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1. Introduction

The purpose of this paper is to investigate which polynomials naturally arising in combine
torics are Hilbert polynomials of standard graded (commutakhadyjebras. Our motivation
comes from the fact (first proved by R. Stanley [34]) that the order polynomial of a par
tially ordered set is a Hilbert polynomial. Since Stanley informally told me of this result
| have been wondering whether it was an isolated one or an instance of a more gene
phenomenon. Several works of Stanley (see, e.g., [31, 32], and the references cited the
show that many sequences arising in combinatorics are Hilbert functions, but Stanley ne\
explicitly considered Hilbert polynomials.

In this paper we begin such a systematic investigation. Our results show that sevel
polynomials arising in combinatorics are Hilbert polynomials, and in many (but not all)
cases we find general reasons for this. The techniques that we use are based on cor
natorial characterizations of Hilbert functions and polynomials obtained by Macaulay ir
1927 [24]. Though the characterization of Hilbert functions is very well-known and has
been extensively used since then, the one for Hilbert polynomials is not, and is our ma
tool. Most of our results are non-constructive. More precisely, we often prove that a give
combinatorial polynomial is Hilbert but we are unable to construct (in a natural way) &
standard gradektalgebra having the given Hilbert polynomial.

The organization of the paper is as follows. In the next section we collect sever:
definitions, notation, and results that will be used in the rest of this work. In Section 3 w
develop a general theory of Hilbert polynomials. More precisely, using Macaulay’s resul
and other techniques, we present several operations on polynomials that preserve the Hilk
property, as well as results that give sufficient conditions on the coefficients of a polynomi
(when expanded in terms of several different bases) that insure that the polynomial
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Hilbert. We also introduce a new concept, which is naturally suggested by one of our resuli
which gives a measure of “how far” a polynomial is from being Hilbert. In Section 4 we
apply the general theory developed in Section 3 to polynomials arising in enumerative at
algebraic combinatorics. In particular, we prove thatd¢hendt-polynomials of a graph,

the zeta polynomial of a partially ordered set, Rpolynomial of two generic elementsin

a Coxeter system, the Kazhdan-Lusztig polynomials and the descent generating functi
of a finite Coxeter system, various generalizations of the Eulerian polynomials related 1
Stirling (multi)-permutations, Stirling polynomials, and several polynomials obtained by
specializing certain symmetric functions, are all Hilbert polynomials (up to a shift by 1 in
some cases). Finally, in Section 5, we present several conjectures arising from the pres
work together with the evidence that we have in their support, and we indicate directior
and open problems for further research.

2. Notation, definitions, and preliminaries

In this section we colledc;[ some definitiorglsf, notation and results that will be used in the re
e e

of this paper. We leP = {1, 2,3, ...}, N= PU{0}, Z be the ring of integers, anQ be
the field of rational numbers; fae N we let [a] gl {1,2,...,a} (where [O]dzef #). Given
n,meP,n<m,we letn, m] oef [m]\[n — 1]. The cardinality of a sef will be denoted
by |Al. Given a polynomiaP(x), andi € Z, we will denote by k'](P(x)) the coefficient
of X' in P(x). Fora € R we let|a] (respectively,[a]) denote the largest integera
(respectively, smallest integera).

Given a ringR and a variablex we denote byRL[x]] the ring of formal power series
in x with coefficients inR. Fori € P we let (x); def XX =D (X =141, (X) def

X(X+1) - (x+i—-1), () g &L and((¥)) def X We also let(x)o L (x)o &' (3) def

() E'1. Note that, ford € P, {(X)i}izo....d { (X)i }i=o....d: {()}izo....a: {()}izo....a and
{(”g*' )}i=o....q are all bases of the real vector spa&eof real polynomials of degreed.

We call the first four the bases twfwer factorials upper factorials binomial coefficients
andtwisted binomial coefficientsespectively.

A sequenc€ag, ay, . . ., 8q} (of real numbers) idog-concave if ai2 > a 181 for
i =1,...,d — 1. Itisunimodal if there exists an index & j < d such thatg; < g1
fori =0,...,j—1landa > a,;fori = j,...,d— 1. It has nanternal zerosif there
are not three indices 8 i < j < k < d such that, ax # 0 anda; = 0. It is symmetric
if g =a9_ fori =0,..., L%J. A polynomial Zidzoa,- x' is log-concave(respectively,
unimodal with nointernal zeros symmetri¢ if the sequencéay, ay, .. ., a4} has the cor-
responding property. It is well known thatE?zoa x' is a polynomial with nonnegative
coefficients and with only real zeros, then the sequéagen, . . ., a4} is log-concave and
unimodal, with no internal zeros (see, e.g., [8], or [14], Theorem B, p. 270).

We follow [33] for enumerative combinatorics notation and terminology. In particular,
we denote bys(n, k) (respectivelyc(n, k)) theStirling numbers of the second kitreéspec-
tively, signless Stirling numbers of the first kinidr n, k € N, and we follow Chapter 3 of
[33] for notation and terminology related to the theory of partially ordered sets.

We follow [25], Chapter I, for notation and terminology related to partitions and symmet-
ric functions. In particular, we denote iy the set of all (integer) partitions, and bythe
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ring of symmetric functions. Also, giveh € P, we denote by’ its conjugate, and bg;,
(respectivelye,, hy, px, m;) the Schur(respectivelyelementarycomplete homogenequs
power sum monomia) symmetric function associated o We will usually identify a
partitionA = (A, ..., Ar) withits diagram{(i, j) e Px P:1<i <r, 1 <j < )}.

We follow [31] for notation and terminology concerning graded algebras and Hilbert
functions. In particular, by graded k-algebrdk being a field, fixed once and for all) we
mean a commutative, associative riRgwith identity, containing a copy of the field(so
thatRis a vector space ovéj) together with a collection df-subspacesR }ien such that:

() R=@,.o R (as ak-vector space);
(i) Ro=Kk;
(i) RR; € Ryjforalli,jeN,;
(iv) Ris finitely generated aslkaalgebra.

Note that this implies that eadR is a finite dimensional vector space okerTheHilbert
seriesof R is the formal power series

P(R %) £ dimc(R)X'.

i>0

The following fundamental result is well-known, and a proof of it can be found, e.g., in [3],
Theorem 11.1, or in [31], Theorem 8.

Theorem 2.1 Let R be a graded k-algebra as above. Then

h(R;
P(R;x) = r(4’x)k’
[T—2(1—x9)
in Z[[x]], where (R; x) € Z[x] and k, ..., k- are the degrees of a homogeneous gener-

ating set of R(as a k-algebra.
We call
. def .
H(R: i) = dim(R)

theHilbert functionof R. We say that &-algebraR as above istandardif it can be finitely
generated (as kalgebra) by elements d&. From now on we will always assume that
all our gradedk-algebras are standard. W is a standard gradektalgebra then we can
takek; = --- =k, = 1in Theorem 2.1 and this, by well known results from the theory of
rational generating functions (see, e.g., [33], Proposition 4.2.2(iii)), implies the following
fundamental result which was first proved by Hilbert (in a more general setting, see, e.c
[32], Corollary 9, [3], Corollary 11.2, or [12], Theorem 4.1.3).

Theorem 2.2 Let R be a standard graded k-algebra. Then there exists a polynomia
Pr(X) € Q[x] and N € P such that HR; i) = Pg(i) foralli > N.
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The polynomial Pr(x) uniquely defined by the previous theorem is called Itikert
polynomialof R. Note that ifP(R; x) € Z[x] then Pr(x) = 0.

Givenn,i € Pitis not hard to show (see, e.g., [2], or [12], Lemma 4.2.6, p. 158) that
there exist unique integess > a;_1 > --- > a; > | (for somej € [i]) such that

= (3)e(25) -+ (3)

We then define

n(i>d:ef<5.\i+l)+<ai—1-+1)+.”+<a-j+1>7
i+1 i j+1

and we also set® £'0. We call (1) the-binomial expansiorof n. We say that a sequence
{ho, hy, hy, ...} of nonnegative integers is @d-sequencd the following two conditions
are satisfied:

(i) ho=1;
(i) hiy1 < (h)® foralli e P.

We say that a finite sequeng®, h, ..., hy} isanO-sequence ifhg, hy, ..., hg,0,0,...}
is anO-sequence. AiD-sequence is sometimes also calledvvector(see, e.g., [32]) or
anM-sequencésee, e.g., [6], where a different, but equivalent, definition is given). Note that
anO-sequencéh; }icy has no internal zeros (sincéif = O thenh; 1, < (h)% = 01 = 0).
However, anO-sequence is not necessarily unimodal (take, €194, 3, 4)). We say that
a formal power seriel ;_, h; x' e N[[x]] is an O-seriesf {h;};cn is anO-sequence.

Letxy, ..., Xq be a set of independent variables. Recall (see, e.g., [12], Definition 4.2.1
p. 155, or [30], Section 2, p. 59) that a (hon-empty).s¢tof monomials inxg, . .., Xg is
said to be amrder ideal of monomialg p € M andq dividesp impliesq € M. In other
words, ifx ... x5 € M andb; €[0, a] for i € [d]thenx™...x} € M. In particular,
sinceM # @, 1=x?2...x% € M. Fori € Pwe letM; ®'ipe M:degp) =i} (where
degxf ... x3) LT ag), SoMyp = {1}. The link betweerO-series, order ideals
of monomials, and Hilbert series of standard grakledgebras is given by the following
fundamental and well known result which is due to Macaulay [24]. We refer the reader t
[24, 13], or [12], Theorem 4.2.10, p. 160, for a proof (see also [30], Section 2).

Theorem 2.3 Let{h;}ien be a sequence of nonnegative integers. Then the following are
equivalent
(i) X,-ohix' is an O-series
(i) there exists a standard graded k-algebra R such thd@@;X) = Sisohixt, in Z[[x]];
(i) there exists an order ideal of monomiald such that h = | M;| for alli € N.

The preceding result allows us, among other things, to prove that certain natural operatic
in the ring of formal power series preserve the property of beinQ-@eries. The following
result is known, but for lack of an adequate reference we give a proof of it here.
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Proposition 2.4 LetY"_,ax and} _,bix be two O-seriesand j € P. Then the
following are also O-series
(i) QCizoaxH(Xisobixh;
(i) Yioax +Yiobix' — 1
(i) Y/_ax';
(iv) Yioabix';
v) Zizoaiixi

Proof: (iii) is immediate from the definition of a®-series. The other statements all fol-
low from corresponding constructions in the theory of graded algebras and Theorem 2.
More precisely, letR= ;.o R and S= ;.S be two standard gradekialgebras
such thatP(R; x) = Z|>Oa.x' and P(S; x) = ZI>Ob.x ThenR® S, R®«S, RxS
(wheres denotes the Segre product, i.B# S % PBi-o(R ®« §)) andRYD (whereRD)
denotes thejth Veronese subalgebra &, i.e., R gef ®i>oR;j) are again standard
gradedk-algebras andP(R® S; x) = P(R; x) + P(S; x) — 1, P(R®kS X) = P(R; x)
P(Sx), P(R* Sx) = Y, ,abx and P(RD;x) = Y, oa;x which, by
Theorem 2.3, proves (i), (i), (iv), and (v). N O

Note that itis also possible to prove the preceding result by using the equivalence of pa
(i) and (iii) in Theorem 2.3, thus avoiding commutative algebra.

Throughout this work, we say that a sequefigé; N (respectively, a polynomiah (x))
is aHilbert function(respectively, alilbert polynomia) if there exists a standard graded
k-algebraR suchthah; = H(R; i) foralli € N (respectivelyH (x) = Pr(x)). We say that
a finite sequencéhg, hy, ..., hy} is a Hilbert function if the sequendéy, hy, ..., hg, 0,
0, ...} is a Hilbert function.

Just as Theorem 2.3 provides a numerical characterization of Hilbert functions, there
a numerical characterization of Hilbert polynomials, also due to Macaulay.

Theorem 2.5 Let P(x) € Q[x] be suchthat FZ) C Z, andletm, ..., myq be the unique
integers such that

£ 2)-(C)

(where d = deg P(x))). Then RXx) is a Hilbert polynomial if and only if my > m;
>...>mg >0.

The existence and uniqueness of the integeys. .., my is an elementary statement,
and the “if” part of the above theorem is easy to show. A proof of the “only if” part of
Theorem 2.5is given, e.g., in [24], p. 536, [20], Corollary 5.7, p. 47, and [28], Theorem 2.1
(see also [12], Exercise 4.2.15, p. 165).

Because of the previous result, given a polynonfiék) € Q[x] such thatP(Z) € Z,
we call the integersng, ..., My uniquely determined by (2) thdacaulay parametersf
P(x), and we writeM (P) = (mg, ..., mg).
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By asimplicial complexve mean a collection of sefs with the property that ifA € A
andB € AthenB € A. We call the elements oA thefacesof A. ForS € A, the
dimensiorof Sis |S| — 1. The dimension oA is dim(A) d:efmax{|A| —1:Ae A}. Given
a simplicial complexA of dimensiond — 1 we let fi_;(A) def {Ae A: |Al =i}, for
i =0,...,d, and callf(A) dzeféeﬂo(A), f1(A), ..., fq_1(A)) the f-vectorof A. We then

define then-vectorof A, h(A) = (hg(A), hi(A), ..., hq(A)), by letting

d d
Do EY ) x - 10 3)
i=0 i=0

Clearly, knowledge of thef -vector of A is equivalent to the knowledge of itsvector.
Note that, by Theorem 2.3, {ffo, ..., fq_1} is the f-vector of a simplicial complex then
{1, fo, ..., fg_1} is a Hilbert function.

Recall (see, e.g., [31], Definition 1.1, p. 62, or [12], Definition 5.1.2, p. 201) that we
may associate a standard gradedlgebra to any finite simplicial complex as follows.

Let{vy, ..., vn} be the set of O-dimensional faces®f x4, ..., X, be indeterminates, and
A be the ideal ok[xy, ..., X,] generated by{x;, ---x, :1 < i1 < .-+ < iy < nand
{vi,, ..., v, } € A}. Then itis well known, and easy to see, tifat def K[X1,...,%n]/14A IS

a standard gradddalgebra, called th&tanley-Reisngor face ring of A. This ring has
been extensively studied and we refer the reader to [31], Chapter 2, and [12], Chapter 5,
its fundamental properties.

3. Ageneral theory

Despite the fact that Theorems 2.3 and 2.5 completely characterize Hilbert functions al
polynomials, itis, in practice, a difficult task to decide if a given polynomial is Hilbert using
just these theorems. For example, the reader can check (preferably with the aid of a co
puter) thatM (x°) = [73125997584400089301233649866440583794687734855985916°
646, 382429072075856811032080944276560696326611®3520860 690Q 120]and
that (according to Maple) the first entry of this sequence is two times a prime number! Thu
the computation of the Macaulay parameters of a polynomial is in general not an easy ta:
neither computationally nor theoretically. Our purpose in this sectionis to use Theorems 2
and 2.5 to deduce other results on Hilbert polynomials that are easier to apply, even thou
they do not characterize these objects completely. In particular, we wish to obtain conc
tions on the coefficients of a polynomial with respect to the bases defined in the previol
section that insure that it is a Hilbert polynomial.

We begin with the following result which expresses the relationship between the Macaule
parameters of a polynomial and its coefficients with respect to the basis of twisted binomi
coefficients.

Proposition 3.1 Let P(x) € Q[x] be such that FZ) € Z, and let

(1) R (o9 i 3il () R
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where d= deg P(x)). Then

d—i
C RN BLLLES!
o=y v (1) ®
fori =0,...,d.

Proof: Itis easy to see that

(D) -2 (L 2)(() ®

forallm,i € N. Therefore

(5D (EDE 0

Summing (7) (withm=m;) for i =0,...,d and comparing with (4) yields (5), as
desired. O

Note that the previous result makes it easy to compute the coefficients of a polynomi
with respect to the basis of twisted binomial coefficients from its Macaulay parameter
(as implicitly noted also in [24], p. 537), but not conversely (even though the relations (5
are, of course, invertible). Hence, even a reasonably detailed knowledge of the coefficiel
{Co, ..., Cq} in (4) will not make it easy to decide if the polynomial is Hilbert. However,
the relations (5) do have the following interesting consequence.

Theorem 3.2 Fori € N there exisd; € Q[Xo, ..., Xj] such that
(i) deg®;) =2';
(i) ifPXx) = Z. —oGi (( )) € Q[x]issuchthat RZ) € Zand M(P(x)) = (mo, ..., my),
thenm,l_CD(cd,...,cd ip)fori=0,...,d;
(i) the leading monomial ob; |32("°)2

Proof: We define®; € Q[Xo, ..., Xj] inductively as follows,

(0 & X0, 8)

et N gy (P
& =% - (-1 (j+1)’ ©)

if i > 1. Then (i), (i), and (iii) follow easily by induction one P. In fact, by our induc-
tion hypotheses, deng)) =(j+D2 ) forj=1,...,i and hence, by (9), dég;) =
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deg(®;*)) = 2 and the leading monomial d; is £(2(%)% )2 = 2(%2)?. Similarly, we
deduce from (5) and our induction hypotheses that

i i Md—i+j
Ma—j = Cq—j — Z(—l)J ( j ++1]>

=1

! o Dii(Cq, ..., Ch_ivi)
= Cqg—j — —1J =) ’ ' I+J )
4 ; ) ( i1
= ®j(Cd, - -5 Cdi),
by (9), as desired. a

The following easy consequence of Proposition 3.1 will be useful later on.

Lemma 3.3 Let P(x) = Z?:Oci((f)) be a Hilbert polynomial such thatyjc= 1. Then
Ci—1>1

Proof: From (5) we deduce thaty = ¢4, andmg_1 = cy_1+ (‘;”), and the thesis follows
from Theorem 2.5. |

Note that a Hilbert polynomial satisfying the hypotheses of Lemma 3.3 does not nec
essarily have all its coefficients nonnegative when expanded in terms of the basis of t
twisted binomial coefficients. For exampM,(((3)) + 4((1)) — 2(()) = (4,4, 1).

Itis of course easy to compute the Macaulay parameters of polynomials of small degre
and the following computational result will be convenient later on.

Proposition 3.4 Leta b, c € Z. Then aX + bx + c is a Hilbert polynomial if and only

if 0 < 2a <b+2a2—2a < c+ ("2 _ (%)

Proof: One computes that
S (CED)]=#(5) (mem-F)-
+my — <r21> + (rr;)

and the thesis follows from Theorem 2.5. ]

The next result gives some fundamental operations on polynomials that preserve t
property of being a Hilbert polynomial. Some of these are known, but for lack of an
adequate reference we give a complete proof here.

Theorem 3.5 Let A(x), B(x) € Q[x] be two Hilbert polynomialsk € P, m € N, and
{ho, ..., hy} be a Hilbert function. Then the following are Hilbert polynomials
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(i) AX) + B(Xx);

(i) ACO)B(X);
(i) Akx + m);
(iv) A(X) — Ax —1);

(v) kK AX) +m;
(Vi) Yi_ohi A —i).
Proof: By hypothesis there exi#t;, H, : N — N such thaf Hy(n)}hen @nd{Hz(N)}nen
are O-sequences, and;(n) = A(n), Ha(n) = B(n) if n > ng (for someng € N). Hence,
by (ii) of Proposition 2.4{1, H;(1) + H(1), Hi1(2) + H2(2), ...} is anO-sequence and
H1(n) 4+ Ha(n) = A(n) + B(n) for n > ng and this shows thaf(x) + B(x) is a Hilbert
polynomial. In an exactly analogous way (using (iv) and (v) of Proposition 2.4) one prove:
(i), and (iii) form = 0.
To prove (iv) note that by Theorem 2.5 and our hypotheses we have that

LR (R ()]

wheremg > m; > --- > my > 0, andd d:‘Efdeg(A(x)). Therefore

om0 =20((12)) - ((22) - ((51)
()]
=S - (7))

and (iv) follows from Theorem 2.5. Also, (10) implies that

=3 (D)= (M)
()= (™) -2 () - ()]

and hence

()T ann

i+1

[oX

Il
o
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for all m,i € N. Therefore, by Theorem 2.5, every summand on the RHS of (11) is &
Hilbert polynomial and this, by (i), implies tha&(x + 1) is a Hilbert polynomial. Hence
A(x+m) is a Hilbert polynomial and this concludes the proof of (iii) since we have already
observed that (iii) holds ifn = 0.

Now note that it follows easily from (10) th&tl (A(X) + m) = (M + Mg, My, ..., Mg).
Hence, by Theorem 2.3\(x) + m s a Hilbert polynomial and (v) follows from (i).

To prove (vi) letR and S be two standard gradeklalgebras such thaP(R; x) =
Y a0 Himx™ andP(S; x) = Y | _ohnx™. Then

P(R&S x)=Z( hi Hl(n—i)> X"
0

n>0

i=
(whereh; Loifi > r), and hence
r
H(R®cSin) =Y hi A(n—i)
i=0

if n > ng +r, and (vi) follows. O

Note that while parts (i), (ii), (i) (form = 0), and (vi) of Theorem 3.5 have a clear alge-
braic and geometric interpretation, we have been unable to find any algebraic or geomet
explanation for parts (iii) (whem > 0), and (iv).

It is natural to ask whether there are other operations on polynomials which presen
the property of being a Hilbert polynomial. One operation to consider, in view of part (iv)
of Theorem 3.5, is the anti-difference of a polynom#glx) (i.e., the unique polynomial
V A such thattVA)(n) = Z?:o A(j) for all n € N). This, however, fails to preserve the
property of being a Hilbert polynomial. For exampk(x) = 3x is a Hilbert polynomial
(sinceM (3x) = (3, 3)) but

om=4(()

is not a Hilbert polynomial (sincé/ (3((2))) = (2,3,3)). However, it is not hard to
compute the Macaulay parameters of a polynordiét) if the Macaulay parameters of
A(X) — A(x — 1) are known, and hence to obtain a necessary and sufficient condition on
Hilbert polynomial so that its anti-difference is again a Hilbert polynomial.

Proposition 3.6 Let AX) € Q[x] be such that &) € Z and suppose that KA(X)
—AXx—1)=(mg,...,mg). Then

M(A(X)) = (Mm_1, Mg, ..., my)

where m; & Y (= (MY + A1),
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Proof: LetB(x) = def A(X) — A(x — 1), for brevity. Then we have from our hypothesis and
the definition of(V B)(x) that, for alln € N,

EE[(L)- ()
S22+ (C2)]
(R ()]

wheremy = Z?:O((‘ﬂ;l)), andm{ = m;_q, fori =1,...,d+ 1. ThereforeM(VB) =
(Mg, Mg, ..., mg) and henceM ((VB)(x) + A(-1)) = (A(-1) + my, mo, ..., Mg), as
desired. |

Corollary 3.7 Let A(x) € Q[x] be a Hilbert polynomial of degree d with Macaulay pa-
rameters(mo, ..., mg), and B(x) € Q[x] be such that B«) — B(x — 1) = A(x). Then
B(x) is a Hilbert polynomial if and only if

d i(m+1
mo< ) (=1 ( . ) + B(-1).
; i+2

We now wish to study which polynomials of the bases defined in the previous section al
Hilbert polynomials.

Theorem 3.8 Letde P, &y, ...,a4 € P, andi € [0,d]. Then
(i) x9is a Hilbert polynomial if and only if &> 3;

(i) (X)q is a Hilbert polynomial if and only if &> 3;

(iii) ag(x +a1) - -- (X 4+ ag) is a Hilbert polynomial

(iv) (g) is not a Hilbert polynomial

(V) ((3)) is not a Hilbert polynomial

(vi) (X+g‘i) is a Hilbert polynomial if and only if i= 0.

Proof: A straightforward computation using Theorem 2.5 shows thahd x? are not
Hilbert polynomials, whilex®, x4, andx® are. So (i) follows from part (ii) of Theorem 3.5.
Also, it is easily verified, using Theorem 2.5, tHat, is not a Hilbert polynomial, while
(x)sz is. But, by Proposition 3.4, andx + r are Hilbert polynomials whenever> 1, so



138 BRENTI
(i) and (iii) follow from part (ii) of Theorem 3.5. Furthermore, we have from (6) that

(78 e @)

if i € [d], so (iv), (v), and the “only if” part of (vi) follow from Lemma 3.3. On the other
hand, ifi = 0 then

(4% =((3)

which is a Hilbert polynomial smc(a((”*l))}neN is the Hilbert function og<[xo, ey Xdl
1

, _ b

(in fact, it follows from (12) that the Macaulay parameterg ’6j yare(1,1,...,1). O

The reader will notice that the basis of lower factorifi%);}ien is missing from
Theorem 3.8. It can be easily checked tfw),, and (x)3 are not Hilbert polynomials,
and we conjecture (see Section 5) thaly is always a Hilbert polynomial ifl > 4.

Theorem 3.8 has several interesting consequences.

Corollary 3.9 Let P(x) € Q[x] and suppose that & — 1) € N[x]. Then Rx) is a
Hilbert polynomial.

Proof: By hypothesis we can writ®(x) = Zid=0ai (X + 1)" whereay, ..., a4 € N, so
the thesis follows from part (i) of Theorem 3.5 and part (iii) of Theorem 3.8. a

Corollary 3.10 Let P(x) = Zf’:oaxi = Zidzoyl (X)i € Q[x]. Suppose that at least one
of the following conditions is satisfied

() ag,...,age Nand a,a, > 3;

(i) ¥0,....ya € Nandy; > 3,y, > 2.

Then RXx) is a Hilbert polynomial.

Proof: Assume first that (i) holds. It follows from part (i) of Theorem 3.5 and patrt (i) of
Theorem 3.8 thag; x' is a Hilbert polynomial forO< i < d,i # 1, 2 (sinceg; € N). Onthe
other hand, it follows from Proposition 3.4 thatx anda,x? are also Hilbert polynomials
(sinceay, a; > 3), so the thesis follows from part (i) of Theorem 3.5.

Similarly, if (ii) holds then it follows from part (i) of Theorem 3.5 and part (ii) of
Theorem 3.8 tha, (x); is a Hilbert polynomial forO< i < d,i # 1, 2. Onthe other hand,
it follows from Proposition 3.4 thap; (x)1 andy,(x), are also Hilbert polynomials (since
y1 > 3, y2 > 2), so the thesis follows from part (i) of Theorem 3.5. O

Another interesting consequence of Theorem 3.8 is the following:

Theorem 3.11 Let P(x) = Y 16 (1) = S owi (7™ = Y sax be such that
P(Z) C Z. Suppose that any one of the following conditions is satisfied
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() c=cp>-->cqg>0;

(i) wo>wy>--->wg >0;

(i) ag,...,ageN,d>3,anday <a; <a, < as.
Then RX) is a Hilbert polynomial.

Proof: SinceP(Z) € Z we conclude easily (considerii®(0), P(—1), ..., P(—d+ 1))
thatcy, ..., cq € Z, andwg, ..., wq € Z.

Assume now that (i) holds. Then there exfigt ..., Bq € N such thatti = 8 + Bii1
+..-+Bgfori =0,...,d. Hence

o= (() =55 50 (5(())

-2 ((5)

and the thesis follows from Theorems 3.5 and 3.8.
Similarly, if (ii) holds then there exidi, . .., by € N such thatw; = bj +bj 1+ - -+ by

fori =0,...,d. Hence
d —
Z J(X—i—d I)

=

:ib‘ (XJ: x+d |>> 13

Now note that
B 2HCSE ) ()
— — d+1 d+1
x+1 X—j
d+1 d+1/))"
Hencezijzo(x+g‘i) is a Hilbert polynomial by (12) and the thesis follows from (13),
and Theorem 3.5.

Finally, assume that (iii) holds. It is easily verified (using Theorem 2.5)xRat x2,
X + x2 + x3, and 1+ x + x2 + x3 are Hilbert polynomials. But

P(x)=iw. (x+d—|> i

i=0 i

P(X) = ag(1+ X + X2 4+ x3) + (a1 — @) (X + X2 + x3) + (@2 — a)) (x? + x%)

d
+(@s—a)X®+ )y ax,
i=4

so the thesis follows from our hypotheses and Theorems 3.5 and 3.8. a
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Forthe baS|$( )}i—o....d We have beenunable to prove any results similarto Theorem 3.1
The main reasonis that, in general neltﬁglr O( )norZI_J( )are Hilbert polynomials.
For example M ((y) + (}) + (3)) = (1,0,1) andM(( )+ (3) = (L,1,-11), (in
fact, computatlons suggest th@I 0( ) is never a H|Ibert polynomlal if > 2 and that
Z| J( )is never aHilbert polynomlalrll > 3and0< j < d). So,insome sense, the basis
{( )}i—o.....d IS, among the six bases considered, the “farthest” from Hilbert polynomials.
leen the close connection existing between Hilbert functions and polynomials it i
natural to wonder if there are other ways to produce Hilbert polynomials from a Hilber
function.

Theorem 3.12 Let{ho, ..., hg} be a Hilbert function. Then the following are Hilbert
polynomials

Q) Sohi (T4
(i) Yoo hi(x

Proof: (i) is an immediate consequence of part (vi) of Theorems 3.5 and 3.8 (just tak
Ax) = (i)

To prove (ii) note that ith; >3 andh, > 2 then the result follows from part (ii) of
Corollary 3.10. Ith, < 1 then, by our hypothesikz < h{”’ <1, and thereforb, <h{’ <1
etc., sowe conclude thby = --- = h, = 1andh,,; = --- = hg = 0 for somer € [2,d].
But, by Proposition 3.4, ¥ h;(x)1 and 14 hi(x); + (X), are Hilbert polynomials for
anyh; € P. Hence, by part (i) of Theorem 3.5 and part (ii) of Theorem 3.8 we conclude
that 1+ hy(X)1 + (X)2+ - - - + (X); is a Hilbert polynomial for any > 2. If h, > 2 but
hi < 2, then by our hypothesis we conclude thak2h, < h{’ = (") < (3) =3
and hence that; = 2 and 2< h, < 3. But, by Proposition 3.4, + 2(x); + 2(x), and
1+ 2(x)1 + 3(x), are both Hilbert polynomials, so the result follows also in this case from
part (i) of Theorem 3.5 and part (ii) of Theorem 3.8. O

Note that the preceding result fails for the ba{sés ~0....4, {(X)il}i=o...d and{( )izo
For example, - x 4+ x?, 14 (X)1 + (X)2, and 1+ ( ) + ( ) are not Hilbert polynomlals
Since, by Theorem 2.3, iffg, ..., fq_1) € N¢ |sthef-vectorofsome simplicial complex
then(l, fo, ..., fg_1) is a Hilbert function, it is natural to investigate the analogue of
Theorem 3.12 forf -vectors of simplicial complexes.

Theorem 3.13 Let (fo,..., fg_1) € N9 (d € P) be the f-vector of some simplicial
complex Then the following are Hilbert polynomials

(i) Yo fi(} )

(i) ¥ 1f

(i) Y00 f; x'.

Proof: Let A be a simplicial complex such th&tA) = (fo, ..., fg_1), and letR, be
the Stanley-Reisner ring . It is then well known (see, e.g., [31], Theorem 1.4, p. 63, or



HILBERT POLYNOMIALS IN COMBINATORICS 141

[12], Theorem 5.1.7, p. 204), and also easy to see, that the Hilbert functigg isfgiven
by

;n) = _ .
A Yy fi("h), ifneP,
and (i) follows from part (iii) of Theorem 3.5.
To prove (ii) and (iii) note that iff, > 3 then necessarilyf; > 3 and (ii) and (iii)
follow from Corollary 3.10. Iff, < 2 then dinfA) < 2 and it is easy to check, using
Proposition 3.4, thaEf:1 fix' and Zizzo fi (x);j are always Hilbert polynomials in this
case. O

Note that there exists a complete numerical characterization, similar to Theorem 2.3,
the sequences that are thesector of some simplicial complex (see, e.g., [12], Section 5.1,
p. 201, or [31], Theorem 2.1, p. 64). Therefore, one could state Theorem 3.13 without ar
reference to simplicial complexes.

We conclude our general discussion on Hilbert polynomials by introducing a concef
which measures “how far” a polynomial is from being Hilbert. The crucial result for this
definition is the following.

Theorem 3.14 Let P(x) € Z[x] be a polynomial with positive leading term. Then there
exists Me N such that Rx + i) is a Hilbert polynomial for any > M.

Proof: LetP(x) = Z?:o ajxj wherea; € Z andag € P. Then
d

Px+i) =Y ajx+i)

j=0

=0 k=0
4 /d J

=Y <Zaj < )|1k> X
o \f= \K

Hence the coefficient of in P(x + i) is a polynomial ini of degreed — k and positive
leading term, fok = 0, ..., d. Therefore there exisfd € N such thatP(x +i) € N[x] if
i > N. The thesis follows from Corollary 3.9. |

The preceding theorem suggests, and allows us to make, the following definition. Give
a polynomialP (x) € Z[x] with positive leading term we let

H{P} £ maxi e N: P(x +1) is nota Hilbert polynomigl+ 1 (15)
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(where max@} def —1). We callH{P} theHilbert indexof P(x). HenceP(x + i) is a
Hilbert polynomial for alli > H{P}, andP(x) is a Hilbert polynomial ifH {P} = 0.

Part (iii) of Theorem 3.5 (wittk = m = 1) enables us to give the following useful
characterization of the Hilbert index of a polynomial.

Corollary 3.15 Let P(x) € Z[x] be a polynomial with positive leading term ane:iN.
Then Rx + i) is a Hilbert polynomial if and only if i= H{P}.

Since((’;) and((é)) are not Hilbert polynomials it is natural to ask, in light of the concept
just introduced, what their Hilbert index is. As a matter of fact, we have already answere
this question in Theorem 3.8, essentially, but we record the result here.

Proposition 3.16 Letd e P. Then H(})} = d and H{((}))} = 1.

Proof. Part (vi) of Theorem 3.8 shows th(s(ts)) = (X+g‘1) is not a Hilbert polynomial
while ((xgl)) = (ng) is, hence by Corollary 3.16{(})} = d,andH{((})}=1. O

Note that Theorem 3.2 has the following interesting consequence.

Theorem 3.17 Let P(x) € Z[x] be a polynomial with positive leading term. Then there
exists Me N such that i Rx) is a Hilbert polynomial for any > M.

Proof: LetP(x) = Z?:o Cj ((’].()) wherecy > 0. Then we have from Theorem 3.2 that

M(iP(x)) = (®q(icq, ...,iCo), g-1(iCq, ...,iC1), ..., Pa(iCy, iC4-1), Po(iCq))
(16)
foralli € Z. But, again by _Theorem 3.8j(icg,...,icq—j) — Pj_a(icg,...,iCa—j41) IS
a polynomial ini of degree 2 and positive leading term, fgr= 1, ..., d. Therefore there

existsN € N such that
dy(icy, ...,0iCc0) = Py_1(icq,...,iC1) > --- = Py(iCq,iCq_1) > Po(icq)

foralli > N, and the result follows from (16), Theorem 2.5, and our hypothesis since
dg(icyg) =icg > 0ifi > 0. O

Therefore, one could define a second “Hilbert index” in analogy with (15). We leave
the investigation of this “Hilbert index” to the interested reader. In particular, it would be
interesting to know if the analogue of Corollary 3.15 holds for it.

4. Applications to combinatorics

In this section we apply the general results obtained in the previous section to prove th
several polynomials arising in enumerative and algebraic combinatorics are actually Hilbe
polynomials.
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We begin by considering several polynomials associated to graph coloring& et
(V, E) be a graph (without loops and multiple edges). A maly — P is said to be a
coloring of G if p(X) # ¢(y) forallx, y € V such thatx, y) € E. Givenn € Pwe denote
by Ps(n) the number of coloringg: V — P such thatp(V) C [n]. Itis then well known
(see, e.g., [26], or [14], Section 4.1, p. 179) that there exists a polyngri| x) € Z[X],
of degree|V|, such thaty (G; n) = Pg(n) for all n € P. This polynomial is called the
chromatic polynomiabf G and has been extensively studied (see, e.g., [27], for a survey)
Sincey (G; x) is a polynomial one may write

V] VI

X(Gix) =Y a0 =y (-HV e (x).
i=0 i=0

Then the polynomials (G: x) £ YV axi andr(G:x) £ VI cxi are called the

o-polynomialand ther-polynomialof G, respectively. Despite the fact that knowledge of
one of these three polynomials implies knowledge of the other two it is often the case th
o (G; x) andt(G; x) are more convenient to handle thgiG; x) itself. For this reason

0 (G; x) andt(G; x) have also been studied, and we refer the reader to [9, 10], and th
references cited therein, for more information on these two polynomials.

Theorem 4.1 Let G= (V, E) be a graph on p verticewith p > 3. Then the following
are Hilbert polynomials
(i) o(G;x);
(i) ©(G;x);
(i) (=DPx(G; —(x+1)).

Proof: Itis easy to verify directly (using Theorem 2.5 and some patience) that the theorel
holds if p = 3.

We first prove (i) by induction op > 3. Assume thap > 4. If G = K, (the complete
graph onp vertices) therw (G; x) = xP and (i) holds by Theorem 3.8. & # K then it
follows from Theorem 1 of [26] that

(3)-IEl

X(G:ix) = x(Kp: )+ Y x(Gj:x),
j=1

NT

and (therefore) that

(5)-JEl
a(G:x) =0 (Kp:X)+ Y 0(Gj:X),
j=1

where eachG; has p—1 vertices, and (i) follows from our induction hypothesis and
Theorem 3.5.



144 BRENTI

Similarly, we prove (ii) by induction orp > 3. If G = N, (the empty graph op
vertices) then it is easy to see (see, e.g., [33], p. 209, or [9], p. 748) that
p .
T(Np;X) = ) S(p, )X = (Np; X)
i=1

and the result follows from (i). 16 # N, then there follows from repeated application of
Proposition 5.1 of [9] that

[E|

7(G:x) = t(Np: X) + Y _7(Gj: X)
j=1

where eachGj has p— 1 vertices, and (ii) follows from our induction hypothesis and
Theorem 3.5.

Finally, note that (iii) follows immediately from Corollary 3.9 and the well known fact
(see, e.g., [26]) that—1)Px (G; —x) € N[X]. a

Note that the above proof shows thatl)P x (G; —(x + 1)) is a Hilbert polynomial for
anyp > 1.

Regarding the chromatic polynomial itself we have the following result (see alsc
Conjecture 5.3) whose proof is analogous to that of part (i) of Theorem 4.1 and is therefo
omitted.

Proposition 4.2 The following statements are equivalent
() x(G;x) is a Hilbert polynomial for all graphs G with at leadtvertices
(i) (x)pis a Hilbert polynomial for all p> 4.

Another connection between chromatic polynomials and Hilbert functions appears in [4

We now consider Hilbert polynomials arising from the theory of finite partially ordered
sets. LetP be a finite poset. Recall (see, e.g., [33], Section 3.11, p. 129) thakethe
polynomialof P is the unique polynomiaZ(P; x) such thatZ(P; n + 1) equals the
number of multichains oP of lengthn — 1, for all ne P (see, [33], Section 3.11, for
further information about zeta polynomials), and that ¢hder polynomialof P is the
unigue polynomiaf2 (P; x) such that2 (P; n) equals the number of order preserving maps
w:P — [n], for all n € P (see [33], Section 4.5, for further information about order

polynomials). Given a finite labeled posét, w) (i.e., P is a finite poset, and : P — [p]

is a bijection, wherep gef |P]) and a linear extension of P (i.e., an order preserving

bijectiont : P — [p]) we let

dr, ) 'l e [p—1]: 0 X0)) > 0@ X + D)},

and w;i (P, w) be the number of linear extensiomsof P such thatd(z,w) = i — 1,
fori = 1,..., p. The sequencéw:(P,w),..., wp(P,w)} is one of the fundamental
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enumerative invariants of the labeled poéRt w) and has been studied extensively (see,
e.g., [29], and [8]). In particular, it is known (see, e.g., [29], Section 1.2, Definition 3.2, p. 8
and Proposition 8.3, p. 24) thatdf is a linear extension dP then the numbers); (P; w)

do not depend om. In this case we writev; (P) instead ofw; (P; w).

Theorem 4.3 Let P be afinite poset of size p. Then
(i) Z(P;x+ 1) is a Hilbert polynomia{

(i) Q(P;x+1)is a Hilbert polynomial

(i) (wi(P), ..., wp(P)) is a Hilbert function.

Proof: Itis well known (see, e.g., [33], Proposition 3.11.1, p. 129) that

|
Z(P:x+1) =) b (Xi_l> (17)
i=0

whereb; is the number of chains d® of lengthi (i.e., totally ordered subsets & of
cardinalityi 4+ 1), andl is the length of the longest chain &f. But the collection of all
chains of P is clearly a simplicial complex (usually denoted P) and called theorder
complexof P, see, e.g., [33], p. 120) and ifsvector is(bg, by, ..., by). Hence (i) follows
from (17) and (14). Also, it is well known (see, e.g., [33], Section 3.11, p. 130), and eas
to see, that

Q(P; x) = Z(I(P); x) (18)

(whereJ(P) denotes the lattice of order idealslef see, e.g., [33], Section 3.4) and so (ii)
follows from (i). To prove (iii) note that using (17) and (18) we conclude that

P -1
1+2; f (n i )x" - ZOZ(J(P);n—|—1)x”
=Y Q(P;n+1x"
n>0
Y wi(Pyxit

=1 0t (29)

by a well-known result from the theory d?-partitions (see, e.g., [33], Theorem 4.5.14,
p. 219), wheref; is the number of chains o8 (P) of lengthi (i.e., the number of

i -dimensional faces ok (J(P))). This implies, by (3) and the binomial theorem (see, e.g.,
[33], p. 16), that(w1(P), ..., wp(P)) is theh-vector of A(J(P)). But it is well-known
(see, e.g., [33], Section 3.4) tha¢P) is always a distributive lattice. This, in turn, implies
that A(J(P)) is shellable (see, e.g., [12], Theorem 5.1.12, p. 208, and [33], Section 3.3
and (iii) follows from the fact thah-vectors of shellable complexes d@esequences (see,
e.g., Theorem 5.1.15 of [12]). O
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Part (ii) of Theorem 4.3 was first proved by Stanley [34] and, as mentioned in the
Introduction, was the motivation and origin of the present work. The preceding resul
suggests the more general question of whether the order polyn@Rlw; x + 1) of
a labeled posetP, w) (see, e.g., [29], Section 13, p. 45, or [8], p. 1, for definitions) is a
Hilbert polynomial. This is easily seen to be false. For example,# [3] andw (1) = 3,

w(2) = 2,w(3) = 1,thenitiseasytoseeth@i P, w; x+1) = (Xgl)which is not a Hilbert
polynomial by part (vi) of Theorem 3.8. Nonetheless, we feel that there are general class
of labeled posets for whicf2 (P, w; X + 1) is a Hilbert polynomial (see Conjecture 5.7 and
the comments following it). Note that, by part (i) of Theorem 3.12 and well-known results
on the order polynomial (see, e.g., [8], Theorem 5.7.1, p. 66) part (ii) is a consequence
part (i) in Theorem 4.3. Therefore, (iii) also fails, in generabyifs not a linear extension.

Taking appropriate posef? for which the zeta polynomial is known allows us to find
explicit classes of Hilbert polynomials. We give one such example here.

(k 1) . . .
Corollary 4.4 Letk m € P. Then (“**)™) is a Hilbert polynomial.
Proof: Let P be the poset of all non-crossingdivisible, partitions of km], ordered
by refinement (see, e.g., [33], Chapter 3, Ex. 68.a, p. 169, [8], Section 6.3, p. 73, or [16
for definitions). Then by a result of Edelman (see [16], Corollary 4.4, or [33], loc. cit.) we
have that

1/k 1
2P x 1) = (( . 1)”')

and the thesis follows from Theorem 4.3. O

Note that using Theorems 3.5 and 3.8 one can easily prove (f‘rﬁéﬁl)m) is a Hilbert
polynomial for allk, m € P. However, we have been unable to find a similar proof (i.e.,
avoiding Theorem 4.3) fo (**F\m),

For our next two applications we assume that the reader is familiar with the basic theo
of Coxeter groups as presented, e.g., in Part Il of [21]. In particular, given a Coxeter syste
(W, S) we denote by: W — N its length function, and by the Bruhat order olV. Given
u,v € W we denote byR, ,(X) (respectively,P, ,(x)) the R-polynomial (respectively,
Kazhdan-Lusztig polynomial) af andv and we let

dw) £ s e S: 1ws) <)}l (20)

We refer the reader to [21], Sections 5.2, 5.9, 7.4, and 7.5 for the definitions of, and furth
information about, these concepts.
We need first the following simple observation.

Lemma4.5 Leti, j €N, j > 2 ThenX(x + 1)! is a Hilbert polynomial.

Proof: By Theorems 3.5 and 3.8 it is clearly enough to prove the resulf fer 2. If
i > 3thenx' (x + 1) is a Hilbert polynomial by Theorems 3.5 and 3.8. On the other hand,
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one can verify directly (using Theorem 2.5) tiiat+ 1)2, x(x 4+ 1)2, andx?(x + 1) are all
Hilbert polynomials and the result follows. |

Theorem 4.6 Let (W, S) be a Coxeter system and w € W, u < v, be such that
[(v) —I(u) > 3. Then R ,(x + 1) is a Hilbert polynomial.

Proof: If [(v) —I(u) = 3thenitis easy to see (see, e.g., [21], Section 7.5)Rhatx)
equals eithe¢x — 1)% or (x — 1)% + (x — 1)x and one can check that the result holds in this
case. So assume tHab) — I (u) > 4. Itis then well known (see, e.g., [21], Section 7.5,
p. 154, or [15], Theorem 1.3) that

5 o
Ruv(X+1) =) a(x+1)'x*? (21)
i=0

whered d=efl(v) —Il(u)yanda; e Nfori =0,..., L%J. Ifi =1thend —2i > 2 and hence
(x 4+ 1)x9-? is a Hilbert polynomial by Theorems 3.5 and 3.8 and the fact(that 1)x?

is a Hilbert polynomial. Ifi = 0 thend — 2i > 4 and hence®~2 is a Hilbert polynomial
by Theorem 3.8. If > 2 then(x + 1) x4~2 is a Hilbert polynomial by Lemma 4.5. Hence
the result follows from (21) and Theorem 3.5. O

Given a finite Coxeter syste(w, S) we let
def i .
dW)=|[{lveW: dw) =i} (22)
fori € N.

Theorem 4.7 Let(W, S) be a finite Coxeter system andwe W, u < v. Then
(i) X, cw X4 =3 di(W)x! is a Hilbert polynomial

(i) P,,(x + 1) is a Hilbert polynomial

(iii) {do(W), di (W), ..., dig (W)} is a Hilbert function.

Proof: Let, for brevity, P(W; X) dzefzwew x4 " If |S| < 2 then eitheP(W; x) = 14X

(if |S| = 1) or W is a finite dihedral group, in which cagqW; x) = 1+ (2p — 2)x + x?
for somep > 2. In both cases (i) holds by Proposition 3.4. So assumg &hat 3. Note
that it follows immediately from the definition (22) that

doW) =1, di(W) =[]

for any (W, S) (sinced(s) = 1 for all s € S). Furthermore, it is known (see, e.g., [11],
Theorem 2.4) thaP (W, X) is always a symmetric unimodal polynomial. Hence

d2(W) = |§|
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(since degP(W; x)) = |S| > 3). Therefored; (W) > 3 andd,(W) > 3 and (i) follows
from part (i) of Corollary 3.10.

Since it is well known (see [1, 23]) that Kazhdan-Lusztig polynomials of finite Coxeter
systems have nonnegative coefficients, (ii) follows immediately from Corollary 3.9.

To prove (iii) let A(W, S) be the Coxeter complex aW, S) (see, e.g., [5], or [21],
Section 1.15, for the definition and further information about the Coxeter complex). By :
result of Bprner (see [5], Theorems 1.6, 2.1, and Proposition 1.2, or [11], Theorem 2.3
theh-vector of A(W, S) is (do(W), di (W), ..., d;g(W)). But, again by a result of Byner
([5], Theorem 2.1),A(W, S) is a shellable simplicial complex and (iii) follows from
Theorem 5.1.15 of [12]. O

Note that it is a long standing conjecture (see, [22], p. 166, and also [21], Section 7.
p. 159) that Kazhdan-Lusztig polynomials have always nonnegative coefficients. Itis ther
fore natural to conjecture that part (ii) of Theorem 4.7 holds also for infinite Coxeter sys
tems. Given the close connection existing betweenRimolynomials and the Kazhdan-
Lusztig polynomials ofW (see, e.g., [21], Section 7.10, p. 160, Eq. (20)) one can ask
whether there is a direct proof of part (i) of Theorem 4.7 from Theorem 4.6. If this
could be found then it would probably yield a proof of our conjecture. Also note that,
by the remarks following Theorem 3.12, part (i) is not a consequence of part (iii) in
Theorem 4.7.

If (W, S)is a Coxeter system of typ&, then it is well known thak P(W; X) = Ap,1(X)
anddg(W) = A(n+ 1,k + 1) for n € P andk € N, where A,(x) and A(n, k) denote
thenth Eulerian polynomiabnd the(n, k)th Eulerian numberrespectively. Though these
objects have been widely studied (see, e.g., [17], [14], Section 6.5, and the references ci
therein) the preceding result seems to be new even in this special case.

.....

Corollary 4.8 Letne P. Then% An(x) is a Hilbert polynomial and A(n, K) }x=1
Hilbert function.

We don’t know any combinatorial proof (i.e., avoiding commutative algebra) of the fact tha
{A(N, K)}k=1...n is anO-sequence. Note tha#,(x) is not in general a Hilbert polynomial,
for exampleAz(X) = (X)2.

Some of the combinatorial sequences that have been most studied in enumerative con
natorics are those of the Stirling numbers. Strange as this may seem, we have not founc
the literature any result relating to the question of whether these sequenCeseageiences.

We answer a more general question in the affirmative herenHgr € P let S (n, k) be
the number of set partitions ofi] into k blocks, each of sizer. The numberss (n, k)
are usually called the-associated Stirling numbers of the second k{sde, e.g., [14],
Chapter V, Ex. 7, p. 221, for further information about these numbers).

Theorem 4.9 Letr,n e P. Then
() {c(n,n —K)}k=o....n—1 is a Hilbert function
(i) {S (. K)}k=1.... 1, is a Hilbert function.
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Proof: It is clear from the definitions that 4 ix is anO-series for ali > 1. Butitis
well-known (see, e.g., [33], Proposition 1.3.4, p. 19) that

n—1

n-1
Zc(n, n—kx* = H(1+ iX)
i—1

k=0

so (i) follows from part (i) of Proposition 2.4.

To prove (i) letV ={S<S[n—1]: n—r > |S >r}andA d=ef{F CV:SNT=¢
forall ST € F suchthatS # T, and) ¢ |S| < n—r}. Itis then clear thai\ is a
simplicial complex on vertex saft. Also,

fiea(A) = §(n k+ 1)

forallk = 0,..., (2] — 1 (since if{Si,..., S} € A then(S,, ..., S, [N\ S))
is a partition of p] into k + 1 blocks, each of sizerr, and this is a bijection). Hence
{S (N, K)}k=z.... L) is the f -vector of a simplicial complex and therefdi® (n, k) }k=1. .. Lo,
by Theorem 2.3, is a®-sequence. O

We now prove that a rather general class of polynomials arising from the enumeratic
of Stirling permutations are always Hilbert polynomials. Kix P andmg, my, ... € P.

Recall (see, e.g., [8], Section 6.6) that a permutai@s - - - 8y, +...+m, Of the multisetVy def
{1m, 2M ., k™} is called aStirling permutationf 1 <u <v <w < Mg+ -+ + Mk
anda, = a,, imply a, > a,. Stirling permutations have been first introduced and studied
in [19] in the casan; = --- = m¢ = 2, and later in [18] (in the cas®e; = --- = my) and
[8] (in the general case). We denote Qy the set of all Stirling permutations &fl. So,
for example Qx = & if my = --- = my = 1. Given a permutation = aja; - - - 8m,+..+m,

of My a descentof = is an indexj € [my + --- + mg — 1] such thata; > aj1. For

0 <i < |Mk| —1we letBy; be the number of Stirling permutations bl with exactly

i descents. So, iy = --- = mg = 1, thenBy; is just the Eulerian numbek(k, i + 1).
There are (at least) two important generating functions associated with the nuBabers
namely

def“vlkl_l i

Bk() = ) Brix, (23)

i =l
and
| M| ;
X4+ [Mg| —1

o0 &y Bk,u( M ) (24)

i—1 |Mk|

(see, [8], Section 6.6, for further information on these two polynomials). As noted in [8],
p. 78, (24) is usually the better behaved of these two generating functions. This turns o
to be true also from our present point of view. In fact, we will prove that (23) is always a
Hilbert polynomial while{ fx(n + 1)}nen is always a Hilbert function.
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Theorem 4.10 Letke Pandm, ..., m¢ € P. Then
() {fk(n 4+ 1)}nen is a Hilbert function

(i) By(x) is a Hilbert polynomial.

In particular, fx(x + 1) is a Hilbert polynomial.

Proof: We flrst prove (i) by induction ok € P. If k = 1 thenB;(x) = 1 and hence
f1(x) = (X+ml ) = ((,)) and the result follows sinqe(”r:ll))}ne,\, is the Hilbert function
of K[xo, .. xml] So Ietk € P and assume thgt, _, fc(n + Dx" is anO-series. From
Proposition 6.6.1 (see also the proof of Theorem 6.6.2) of [8] we deduce that

[Mia .
N+ 14+ Mg +21—i
N+ fu(n+x" = Bi+1i 1( )X”
§ Z) Z T M| + 1
_ Bxua(x)
- 1- X)\Mk\+2 ’ (25)
by (23) and the binomial theorem (see, e.qg., [33], p. 16). Therefore, again by the binomi
theorem, we conclude from (23), (24), and (25) that

S ferane Dy = B

1
nz0 (L —x)Meal+1 = (1 — )Mt g(r“r ) fikh+1)x".  (26)

Since) " _ox" and) . ,(n + X" are bothO-series, (i) follows from our induction
hypothesis and parts (i) and (iv) of Proposition 2.4.

To prove (ii) note that it follows from [8], Proposition 6.6.1 (and it can also be verified
directly), thatB,(x) = 1 4+ m;x, and

B3(X) = 14 (3my + mu)X + my(my + my — 1)X2.

ThereforeBy(x) and B,(x) are Hilbert polynomials, anz(x) is a Hilbert polynomial if
m; > 2 or if my > 3 by part (i) of Corollary 3.10. But it can be verified directly, using
Proposition 3.4, that 3 5x + 2x? and 1+ 4x + x? are also Hilbert polynomials and this
proves (i) ifk < 3. If k > 4 then we see easily from our definitions tt@at; > 21 > 8
andBy , > 33 > 3 (see also Proposition 6.6.1 of [8]) and (ii) again follows from part (i)
of Corollary 3.10. O

Note that the proof of Theorem 4.10 actually yields an inductive procedure for con
structing a ringR¢ having{ fx(n + 1) }nen @s Hilbert function by alternatively taking Segre
products and tensor products with polynomial rings on 2rapé 1 variables, respectively.

It would be interesting to study these rings and the corresponding varieties, and to s
whether they can be defined directly in some explicit way. Also, note that, as observed
[8], Section 6.6, p. 79, no combinatorial interpretation of the intedens + 1) is known
exceptinthe case®; = --- = mg = 1 andm; = --- = mg = 2. While Theorem 4.10
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does not provide such a combinatorial interpretation, it does provide an algebraic interpr
tation. Furthermore, if the ringRy referred to above can be constructed explicitly, then a
combinatorial interpretation of their Hilbert function would probably follow.

It is well-known (see, e.g., [19]), and also easy to see, 8tat+ Kk, n) is a polyno-
mial function ofnn, for eachk € N. An interesting consequence of Theorem 4.10 is the
following.

Corollary 4.11 Letk € N. Then{S(n + 1+ k,n 4+ 1)},en is a Hilbert function. In
particular, S(x + 1+ k, x 4+ 1) is a Hilbert polynomial.

Proof: Takingm; = 2 for alli € P yields, by part (ii) of Proposition 6.6.4 of [8], that
fitn+1) = S(n+ 1+ k,n+ 1) for all n € N, and the result follows from part (i) of
Theorem 4.10. a

The polynomialsS(x + k, x) are usually calle&tirling polynomialgsee, e.g., [19], or [8],
Section 6.6, p. 80).

Corollary 4.11 can, in turn, be generalized in another direction using the theory ©
symmetric functions. We need first the following simple observation.

Proposition 4.12 Let f € A. Then there exists @ecessarily uniquegpolynomialf (x) e
Q[X] such that

fn)=f(1,2,...,n,0,0,...) (27)
foralln € P.

Proof: Itis well-known (see, e.g., [25], Chapter |, Section 2, Ex. 11, p. 23), and easy t
see, that

Sn+k,n)=h(,2,...,n,0,0,...) (28)

foralln € Pandk € N, and that, as noted before Corollary 4.8ln+Kk, n) is a polynomial
function of n for all k € N. By definition (see, e.g., [25], Chapter |, Section 2) we have
that

|
hu(xe, Xz, .. = [ Ths (ke %, ) (29)

i=1

if A=(\1,..., A1), hence the result holds for the complete homogeneous symmetric func
tionsh;, A € P. Buteveryf € A can be expressed as a finite linear combinatioh; of
and the result follows. O

Thus Corollary 4.11 is asserting (by (28) and (27)) ta(1,2,...,n + D}nen is @
Hilbert function anchy (x + 1) is a Hilbert polynomial. This naturally suggests the problem
of determining those symmetric functiorise A for which these properties hold.
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Theorem 4.13 LetA € P. Then the following are Hilbert functions
() {ha(1,2,...,n+ D}nen;
(") {p)»(lv 27 R n_+ 1)}neN-
In particular, bothh, (x + 1) and p; (X + 1) are Hilbert polynomials.

Proof: (i) Follows immediately from (28), (29), Corollary 4.11, and Proposition 2.4.
To prove (ii) note that it follows from the definition (see, e.g., [25], Chapter |, Section 2)
that

> pn+ Dx" = (Z x“) (Z(n + 1)kx“> (30)
n>0 n>0 n>0

for all k € P. Since)  _ox" and}  _o(n+ Dx" are both Hilbert series this shows,
by Proposition 2.4, thatpc(n + 1)}nen iS a Hilbert function for allk € P. Since, by
definition (see, e.g., [25], Chapter I, Section B)(Xi1, X2, ...) = ]_[!=l P (X1, X2, .. .) if
A= (A1, ..., A), (i) follows from Proposition 2.4. a

Given aZ-basis{b, },cp of A we say thatf € A isb-positiveif f =", , a,b, implies
thata, > O for all A € P. Then Theorem 4.13 has the following immediate consequence.

Corollary 4.14 Let f € A be h-positive. Theri (x + 1) is a Hilbert polynomial.

Another consequence of Theorem 4.13 is the following. We denotBylby) the kth
Bernoulli polynomial, fork € P (see, e.g., [14], Chapter |, Section 14, p. 48, for the
definition and further information about Bernoulli polynomials).

Corollary 4.15 Letke P. ThenBy(x + 2) — B(0) is a Hilbert polynomial.

Proof: It is well known (see, e.g., [14], Section 3.9, p. 155) ttlat- 1) px(n + 1) =
Bry1(n+2) — Bx,1(0) for allk, n € P. Hence

Bii1(X +2) = B2 (0) = (K+ D) pe(X + 1) (31)

and the result follows from Theorems 3.5 and 4.13 and the facf3tat+ 2) — 51(0) =
X + 2 is a Hilbert polynomial. O

Note thatBx (x + 2) cannot be a Hilbert polynomial since, in genet&l(N) ¢ Z, and that

Br(X + 1) — By (0) is not always a Hilbert polynomial (for examplBz(x + 1) — B2(0) =
x2 + X).

5. Open problems

Despite the fact that Hilbert functions and polynomials are preserved by many natur
operations on formal power series and polynomials, respectively (see Proposition 2.4 a
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Theorem 3.5), there are many sequences and polynomials naturally arising in enumerat
and algebraic combinatorics for which we have been unable to decide whether they &
Hilbert. In this section we survey the most striking such cases, and we present son
conjectures together with the evidence we have in their favor.

Ouir first conjecture is naturally suggested by Theorem 4.9.

Conjecture 5.1 Letne P. Then{S(n, n — K)}x=o,...n—1 iS @ Hilbert function.

.....

We have verified this conjecture far< 24. In addition to the numerical evidence, there
is a heuristic reasoning that suggests the validity of Conjecture 5.1. A sequence of positi
integers is a Hilbert function if it “does not grow too fast”. Now, it is well-known (see, e.g.,
[14], Section 7.1, Theorem D, p. 271) that the sequgBge, K)}k=1._n is log-concave and
unimodal, hence the real content of Conjecture 5.1 is for the vallgtbaf precede the mode

of the sequence. Butitis known (see, e.g., [33], Chapter 1, Exercise 18, p. 47) that the mo

.....

.....

true since Theorem 4.9 holds.

Theorem 3.8 allows one to settle the question of whether a given polynomial is Hilber
pretty easily if its coefficients with respect to the bgsigicn are nonnegative and have a
combinatorial interpretation. However, there are many polynomials for which this is no
the case (especially polynomials that “count something” when evaluated at nonnegati
integers) but that seem to be Hilbert. In this respect, we feel that the following is the mo:
interesting and outstanding open problem arising from the present work.

Conjecture 5.2 Let G be a graph on at leagt vertices and x (G; x) be its chromatic
polynomial. Thery (G; x) is a Hilbert polynomial.

We have verified the above conjecture for all graphs with at most 15 vertices. Two relate
conjectures are the following:

Conjecture 5.3 Letde P, d > 4. Then(x)q is a Hilbert polynomial.
Conjecture 5.4 Letd e P. Then3d(y) is a Hilbert polynomial.

We have verified these conjectures b 15. Note that, by Proposition 4.2, Conjec-
tures 5.2 and 5.3 are equivalent, while by Theorem 3.5 Conjecture 5.4 implies Conjecture 5

For what concerns the symmetric functiohg A such thatf (x 4+ 1) is a Hilbert poly-
nomial we have the following conjectures.

Conjecture 5.5 Letx € P. Thens, (x 4+ 1) is a Hilbert polynomial if and only ifA| > 3.
Conjecture 5.6 LetA € P. Thenm, (x+ 1) is a Hilbert polynomial if and only ifA| > 3.
We have verified the above conjectures ffiof < 7. Note that since any Schur symmet-

ric function is m-positive (see, e.g., [25], Chapter I, Section 6), Conjecture 5.6 implies
Conjecture 5.5 as well as Corollary 4.14.
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While the specializatiof — f(1,2,...,n+1,0,0,...), for f € A, has been sug-
gested by Corollary 4.11, there is one other specialization which is routinely used in the th
ory of symmetric functions (see, e.g., [25], Chapter |, Section 2, Ex. 1, and Section 3, EX.
namelyf — f(1,1,...,1,0,0,...). Sinceitiseasyto verifythdt(l,1,...,1,0,0,...)

—_——— ———

is a polynomial fun(?tion ofh forany f € A (see, e.g., [8], Proposition %.2.1), it is natural
to wonder for which symmetric functions€ A one has thaf (1,1,...,1,0,0,...)isa
————

n+
Hilbert polynomial (as a function af). The answer for the, s is of colurse trivial. For the
Schur functions we believe that the following holds.

Conjecture 5.7 Leti = (Ay,...,Ar) € P besuchthatr| > 7. Theng(1,1,...,1,0,
0,...) is a Hilbert polynomial if and only if.; + A, > 4. n+1

We have verified Conjecture 5.7 fox| < 12. It is worth noting that the “only if” part
of Conjecture 5.7 also holds for4 1| < 6 (but not the “if” part, take, e.gi = (3, 3),
(2,2,2), (2,2, 1), or (3,1)). What makes Conjecture 5.7 particularly tantalizing is that
there is an explicit closed formula fex(};;,;%, 0,0,...), namely

n+1

sL....1,00..)= ] <w> 32)
en gy NG

where h(i, j) is the hook lengthof (i, j) in 1 (see, e.g., [25], Chapter I, Section 1,
Ex. 1, and Section 3, Ex. 4). This allows us to conclude in particular, by part (vi)
of Theorem 3.8, that Conjecture 5.7 does hold(¥) = 1 (i.e., for complete homo-
geneous symmetric functions) orjif = 1 (i.e., for elementary symmetric functions).
Note thats; (1,1,...,1,0,0,...) is also equal to the order polynomial of a column strict

labeled Ferrers nposet of shape(see, e.g., [8], Section 5.2, for further information).
The monomial symmetric functions seem to exhibit an extremely mysterious behavic
and we have been unable to extract any general conjecture from the data that we ha
For example, ifiA| < 8 andl(A) > 2 then we have verified than, (1,...,1,0,0,...)

is a Hilbert polynomial if and only il €{(3,2, 1), (4,2,1), (3,2,1, 1), (r12+,12, 1,111,
3,2,1,1,1),3,2,2,1),4,21,1),4,3,1), 5,2, 1)}.

The results in Section 3 also suggest several open problems. In particular, it would be i
teresting to answer the following questions, which are naturally suggested by Theorems 3.
and 3.13.

Problem 5.8 Let{ho, ..., hq} be a Hilbert function. Is it true that theEid:O h; ((ix)) is
a Hilbert polynomia?

Problem 5.9 Let (fo, ..., fq) be the f-vector of a simplicial complex. Is it true that
thenzid:0 fi ()i, Zid:O fi (X+g" ), andzid:O fi (1)) are Hilbert polynomial®
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Finally, there is a general “open problem” that arises naturally with almost any resul
presented in this work. Namely, whenever we prove that a certain polynomial (or sequenc
is Hilbert it is natural to ask whether one can construct, in a natural way, a standard grad
k-algebra having the given Hilbert polynomial or function. Besides giving a more illumi-
nating proof of the original result, such a graded algebra would probably have interestir
properties in its own right. We have not investigated this problem. However, we do believ
that natural constructions of graded algebras exist that “explain” all parts of Theorems 3.
3.12,3.13,and 4.7.
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