Together with R.H. Hardin, we are also investigating other families of subspaces that ca
be obtained from the same group. If the initial subspace is taken to be that spanned by t
first coordinate vector, the orbit consists of the minimal vectors of the Barnes-Wall lattice
BW, together with their images under the transformatibgiving a total of

24+2(224+2)---(2 +2 (4)

lines, with minimal angler /4. Taking the plane spanned by the first two coordinates as the
initial plane, we appear to obtain packingsGiim, 2) containing

1 i i r
52D r]:!)(2 +2)

planes, with minimal distance 1, fon = 2',i > 1.
On the other hand, if the initial subspace is that generated by therfigstoordinate
vectors, we appear to obtain packinggdtm, m/4) containing

%m—am—nm+am+®

subspaces, with minimal distanggm/8, form = 2, i > 2. The first member of this
sequence is the packing of 24 lineslit formed from the diameters of a pair of dual
24-cells.

We hope to discuss these packings (which appear to be a kind of Grassmannian analoc
of Reed-Muller codes and Barnes-Wall lattices) in a subsequent paper.
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Notes

1. It is shown in [11] that this is a metric, and in fact is essentially lthedistance between the matrices that
describe the orthogonal projections of@nd Q.

2. The above conjectures have been confirmed. See A.R. Calderbank, R.H. Harden, E.M. Rains, P.W. Shor, ¢
N.J.A. Sloane, “A group-theoretic framework for the construction of packings in Grassmannian spaces”, t
appear in this journal.
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