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1. Introduction

The purpose of this paper is to investigate which polynomials naturally arising in combina-
torics are Hilbert polynomials of standard graded (commutative)k-algebras. Our motivation
comes from the fact (first proved by R. Stanley [34]) that the order polynomial of a par-
tially ordered set is a Hilbert polynomial. Since Stanley informally told me of this result
I have been wondering whether it was an isolated one or an instance of a more general
phenomenon. Several works of Stanley (see, e.g., [31, 32], and the references cited there)
show that many sequences arising in combinatorics are Hilbert functions, but Stanley never
explicitly considered Hilbert polynomials.

In this paper we begin such a systematic investigation. Our results show that several
polynomials arising in combinatorics are Hilbert polynomials, and in many (but not all)
cases we find general reasons for this. The techniques that we use are based on combi-
natorial characterizations of Hilbert functions and polynomials obtained by Macaulay in
1927 [24]. Though the characterization of Hilbert functions is very well-known and has
been extensively used since then, the one for Hilbert polynomials is not, and is our main
tool. Most of our results are non-constructive. More precisely, we often prove that a given
combinatorial polynomial is Hilbert but we are unable to construct (in a natural way) a
standard gradedk-algebra having the given Hilbert polynomial.

The organization of the paper is as follows. In the next section we collect several
definitions, notation, and results that will be used in the rest of this work. In Section 3 we
develop a general theory of Hilbert polynomials. More precisely, using Macaulay’s result,
and other techniques, we present several operations on polynomials that preserve the Hilbert
property, as well as results that give sufficient conditions on the coefficients of a polynomial
(when expanded in terms of several different bases) that insure that the polynomial is
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Hilbert. We also introduce a new concept, which is naturally suggested by one of our results,
which gives a measure of “how far” a polynomial is from being Hilbert. In Section 4 we
apply the general theory developed in Section 3 to polynomials arising in enumerative and
algebraic combinatorics. In particular, we prove that theσ andτ -polynomials of a graph,
the zeta polynomial of a partially ordered set, theR-polynomial of two generic elements in
a Coxeter system, the Kazhdan-Lusztig polynomials and the descent generating function
of a finite Coxeter system, various generalizations of the Eulerian polynomials related to
Stirling (multi)-permutations, Stirling polynomials, and several polynomials obtained by
specializing certain symmetric functions, are all Hilbert polynomials (up to a shift by 1 in
some cases). Finally, in Section 5, we present several conjectures arising from the present
work together with the evidence that we have in their support, and we indicate directions
and open problems for further research.

2. Notation, definitions, and preliminaries

In this section we collect some definitions, notation and results that will be used in the rest
of this paper. We letP def= {1, 2, 3, . . .}, N def= P∪ {0}, Z be the ring of integers, andQ be
the field of rational numbers; fora∈N we let [a]

def= {1, 2, . . . ,a} (where [0]
def= ∅). Given

n,m ∈ P, n ≤ m, we let [n,m]
def= [m]\[n− 1]. The cardinality of a setA will be denoted

by |A|. Given a polynomialP(x), andi ∈ Z, we will denote by [xi ](P(x)) the coefficient
of xi in P(x). For a ∈ R we let bac (respectively,dae) denote the largest integer≤a
(respectively, smallest integer≥a).

Given a ringR and a variablex we denote byR[[x]] the ring of formal power series
in x with coefficients inR. For i ∈ P we let (x)i

def= x(x − 1) · · · (x − i + 1), 〈x〉i def=
x(x + 1) · · · (x + i − 1), ( x

i )
def= (x)i

i ! , and(( x
i ))

def= 〈x〉i
i ! . We also let(x)0

def= 〈x〉0 def= ( x
0)

def=
((

x
0))

def= 1. Note that, ford ∈ P, {(x)i }i=0,...,d, {〈x〉i }i=0,...,d, {( x
i )}i=0,...,d, {(( x

i ))}i=0,...,d and
{( x+d−i

d )}i=0,...,d are all bases of the real vector spaceVd of real polynomials of degree≤d.
We call the first four the bases oflower factorials, upper factorials, binomial coefficients,
andtwisted binomial coefficients, respectively.

A sequence{a0,a1, . . . ,ad} (of real numbers) islog-concave if a2
i ≥ ai−1ai+1 for

i = 1, . . . ,d − 1. It is unimodal if there exists an index 0≤ j ≤ d such thatai ≤ ai+1

for i = 0, . . . , j − 1 andai ≥ ai+1 for i = j, . . . ,d − 1. It has nointernal zeros if there
are not three indices 0≤ i < j < k ≤ d such thatai ,ak 6= 0 andaj = 0. It is symmetric
if ai = ad−i for i = 0, . . . , b d

2c. A polynomial
∑d

i=0 ai xi is log-concave(respectively,
unimodal, with no internal zeros, symmetric) if the sequence{a0,a1, . . . ,ad} has the cor-
responding property. It is well known that if

∑d
i=0 ai xi is a polynomial with nonnegative

coefficients and with only real zeros, then the sequence{a0,a1, . . . ,ad} is log-concave and
unimodal, with no internal zeros (see, e.g., [8], or [14], Theorem B, p. 270).

We follow [33] for enumerative combinatorics notation and terminology. In particular,
we denote byS(n, k) (respectively,c(n, k)) theStirling numbers of the second kind(respec-
tively, signless Stirling numbers of the first kind) for n, k ∈ N, and we follow Chapter 3 of
[33] for notation and terminology related to the theory of partially ordered sets.

We follow [25], Chapter I, for notation and terminology related to partitions and symmet-
ric functions. In particular, we denote byP the set of all (integer) partitions, and by3 the
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ring of symmetric functions. Also, givenλ ∈ P, we denote byλ′ its conjugate, and bysλ
(respectivelyeλ, hλ, pλ, mλ) theSchur(respectivelyelementary, complete homogeneous,
power sum, monomial) symmetric function associated toλ. We will usually identify a
partitionλ = (λ1, . . . , λr ) with its diagram{(i, j ) ∈ P× P : 1≤ i ≤ r, 1≤ j ≤ λi }.

We follow [31] for notation and terminology concerning graded algebras and Hilbert
functions. In particular, by agraded k-algebra(k being a field, fixed once and for all) we
mean a commutative, associative ringR, with identity, containing a copy of the fieldk (so
that R is a vector space overk) together with a collection ofk-subspaces{Ri }i∈N such that:

(i) R=⊕i≥0 Ri (as ak-vector space);
(ii) R0 = k;

(iii) Ri Rj ⊆ Ri+ j for all i, j ∈ N;
(iv) R is finitely generated as ak-algebra.

Note that this implies that eachRi is a finite dimensional vector space overk. TheHilbert
seriesof R is the formal power series

P(R; x) def=
∑
i≥0

dimk(Ri )x
i .

The following fundamental result is well-known, and a proof of it can be found, e.g., in [3],
Theorem 11.1, or in [31], Theorem 8.

Theorem 2.1 Let R be a graded k-algebra as above. Then

P(R; x) = h(R; x)∏r
i=1(1− xki )

,

in Z[[x]] , where h(R; x) ∈ Z[x] and k1, . . . , kr are the degrees of a homogeneous gener-
ating set of R(as a k-algebra).

We call

H(R; i ) def= dimk(Ri )

theHilbert functionof R. We say that ak-algebraRas above isstandardif it can be finitely
generated (as ak-algebra) by elements ofR1. From now on we will always assume that
all our gradedk-algebras are standard. IfR is a standard gradedk-algebra then we can
takek1 = · · · = kr = 1 in Theorem 2.1 and this, by well known results from the theory of
rational generating functions (see, e.g., [33], Proposition 4.2.2(iii)), implies the following
fundamental result which was first proved by Hilbert (in a more general setting, see, e.g.,
[32], Corollary 9, [3], Corollary 11.2, or [12], Theorem 4.1.3).

Theorem 2.2 Let R be a standard graded k-algebra. Then there exists a polynomial
PR(x) ∈ Q[x] and N∈ P such that H(R; i ) = PR(i ) for all i ≥ N.



P1: KCU

Journal of Algebraic Combinatorics KL540-Brenti January 21, 1998 12:5

130 BRENTI

The polynomialPR(x) uniquely defined by the previous theorem is called theHilbert
polynomialof R. Note that ifP(R; x) ∈ Z[x] then PR(x) = 0.

Givenn, i ∈ P it is not hard to show (see, e.g., [2], or [12], Lemma 4.2.6, p. 158) that
there exist unique integersai > ai−1 > · · · > aj ≥ j (for some j ∈ [i ]) such that

n =
(

ai

i

)
+
(

ai−1

i − 1

)
+ · · · +

(
aj

j

)
. (1)

We then define

n〈i 〉 def=
(

ai + 1

i + 1

)
+
(

ai−1+ 1

i

)
+ · · · +

(
aj + 1

j + 1

)
,

and we also set 0〈i 〉 def= 0. We call (1) thei -binomial expansionof n. We say that a sequence
{h0, h1, h2, . . .} of nonnegative integers is anO-sequenceif the following two conditions
are satisfied:

(i) h0 = 1;
(ii) hi+1 ≤ (hi )

〈i 〉 for all i ∈ P.

We say that a finite sequence{h0, h1, . . . , hd} is anO-sequence if{h0, h1, . . . , hd, 0, 0, . . .}
is anO-sequence. AnO-sequence is sometimes also called anM-vector(see, e.g., [32]) or
anM-sequence(see, e.g., [6], where a different, but equivalent, definition is given). Note that
anO-sequence{hi }i∈N has no internal zeros (since ifhi = 0 thenhi+1 ≤ (hi )

〈i 〉 = 0〈i 〉 = 0).
However, anO-sequence is not necessarily unimodal (take, e.g.,(1, 4, 3, 4)). We say that
a formal power series

∑
i≥0 hi xi ∈ N[[x]] is an O-seriesif {hi }i∈N is anO-sequence.

Let x1, . . . , xd be a set of independent variables. Recall (see, e.g., [12], Definition 4.2.1,
p. 155, or [30], Section 2, p. 59) that a (non-empty) setM of monomials inx1, . . . , xd is
said to be anorder ideal of monomialsif p ∈M andq dividesp impliesq ∈M. In other
words, if xa1

1 . . . x
ad
d ∈M andbi ∈ [0,ai ] for i ∈ [d] then xb1

1 . . . x
bd
d ∈M. In particular,

sinceM 6= ∅, 1= x0
1 . . . x

0
d ∈M. For i ∈ P we letMi

def= {p ∈M : deg(p) = i } (where

deg(xa1
1 . . . x

ad
d )

def= a1 + · · · + ad), soM0 = {1}. The link betweenO-series, order ideals
of monomials, and Hilbert series of standard gradedk-algebras is given by the following
fundamental and well known result which is due to Macaulay [24]. We refer the reader to
[24, 13], or [12], Theorem 4.2.10, p. 160, for a proof (see also [30], Section 2).

Theorem 2.3 Let {hi }i∈N be a sequence of nonnegative integers. Then the following are
equivalent:

(i)
∑

i≥0 hi xi is an O-series;
(ii) there exists a standard graded k-algebra R such that P(R; x) =∑i≥0 hi xi , in Z[[x]] ;

(iii) there exists an order ideal of monomialsM such that hi = |Mi | for all i ∈ N.

The preceding result allows us, among other things, to prove that certain natural operations
in the ring of formal power series preserve the property of being anO-series. The following
result is known, but for lack of an adequate reference we give a proof of it here.
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Proposition 2.4 Let
∑

i≥0 ai xi and
∑

i≥0 bi xi be two O-series, and j ∈ P. Then the
following are also O-series:

(i) (
∑

i≥0 ai xi )(
∑

i≥0 bi xi );
(ii)

∑
i≥0 ai xi +∑i≥0 bi xi − 1;

(iii)
∑ j

i=0 ai xi ;
(iv)

∑
i≥0 ai bi xi ;

(v)
∑

i≥0 aji xi .

Proof: (iii) is immediate from the definition of anO-series. The other statements all fol-
low from corresponding constructions in the theory of graded algebras and Theorem 2.3.
More precisely, letR= ⊕i≥0 Ri and S=⊕i≥0 Si be two standard gradedk-algebras
such thatP(R; x)= ∑i≥0 ai xi and P(S; x)= ∑i≥0 bi xi . Then R⊕ S, R⊗k S, R∗ S
(where∗ denotes the Segre product, i.e.,R∗ S

def= ⊕
i≥0(Ri ⊗k Si )) andR( j ) (whereR( j )

denotes thej th Veronese subalgebra ofR, i.e., R( j ) def= ⊕i≥0Ri j ) are again standard
gradedk-algebras andP(R⊕ S; x) = P(R; x)+ P(S; x) − 1, P(R⊗k S; x) = P(R; x)
P(S; x), P(R ∗ S; x) = ∑

i≥0 ai bi xi and P(R( j ); x) = ∑
i≥0 aji xi which, by

Theorem 2.3, proves (i), (ii), (iv), and (v). 2

Note that it is also possible to prove the preceding result by using the equivalence of parts
(i) and (iii) in Theorem 2.3, thus avoiding commutative algebra.

Throughout this work, we say that a sequence{hi }i∈N (respectively, a polynomialH(x))
is aHilbert function(respectively, aHilbert polynomial) if there exists a standard graded
k-algebraRsuch thathi = H(R; i ) for all i ∈ N (respectively,H(x) = PR(x)). We say that
a finite sequence{h0, h1, . . . , hd} is a Hilbert function if the sequence{h0, h1, . . . , hd, 0,
0, . . .} is a Hilbert function.

Just as Theorem 2.3 provides a numerical characterization of Hilbert functions, there is
a numerical characterization of Hilbert polynomials, also due to Macaulay.

Theorem 2.5 Let P(x) ∈ Q[x] be such that P(Z) ⊆ Z, and let m0, . . . ,md be the unique
integers such that

P(x) =
d∑

i=0

[((
x

i + 1

))
−
((

x −mi

i + 1

))]
, (2)

(where d = deg(P(x))). Then P(x) is a Hilbert polynomial if and only if m0 ≥ m1

≥ · · · ≥ md ≥ 0.

The existence and uniqueness of the integersm0, . . . ,md is an elementary statement,
and the “if” part of the above theorem is easy to show. A proof of the “only if” part of
Theorem 2.5 is given, e.g., in [24], p. 536, [20], Corollary 5.7, p. 47, and [28], Theorem 2.1,
(see also [12], Exercise 4.2.15, p. 165).

Because of the previous result, given a polynomialP(x) ∈ Q[x] such thatP(Z) ⊆ Z,
we call the integersm0, . . . ,md uniquely determined by (2) theMacaulay parametersof
P(x), and we writeM(P) = (m0, . . . ,md).
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By a simplicial complexwe mean a collection of sets1 with the property that ifA ∈ 1
and B ⊆ A then B ∈ 1. We call the elements of1 the facesof 1. For S ∈ 1, the
dimensionof S is |S| −1. The dimension of1 is dim(1)

def= max{|A| −1 : A ∈ 1}. Given
a simplicial complex1 of dimensiond − 1 we let fi−1(1)

def= |{A ∈ 1 : |A| = i }|, for
i = 0, . . . ,d, and callf(1) def= ( f0(1), f1(1), . . . , fd−1(1)) the f -vectorof 1. We then
define theh-vectorof 1, h(1)

def= (h0(1), h1(1), . . . , hd(1)), by letting

d∑
i=0

hi (1)x
d−i def=

d∑
i=0

fi−1(1)(x − 1)d−i . (3)

Clearly, knowledge of thef -vector of1 is equivalent to the knowledge of itsh-vector.
Note that, by Theorem 2.3, if{ f0, . . . , fd−1} is the f -vector of a simplicial complex then
{1, f0, . . . , fd−1} is a Hilbert function.

Recall (see, e.g., [31], Definition 1.1, p. 62, or [12], Definition 5.1.2, p. 201) that we
may associate a standard gradedk-algebra to any finite simplicial complex1 as follows.
Let {v1, . . . , vn} be the set of 0-dimensional faces of1, x1, . . . , xn be indeterminates, and
I1 be the ideal ofk[x1, . . . , xn] generated by{xi1 · · · xir : 1 ≤ i1 < · · · < i r ≤ n and
{vi1, . . . , vi r } 6∈ 1}. Then it is well known, and easy to see, thatR1

def= k[x1, . . . , xn]/I1 is
a standard gradedk-algebra, called theStanley-Reisner(or face) ring of1. This ring has
been extensively studied and we refer the reader to [31], Chapter 2, and [12], Chapter 5, for
its fundamental properties.

3. A general theory

Despite the fact that Theorems 2.3 and 2.5 completely characterize Hilbert functions and
polynomials, it is, in practice, a difficult task to decide if a given polynomial is Hilbert using
just these theorems. For example, the reader can check (preferably with the aid of a com-
puter) thatM(x5) = [731259975844000893012336498664405837946877348559859163-
646, 38242907207585681103208094427, 276560696326610, 23520860, 6900, 120] and
that (according to Maple) the first entry of this sequence is two times a prime number! Thus,
the computation of the Macaulay parameters of a polynomial is in general not an easy task,
neither computationally nor theoretically. Our purpose in this section is to use Theorems 2.3
and 2.5 to deduce other results on Hilbert polynomials that are easier to apply, even though
they do not characterize these objects completely. In particular, we wish to obtain condi-
tions on the coefficients of a polynomial with respect to the bases defined in the previous
section that insure that it is a Hilbert polynomial.

We begin with the following result which expresses the relationship between the Macaulay
parameters of a polynomial and its coefficients with respect to the basis of twisted binomial
coefficients.

Proposition 3.1 Let P(x) ∈ Q[x] be such that P(Z) ⊆ Z, and let

P(x) =
d∑

i=0

[((
x

i + 1

))
−
((

x −mi

i + 1

))]
=

d∑
i=0

ci

((
x
i

))
, (4)
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where d= deg(P(x)). Then

ci =
d−i∑
j=0

(−1) j

(
mi+ j

j + 1

)
, (5)

for i = 0, . . . ,d.

Proof: It is easy to see that

((
x −m
i + 1

))
=

i+1∑
j=0

(−1)i+1− j

(
m

i + 1− j

)((
x
j

))
(6)

for all m, i ∈ N. Therefore((
x

i + 1

))
−
((

x −m
i + 1

))
=

i∑
j=0

(−1)i− j

(
m

i + 1− j

)((
x
j

))
. (7)

Summing (7) (withm=mi ) for i = 0, . . . ,d and comparing with (4) yields (5), as
desired. 2

Note that the previous result makes it easy to compute the coefficients of a polynomial
with respect to the basis of twisted binomial coefficients from its Macaulay parameters
(as implicitly noted also in [24], p. 537), but not conversely (even though the relations (5)
are, of course, invertible). Hence, even a reasonably detailed knowledge of the coefficients
{c0, . . . , cd} in (4) will not make it easy to decide if the polynomial is Hilbert. However,
the relations (5) do have the following interesting consequence.

Theorem 3.2 For i ∈ N there exist8i ∈ Q[x0, . . . , xi ] such that:
(i) deg(8i ) = 2i ;
(ii) if P(x) =∑d

i=0 ci ((
x
i )) ∈ Q[x] is such that P(Z) ⊆ Z and M(P(x)) = (m0, . . . ,md),

then md−i = 8i (cd, . . . , cd−i ) for i = 0, . . . ,d;
(iii) the leading monomial of8i is 2( x0

2 )
2i

.

Proof: We define8i ∈ Q[x0, . . . , xi ] inductively as follows,

80
def= x0, (8)

8i
def= xi −

i∑
j=1

(−1) j

(
8i− j

j + 1

)
, (9)

if i ≥ 1. Then (i), (ii), and (iii) follow easily by induction oni ∈P. In fact, by our induc-
tion hypotheses, deg((8i− j

j+1 ))= ( j + 1)2i− j for j = 1, . . . , i and hence, by (9), deg(8i )=
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deg((8i−1

2 )) = 2i and the leading monomial of8i is 1
2(2(

x0
2 )

2i−1
)2 = 2( x0

2 )
2i

. Similarly, we
deduce from (5) and our induction hypotheses that

md−i = cd−i −
i∑

j=1

(−1) j

(
md−i+ j

j + 1

)

= cd−i −
i∑

j=1

(−1) j

(
8i− j (cd, . . . , cd−i+ j )

j + 1

)
= 8i (cd, . . . , cd−i ),

by (9), as desired. 2

The following easy consequence of Proposition 3.1 will be useful later on.

Lemma 3.3 Let P(x) = ∑d
i=0 ci ((

x
i )) be a Hilbert polynomial such that cd = 1. Then

cd−1 ≥ 1.

Proof: From (5) we deduce thatmd = cd, andmd−1 = cd−1+ ( cd

2 ), and the thesis follows
from Theorem 2.5. 2

Note that a Hilbert polynomial satisfying the hypotheses of Lemma 3.3 does not nec-
essarily have all its coefficients nonnegative when expanded in terms of the basis of the
twisted binomial coefficients. For example,M((( x

2))+ 4(( x
1))− 2(( x

0))) = (4, 4, 1).
It is of course easy to compute the Macaulay parameters of polynomials of small degree,

and the following computational result will be convenient later on.

Proposition 3.4 Let a, b, c ∈ Z. Then ax2 + bx+ c is a Hilbert polynomial if and only
if 0≤ 2a ≤ b+ 2a2− 2a ≤ c+ ( b+2a2−2a

2 )− ( 2a
3 ).

Proof: One computes that

2∑
i=0

[((
x

i + 1

))
−
((

x −mi

i + 1

))]
= x2

(
m2

2

)
+
(

m1+m2− m2
2

2

)
x

+m0−
(

m1

2

)
+
(

m2

3

)
,

and the thesis follows from Theorem 2.5. 2

The next result gives some fundamental operations on polynomials that preserve the
property of being a Hilbert polynomial. Some of these are known, but for lack of an
adequate reference we give a complete proof here.

Theorem 3.5 Let A(x), B(x) ∈ Q[x] be two Hilbert polynomials, k ∈ P, m ∈ N, and
{h0, . . . , hr } be a Hilbert function. Then the following are Hilbert polynomials:
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(i) A(x)+ B(x);
(ii) A(x)B(x);

(iii) A(kx+m);
(iv) A(x)− A(x − 1);
(v) k A(x)+m;

(vi)
∑r

i=0 hi A(x − i ).

Proof: By hypothesis there existH1, H2 : N→ N such that{H1(n)}n∈N and{H2(n)}n∈N

areO-sequences, andH1(n) = A(n), H2(n) = B(n) if n ≥ n0 (for somen0 ∈ N). Hence,
by (ii) of Proposition 2.4,{1, H1(1) + H2(1), H1(2) + H2(2), . . .} is an O-sequence and
H1(n) + H2(n) = A(n) + B(n) for n ≥ n0 and this shows thatA(x) + B(x) is a Hilbert
polynomial. In an exactly analogous way (using (iv) and (v) of Proposition 2.4) one proves
(ii), and (iii) for m= 0.

To prove (iv) note that by Theorem 2.5 and our hypotheses we have that

A(x) =
d∑

i=0

[((
x

i + 1

))
−
((

x −mi

i + 1

))]
(10)

wherem0 ≥ m1 ≥ · · · ≥ md ≥ 0, andd
def= deg(A(x)). Therefore

A(x)− A(x − 1) =
d∑

i=0

[((
x

i + 1

))
−
((

x − 1

i + 1

))
−
((

x −mi

i + 1

))

+
((

x − 1−mi

i + 1

))]

=
d−1∑
i=0

[((
x

i + 1

))
−
((

x −mi+1

i + 1

))]
and (iv) follows from Theorem 2.5. Also, (10) implies that

A(x + 1) =
d∑

i=0

[((
x + 1

i + 1

))
−
((

x + 1−mi

i + 1

))]
. (11)

Now note that,((
x + 1

i + 1

))
−
((

x + 1−m

i + 1

))
=

i∑
j=0

[((
x

j + 1

))
−
((

x −m

j + 1

))]

and hence

M

(((
x + 1

i + 1

))
−
((

x + 1−m

i + 1

)))
= (m,m, . . . ,m︸ ︷︷ ︸

i+1

) (12)
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for all m, i ∈ N. Therefore, by Theorem 2.5, every summand on the RHS of (11) is a
Hilbert polynomial and this, by (i), implies thatA(x + 1) is a Hilbert polynomial. Hence
A(x+m) is a Hilbert polynomial and this concludes the proof of (iii) since we have already
observed that (iii) holds ifm= 0.

Now note that it follows easily from (10) thatM(A(x)+m) = (m+m0,m1, . . . ,md).
Hence, by Theorem 2.5,A(x)+m is a Hilbert polynomial and (v) follows from (i).

To prove (vi) let R and S be two standard gradedk-algebras such thatP(R; x) =∑
n≥0 H1(n)xn andP(S; x) =∑r

n=0 hnxn. Then

P(R⊗k S; x) =
∑
n≥0

(
n∑

i=0

hi H1(n− i )

)
xn

(wherehi
def= 0 if i > r ), and hence

H(R⊗k S; n) =
r∑

i=0

hi A(n− i )

if n ≥ n0+ r , and (vi) follows. 2

Note that while parts (i), (ii), (iii) (form= 0), and (vi) of Theorem 3.5 have a clear alge-
braic and geometric interpretation, we have been unable to find any algebraic or geometric
explanation for parts (iii) (whenm> 0), and (iv).

It is natural to ask whether there are other operations on polynomials which preserve
the property of being a Hilbert polynomial. One operation to consider, in view of part (iv)
of Theorem 3.5, is the anti-difference of a polynomialA(x) (i.e., the unique polynomial
∇A such that(∇A)(n) = ∑n

j=0 A( j ) for all n ∈ N). This, however, fails to preserve the
property of being a Hilbert polynomial. For example,A(x) = 3x is a Hilbert polynomial
(sinceM(3x) = (3, 3)) but

(∇A)(x) = 3

((
x

2

))
is not a Hilbert polynomial (sinceM(3(( x

2))) = (2, 3, 3)). However, it is not hard to
compute the Macaulay parameters of a polynomialA(x) if the Macaulay parameters of
A(x)− A(x − 1) are known, and hence to obtain a necessary and sufficient condition on a
Hilbert polynomial so that its anti-difference is again a Hilbert polynomial.

Proposition 3.6 Let A(x) ∈ Q[x] be such that A(Z) ⊆ Z and suppose that M(A(x)
− A(x − 1)) = (m0, . . . ,md). Then

M(A(x)) = (m−1,m0, . . . ,md)

where m−1
def= ∑d

i=0(−1)i (mi+1
i+2 )+ A(−1).
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Proof: Let B(x)
def= A(x)− A(x−1), for brevity. Then we have from our hypothesis and

the definition of(∇B)(x) that, for alln ∈ N,

(∇B)(n) =
n∑

j=0

B( j )

=
d∑

i=0

n∑
j=0

[((
j

i + 1

))
−
((

j −mi

i + 1

))]

=
d∑

i=0

[((
n

i + 2

))
−
((

n−mi

i + 2

))
+
((−mi − 1

i + 2

))]

=
d+1∑
i=0

[((
n

i + 1

))
−
((

n−m′i
i + 1

))]

wherem′0 =
∑d

i=0((
−mi−1

i+2 )), andm′i = mi−1, for i = 1, . . . ,d + 1. ThereforeM(∇B) =
(m′0,m0, . . . ,md) and henceM((∇B)(x) + A(−1)) = (A(−1) + m′0,m0, . . ., md), as
desired. 2

Corollary 3.7 Let A(x)∈Q[x] be a Hilbert polynomial of degree d with Macaulay pa-
rameters(m0, . . . ,md), and B(x) ∈ Q[x] be such that B(x) − B(x − 1) = A(x). Then
B(x) is a Hilbert polynomial if and only if

m0 ≤
d∑

i=0

(−1)i
(

mi + 1

i + 2

)
+ B(−1).

We now wish to study which polynomials of the bases defined in the previous section are
Hilbert polynomials.

Theorem 3.8 Let d∈ P, a0, . . . ,ad ∈ P, and i ∈ [0, d]. Then:
(i) xd is a Hilbert polynomial if and only if d≥ 3;

(ii) 〈x〉d is a Hilbert polynomial if and only if d≥ 3;
(iii) a0(x + a1) · · · (x + ad) is a Hilbert polynomial;
(iv) ( x

d ) is not a Hilbert polynomial;
(v) (( x

d )) is not a Hilbert polynomial;
(vi) ( x+d−i

d ) is a Hilbert polynomial if and only if i= 0.

Proof: A straightforward computation using Theorem 2.5 shows thatx andx2 are not
Hilbert polynomials, whilex3, x4, andx5 are. So (i) follows from part (ii) of Theorem 3.5.
Also, it is easily verified, using Theorem 2.5, that〈x〉2 is not a Hilbert polynomial, while
〈x〉3 is. But, by Proposition 3.4,r andx + r are Hilbert polynomials wheneverr ≥ 1, so
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(ii) and (iii) follow from part (ii) of Theorem 3.5. Furthermore, we have from (6) that(
x + d − i

d

)
=

d∑
j=d−i+1

(−1)d− j

(
i − 1

d − j

)((
x

j

))
,

if i ∈ [d], so (iv), (v), and the “only if” part of (vi) follow from Lemma 3.3. On the other
hand, ifi = 0 then(

x + d

d

)
=
((

x + 1

d

))
,

which is a Hilbert polynomial since{(( n+1
d ))}n∈N is the Hilbert function ofk[x0, . . . , xd]

(in fact, it follows from (12) that the Macaulay parameters of(
x+d

d ) are(

d+1︷ ︸︸ ︷
1, 1, . . . ,1)). 2

The reader will notice that the basis of lower factorials{(x)i }i∈N is missing from
Theorem 3.8. It can be easily checked that(x)2, and(x)3 are not Hilbert polynomials,
and we conjecture (see Section 5) that(x)d is always a Hilbert polynomial ifd ≥ 4.

Theorem 3.8 has several interesting consequences.

Corollary 3.9 Let P(x) ∈ Q[x] and suppose that P(x − 1) ∈ N[x]. Then P(x) is a
Hilbert polynomial.

Proof: By hypothesis we can writeP(x) = ∑d
i=0 ai (x + 1)i wherea0, . . . ,ad ∈ N, so

the thesis follows from part (i) of Theorem 3.5 and part (iii) of Theorem 3.8. 2

Corollary 3.10 Let P(x) =∑d
i=0 ai xi =∑d

i=0 γi 〈x〉i ∈ Q[x]. Suppose that at least one
of the following conditions is satisfied:
(i) a0, . . . ,ad ∈ N and a1,a2 ≥ 3;

(ii) γ0, . . . , γd ∈ N andγ1 ≥ 3, γ2 ≥ 2.
Then P(x) is a Hilbert polynomial.

Proof: Assume first that (i) holds. It follows from part (i) of Theorem 3.5 and part (i) of
Theorem 3.8 thatai xi is a Hilbert polynomial for 0≤ i ≤ d, i 6= 1, 2 (sinceai ∈ N). On the
other hand, it follows from Proposition 3.4 thata1x anda2x2 are also Hilbert polynomials
(sincea1,a2 ≥ 3), so the thesis follows from part (i) of Theorem 3.5.

Similarly, if (ii) holds then it follows from part (i) of Theorem 3.5 and part (ii) of
Theorem 3.8 thatγi 〈x〉i is a Hilbert polynomial for 0≤ i ≤ d, i 6= 1, 2. On the other hand,
it follows from Proposition 3.4 thatγ1〈x〉1 andγ2〈x〉2 are also Hilbert polynomials (since
γ1 ≥ 3, γ2 ≥ 2), so the thesis follows from part (i) of Theorem 3.5. 2

Another interesting consequence of Theorem 3.8 is the following:

Theorem 3.11 Let P(x) = ∑d
i=0 ci ((

x
i )) =

∑d
i=0wi (

x+d−i
d ) = ∑d

i=0 ai xi be such that
P(Z) ⊆ Z. Suppose that any one of the following conditions is satisfied:
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(i) c0 ≥ c1 ≥ · · · ≥ cd ≥ 0;
(ii) w0 ≥ w1 ≥ · · · ≥ wd ≥ 0;

(iii) a0, . . . ,ad ∈ N, d ≥ 3, and a0 ≤ a1 ≤ a2 ≤ a3.
Then P(x) is a Hilbert polynomial.

Proof: SinceP(Z) ⊆ Z we conclude easily (consideringP(0), P(−1), . . . , P(−d+1))
thatc0, . . . , cd ∈ Z, andw0, . . . , wd ∈ Z.

Assume now that (i) holds. Then there existβ0, . . . , βd ∈ N such thatci = βi + βi+1

+ · · · + βd for i = 0, . . . ,d. Hence

P(x) =
d∑

i=0

ci

((
x

i

))
=

d∑
i=0

d∑
j=i

β j

((
x

i

))
=

d∑
j=0

β j

(
j∑

i=0

((
x

i

)))

=
d∑

j=0

β j

((
x + 1

j

))
,

and the thesis follows from Theorems 3.5 and 3.8.
Similarly, if (ii) holds then there existb0, . . . ,bd ∈ N such thatwi = bi +bi+1+· · ·+bd

for i = 0, . . . ,d. Hence

P(x) =
d∑

i=0

wi

(
x + d − i

d

)
=

d∑
i=0

d∑
j=i

bj

(
x + d − i

d

)

=
d∑

j=0

bj

(
j∑

i=0

(
x + d − i

d

))
. (13)

Now note that

j∑
i=0

(
x + d − i

d

)
=

d∑
i=0

[((
x + 1− i

d + 1

))
−
((

x − i

d + 1

))]

=
((

x + 1

d + 1

))
−
((

x − j

d + 1

))
.

Hence
∑ j

i=0(
x+d−i

d ) is a Hilbert polynomial by (12) and the thesis follows from (13),
and Theorem 3.5.

Finally, assume that (iii) holds. It is easily verified (using Theorem 2.5) thatx2 + x3,
x + x2+ x3, and 1+ x + x2+ x3 are Hilbert polynomials. But

P(x) = a0(1+ x + x2+ x3)+ (a1− a0)(x + x2+ x3)+ (a2− a1)(x
2+ x3)

+ (a3− a2)x
3+

d∑
i=4

ai x
i ,

so the thesis follows from our hypotheses and Theorems 3.5 and 3.8. 2
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For the basis{( x
i )}i=0,...,d we have been unable to prove any results similar to Theorem 3.11.

The main reason is that, in general, neither
∑ j

i=0(
x
i ) nor

∑d
i= j (

x
i ) are Hilbert polynomials.

For example,M(( x
0) + ( x

1) + ( x
2)) = (1, 0, 1) and M(( x

2) + ( x
3)) = (1, 1,−1, 1), (in

fact, computations suggest that
∑ j

i=0(
x
i ) is never a Hilbert polynomial ifj ≥ 2 and that∑d

i= j (
x
i ) is never a Hilbert polynomial ifd ≥ 3 and 0≤ j ≤ d). So, in some sense, the basis

{( x
i )}i=0,...,d is, among the six bases considered, the “farthest” from Hilbert polynomials.
Given the close connection existing between Hilbert functions and polynomials it is

natural to wonder if there are other ways to produce Hilbert polynomials from a Hilbert
function.

Theorem 3.12 Let {h0, . . . , hd} be a Hilbert function. Then the following are Hilbert
polynomials:
(i)

∑d
i=0 hi (

x+d−i
d );

(ii)
∑d

i=0 hi 〈x〉i .

Proof: (i) is an immediate consequence of part (vi) of Theorems 3.5 and 3.8 ( just take
A(x) = ( x+d

d )).
To prove (ii) note that ifh1≥ 3 andh2≥ 2 then the result follows from part (ii) of

Corollary 3.10. Ifh2≤ 1 then, by our hypothesis,h3≤ h〈2〉2 ≤ 1, and thereforeh4≤ h〈3〉3 ≤ 1,
etc., so we conclude thath2 = · · · = hr = 1 andhr+1 = · · · = hd = 0 for somer ∈ [2, d].
But, by Proposition 3.4, 1+ h1〈x〉1 and 1+ h1〈x〉1 + 〈x〉2 are Hilbert polynomials for
anyh1 ∈ P. Hence, by part (i) of Theorem 3.5 and part (ii) of Theorem 3.8 we conclude
that 1+ h1〈x〉1+〈x〉2+ · · · + 〈x〉r is a Hilbert polynomial for anyr ≥ 2. If h2 ≥ 2 but
h1 ≤ 2, then by our hypothesis we conclude that 2≤ h2 ≤ h〈1〉1 = (

h1+1
2 ) ≤ (

3
2) = 3

and hence thath1 = 2 and 2≤ h2 ≤ 3. But, by Proposition 3.4, 1+ 2〈x〉1 + 2〈x〉2 and
1+ 2〈x〉1+ 3〈x〉2 are both Hilbert polynomials, so the result follows also in this case from
part (i) of Theorem 3.5 and part (ii) of Theorem 3.8. 2

Note that the preceding result fails for the bases{xi }i=0,...,d, {(x)i }i=0,...,d and{( x
i )}i=0,...,d.

For example, 1+ x + x2, 1+ (x)1+ (x)2, and 1+ ( x
1)+ ( x

2) are not Hilbert polynomials.
Since, by Theorem 2.3, if( f0, . . . , fd−1) ∈ Nd is the f -vector of some simplicial complex

then (1, f0, . . . , fd−1) is a Hilbert function, it is natural to investigate the analogue of
Theorem 3.12 forf -vectors of simplicial complexes.

Theorem 3.13 Let ( f0, . . . , fd−1) ∈ Nd (d ∈ P) be the f -vector of some simplicial
complex. Then the following are Hilbert polynomials:

(i)
∑d−1

i=0 fi (
x
i );

(ii)
∑d−1

i=0 fi 〈x〉i ;
(iii)

∑d−1
i=0 fi xi .

Proof: Let 1 be a simplicial complex such thatf(1) = ( f0, . . . , fd−1), and letR1 be
the Stanley-Reisner ring of1. It is then well known (see, e.g., [31], Theorem 1.4, p. 63, or
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[12], Theorem 5.1.7, p. 204), and also easy to see, that the Hilbert function ofR1 is given
by

H(R1; n) =
{

1, if n = 0,∑d−1
i=0 fi

( n−1
i

)
, if n ∈ P,

(14)

and (i) follows from part (iii) of Theorem 3.5.
To prove (ii) and (iii) note that iff2 ≥ 3 then necessarilyf1 ≥ 3 and (ii) and (iii)

follow from Corollary 3.10. If f2 ≤ 2 then dim(1) ≤ 2 and it is easy to check, using
Proposition 3.4, that

∑2
i=1 fi xi and

∑2
i=0 fi 〈x〉i are always Hilbert polynomials in this

case. 2

Note that there exists a complete numerical characterization, similar to Theorem 2.3, of
the sequences that are thef -vector of some simplicial complex (see, e.g., [12], Section 5.1,
p. 201, or [31], Theorem 2.1, p. 64). Therefore, one could state Theorem 3.13 without any
reference to simplicial complexes.

We conclude our general discussion on Hilbert polynomials by introducing a concept
which measures “how far” a polynomial is from being Hilbert. The crucial result for this
definition is the following.

Theorem 3.14 Let P(x) ∈ Z[x] be a polynomial with positive leading term. Then there
exists M∈ N such that P(x + i ) is a Hilbert polynomial for any i≥ M.

Proof: Let P(x) =∑d
j=0 aj x j whereaj ∈ Z andad ∈ P. Then

P(x + i ) =
d∑

j=0

aj (x + i ) j

=
d∑

j=0

aj

j∑
k=0

(
j

k

)
xki j−k

=
d∑

k=0

(
d∑

j=k

aj

(
j

k

)
i j−k

)
xk.

Hence the coefficient ofxk in P(x + i ) is a polynomial ini of degreed − k and positive
leading term, fork = 0, . . . ,d. Therefore there existsN ∈ N such thatP(x+ i ) ∈ N[x] if
i > N. The thesis follows from Corollary 3.9. 2

The preceding theorem suggests, and allows us to make, the following definition. Given
a polynomialP(x) ∈ Z[x] with positive leading term we let

H{P} def= max{i ∈ N : P(x + i ) is not a Hilbert polynomial} + 1 (15)
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(where max{∅} def= −1). We call H{P} the Hilbert indexof P(x). HenceP(x + i ) is a
Hilbert polynomial for alli ≥ H{P}, andP(x) is a Hilbert polynomial ifH{P} = 0.

Part (iii) of Theorem 3.5 (withk = m = 1) enables us to give the following useful
characterization of the Hilbert index of a polynomial.

Corollary 3.15 Let P(x) ∈ Z[x] be a polynomial with positive leading term and i∈ N.
Then P(x + i ) is a Hilbert polynomial if and only if i≥ H{P}.

Since( x
d ) and(( x

d )) are not Hilbert polynomials it is natural to ask, in light of the concept
just introduced, what their Hilbert index is. As a matter of fact, we have already answered
this question in Theorem 3.8, essentially, but we record the result here.

Proposition 3.16 Let d∈ P. Then H{( x
d )} = d and H{(( x

d ))} = 1.

Proof: Part (vi) of Theorem 3.8 shows that(( x
d )) = ( x+d−1

d ) is not a Hilbert polynomial
while (( x+1

d )) = ( x+d
d ) is, hence by Corollary 3.15H{( x

d )} = d, andH{(( x
d ))} = 1. 2

Note that Theorem 3.2 has the following interesting consequence.

Theorem 3.17 Let P(x) ∈ Z[x] be a polynomial with positive leading term. Then there
exists M∈ N such that i P(x) is a Hilbert polynomial for any i≥ M.

Proof: Let P(x) =∑d
j=0 cj ((

x
j )) wherecd > 0. Then we have from Theorem 3.2 that

M(i P(x)) = (8d(icd, . . . , ic0),8d−1(icd, . . . , ic1), . . . , 81(icd, icd−1),80(icd))

(16)

for all i ∈ Z. But, again by Theorem 3.2,8 j (icd, . . . , icd− j )−8 j−1(icd, . . . , icd− j+1) is
a polynomial ini of degree 2j and positive leading term, forj = 1, . . . ,d. Therefore there
existsN ∈ N such that

8d(icd, . . . , ic0) ≥ 8d−1(icd, . . . , ic1) ≥ · · · ≥ 81(icd, icd−1) ≥ 80(icd)

for all i ≥ N, and the result follows from (16), Theorem 2.5, and our hypothesis since
80(icd) = icd ≥ 0 if i ≥ 0. 2

Therefore, one could define a second “Hilbert index” in analogy with (15). We leave
the investigation of this “Hilbert index” to the interested reader. In particular, it would be
interesting to know if the analogue of Corollary 3.15 holds for it.

4. Applications to combinatorics

In this section we apply the general results obtained in the previous section to prove that
several polynomials arising in enumerative and algebraic combinatorics are actually Hilbert
polynomials.
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We begin by considering several polynomials associated to graph colorings. LetG =
(V, E) be a graph (without loops and multiple edges). A mapϕ: V → P is said to be a
coloring of G if ϕ(x) 6= ϕ(y) for all x, y ∈ V such that(x, y) ∈ E. Givenn ∈ Pwe denote
by PG(n) the number of coloringsϕ: V → P such thatϕ(V) ⊆ [n]. It is then well known
(see, e.g., [26], or [14], Section 4.1, p. 179) that there exists a polynomialχ(G; x) ∈ Z[x],
of degree|V |, such thatχ(G; n)= PG(n) for all n ∈ P. This polynomial is called the
chromatic polynomialof G and has been extensively studied (see, e.g., [27], for a survey).
Sinceχ(G; x) is a polynomial one may write

χ(G; x) =
|V |∑
i=0

ai (x)i =
|V |∑
i=0

(−1)|V |−i ci 〈x〉i .

Then the polynomialsσ(G; x) def= ∑|V |
i=0 ai xi and τ(G; x) def= ∑|V |

i=0 ci xi are called the
σ -polynomialand theτ -polynomialof G, respectively. Despite the fact that knowledge of
one of these three polynomials implies knowledge of the other two it is often the case that
σ(G; x) andτ(G; x) are more convenient to handle thenχ(G; x) itself. For this reason
σ(G; x) andτ(G; x) have also been studied, and we refer the reader to [9, 10], and the
references cited therein, for more information on these two polynomials.

Theorem 4.1 Let G= (V, E) be a graph on p vertices, with p≥ 3. Then the following
are Hilbert polynomials:

(i) σ(G; x);
(ii) τ(G; x);

(iii) (−1)pχ(G;−(x + 1)).

Proof: It is easy to verify directly (using Theorem 2.5 and some patience) that the theorem
holds if p = 3.

We first prove (i) by induction onp ≥ 3. Assume thatp ≥ 4. If G = K p (the complete
graph onp vertices) thenσ(G; x) = xp and (i) holds by Theorem 3.8. IfG 6= K p then it
follows from Theorem 1 of [26] that

χ(G; x) = χ(K p; x)+
( p

2 )−|E|∑
j=1

χ(G j ; x),

and (therefore) that

σ(G; x) = σ(K p; x)+
( p

2 )−|E|∑
j=1

σ(G j ; x),

where eachG j has p− 1 vertices, and (i) follows from our induction hypothesis and
Theorem 3.5.
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Similarly, we prove (ii) by induction onp ≥ 3. If G = Np (the empty graph onp
vertices) then it is easy to see (see, e.g., [33], p. 209, or [9], p. 748) that

τ(Np; x) =
p∑

i=1

S(p, i )xi = σ(Np; x)

and the result follows from (i). IfG 6= Np then there follows from repeated application of
Proposition 5.1 of [9] that

τ(G; x) = τ(Np; x)+
|E|∑
j=1

τ(G j ; x)

where eachG j has p− 1 vertices, and (ii) follows from our induction hypothesis and
Theorem 3.5.

Finally, note that (iii) follows immediately from Corollary 3.9 and the well known fact
(see, e.g., [26]) that(−1)pχ(G;−x) ∈ N[x]. 2

Note that the above proof shows that(−1)pχ(G;−(x + 1)) is a Hilbert polynomial for
any p ≥ 1.

Regarding the chromatic polynomial itself we have the following result (see also
Conjecture 5.3) whose proof is analogous to that of part (i) of Theorem 4.1 and is therefore
omitted.

Proposition 4.2 The following statements are equivalent:
(i) χ(G; x) is a Hilbert polynomial for all graphs G with at least4 vertices;

(ii) (x)p is a Hilbert polynomial for all p≥ 4.

Another connection between chromatic polynomials and Hilbert functions appears in [4].
We now consider Hilbert polynomials arising from the theory of finite partially ordered

sets. LetP be a finite poset. Recall (see, e.g., [33], Section 3.11, p. 129) that thezeta
polynomialof P is the unique polynomialZ(P; x) such thatZ(P; n + 1) equals the
number of multichains ofP of length n − 1, for all n∈P (see, [33], Section 3.11, for
further information about zeta polynomials), and that theorder polynomialof P is the
unique polynomialÄ(P; x) such thatÄ(P; n) equals the number of order preserving maps
ω : P → [n], for all n ∈ P (see [33], Section 4.5, for further information about order
polynomials). Given a finite labeled poset(P, ω) (i.e., P is a finite poset, andω : P→ [ p]

is a bijection, wherep
def= |P|) and a linear extensionτ of P (i.e., an order preserving

bijectionτ : P→ [ p]) we let

d(τ, ω)
def= |{i ∈ [ p− 1] : ω(τ−1(i )) > ω(τ−1(i + 1))}|,

andwi (P, ω) be the number of linear extensionsτ of P such thatd(τ, ω) = i − 1,
for i = 1, . . . , p. The sequence{w1(P, ω), . . . , wp(P, ω)} is one of the fundamental
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enumerative invariants of the labeled poset(P, ω) and has been studied extensively (see,
e.g., [29], and [8]). In particular, it is known (see, e.g., [29], Section 1.2, Definition 3.2, p. 8,
and Proposition 8.3, p. 24) that ifω is a linear extension ofP then the numberswi (P;ω)
do not depend onω. In this case we writewi (P) instead ofwi (P;ω).

Theorem 4.3 Let P be a finite poset of size p. Then:
(i) Z(P; x + 1) is a Hilbert polynomial;

(ii) Ä(P; x + 1) is a Hilbert polynomial;
(iii) (w1(P), . . . , wp(P)) is a Hilbert function.

Proof: It is well known (see, e.g., [33], Proposition 3.11.1, p. 129) that

Z(P; x + 1) =
l∑

i=0

bi

(
x − 1

i

)
(17)

wherebi is the number of chains ofP of length i (i.e., totally ordered subsets ofP of
cardinality i + 1), andl is the length of the longest chain ofP. But the collection of all
chains ofP is clearly a simplicial complex (usually denoted1(P) and called theorder
complexof P, see, e.g., [33], p. 120) and itsf -vector is(b0, b1, . . . ,bl ). Hence (i) follows
from (17) and (14). Also, it is well known (see, e.g., [33], Section 3.11, p. 130), and easy
to see, that

Ä(P; x) = Z(J(P); x) (18)

(whereJ(P) denotes the lattice of order ideals ofP, see, e.g., [33], Section 3.4) and so (ii)
follows from (i). To prove (iii) note that using (17) and (18) we conclude that

1+
∑
n≥1

p∑
i=0

fi

(
n− 1

i

)
xn =

∑
n≥0

Z(J(P); n+ 1)xn

=
∑
n≥0

Ä(P; n+ 1)xn

=
∑p

i=1wi (P)xi−1

(1− x)p+1
(19)

by a well-known result from the theory ofP-partitions (see, e.g., [33], Theorem 4.5.14,
p. 219), where fi is the number of chains ofJ(P) of length i (i.e., the number of
i -dimensional faces of1(J(P))). This implies, by (3) and the binomial theorem (see, e.g.,
[33], p. 16), that(w1(P), . . . , wp(P)) is theh-vector of1(J(P)). But it is well-known
(see, e.g., [33], Section 3.4) thatJ(P) is always a distributive lattice. This, in turn, implies
that1(J(P)) is shellable (see, e.g., [12], Theorem 5.1.12, p. 208, and [33], Section 3.3)
and (iii) follows from the fact thath-vectors of shellable complexes areO-sequences (see,
e.g., Theorem 5.1.15 of [12]). 2
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Part (ii) of Theorem 4.3 was first proved by Stanley [34] and, as mentioned in the
Introduction, was the motivation and origin of the present work. The preceding result
suggests the more general question of whether the order polynomialÄ(P, ω; x + 1) of
a labeled poset(P, ω) (see, e.g., [29], Section 13, p. 45, or [8], p. 1, for definitions) is a
Hilbert polynomial. This is easily seen to be false. For example, ifP = [3] andω(1) = 3,
ω(2) = 2,ω(3) = 1, then it is easy to see thatÄ(P, ω; x+1) = ( x+1

3 )which is not a Hilbert
polynomial by part (vi) of Theorem 3.8. Nonetheless, we feel that there are general classes
of labeled posets for whichÄ(P, ω; x+1) is a Hilbert polynomial (see Conjecture 5.7 and
the comments following it). Note that, by part (i) of Theorem 3.12 and well-known results
on the order polynomial (see, e.g., [8], Theorem 5.7.1, p. 66) part (ii) is a consequence of
part (iii) in Theorem 4.3. Therefore, (iii) also fails, in general, ifω is not a linear extension.

Taking appropriate posetsP for which the zeta polynomial is known allows us to find
explicit classes of Hilbert polynomials. We give one such example here.

Corollary 4.4 Let k,m ∈ P. Then 1
m(

(kx+1)m
m−1 ) is a Hilbert polynomial.

Proof: Let Pk,m be the poset of all non-crossing,k-divisible, partitions of [km], ordered
by refinement (see, e.g., [33], Chapter 3, Ex. 68.a, p. 169, [8], Section 6.3, p. 73, or [16],
for definitions). Then by a result of Edelman (see [16], Corollary 4.4, or [33], loc. cit.) we
have that

Z(Pk,m; x + 1) = 1

m

(
(kx+ 1)m

m− 1

)
,

and the thesis follows from Theorem 4.3. 2

Note that using Theorems 3.5 and 3.8 one can easily prove that(
(kx+1)m

m−1 ) is a Hilbert
polynomial for allk,m ∈ P. However, we have been unable to find a similar proof (i.e.,
avoiding Theorem 4.3) for1m(

(kx+1)m
m−1 ).

For our next two applications we assume that the reader is familiar with the basic theory
of Coxeter groups as presented, e.g., in Part II of [21]. In particular, given a Coxeter system
(W, S)we denote byl : W→ N its length function, and by¹ the Bruhat order onW. Given
u, v ∈ W we denote byRu,v(x) (respectively,Pu,v(x)) the R-polynomial (respectively,
Kazhdan-Lusztig polynomial) ofu andv and we let

d(v)
def= |{s ∈ S : l (vs) ≤ l (v)}|. (20)

We refer the reader to [21], Sections 5.2, 5.9, 7.4, and 7.5 for the definitions of, and further
information about, these concepts.

We need first the following simple observation.

Lemma 4.5 Let i, j ∈ N, j ≥ 2. Then xi (x + 1) j is a Hilbert polynomial.

Proof: By Theorems 3.5 and 3.8 it is clearly enough to prove the result forj = 2. If
i ≥ 3 thenxi (x+ 1)2 is a Hilbert polynomial by Theorems 3.5 and 3.8. On the other hand,
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one can verify directly (using Theorem 2.5) that(x+ 1)2, x(x+ 1)2, andx2(x+ 1)2 are all
Hilbert polynomials and the result follows. 2

Theorem 4.6 Let (W, S) be a Coxeter system and u, v ∈ W, u ¹ v, be such that
l (v)− l (u) ≥ 3. Then Ru,v(x + 1) is a Hilbert polynomial.

Proof: If l (v) − l (u) = 3 then it is easy to see (see, e.g., [21], Section 7.5) thatRu,v(x)
equals either(x− 1)3 or (x− 1)3+ (x− 1)x and one can check that the result holds in this
case. So assume thatl (v) − l (u) ≥ 4. It is then well known (see, e.g., [21], Section 7.5,
p. 154, or [15], Theorem 1.3) that

Ru,v(x + 1) =
b d

2 c∑
i=0

ai (x + 1)i xd−2i (21)

whered
def= l (v)− l (u) andai ∈ N for i = 0, . . . , b d

2c. If i = 1 thend− 2i ≥ 2 and hence
(x + 1)xd−2i is a Hilbert polynomial by Theorems 3.5 and 3.8 and the fact that(x + 1)x2

is a Hilbert polynomial. Ifi = 0 thend − 2i ≥ 4 and hencexd−2i is a Hilbert polynomial
by Theorem 3.8. Ifi ≥ 2 then(x+1)i xd−2i is a Hilbert polynomial by Lemma 4.5. Hence
the result follows from (21) and Theorem 3.5. 2

Given a finite Coxeter system(W, S) we let

di (W)
def= |{v ∈ W : d(v) = i }| (22)

for i ∈ N.

Theorem 4.7 Let (W, S) be a finite Coxeter system and u, v ∈ W, u ¹ v. Then:
(i)

∑
w∈W xd(w) =∑i≥0 di (W)xi is a Hilbert polynomial;

(ii) Pu,v(x + 1) is a Hilbert polynomial;
(iii) {d0(W), d1(W), . . . ,d|S|(W)} is a Hilbert function.

Proof: Let, for brevity,P(W; x) def= ∑w∈W xd(w). If |S| ≤ 2 then eitherP(W; x) = 1+x
(if |S| = 1) or W is a finite dihedral group, in which caseP(W; x) = 1+ (2p− 2)x + x2

for somep ≥ 2. In both cases (i) holds by Proposition 3.4. So assume that|S| ≥ 3. Note
that it follows immediately from the definition (22) that

d0(W) = 1, d1(W) ≥ |S|

for any (W, S) (sinced(s) = 1 for all s ∈ S). Furthermore, it is known (see, e.g., [11],
Theorem 2.4) thatP(W; x) is always a symmetric unimodal polynomial. Hence

d2(W) ≥ |S|
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(since deg(P(W; x)) = |S| ≥ 3). Therefored1(W) ≥ 3 andd2(W) ≥ 3 and (i) follows
from part (i) of Corollary 3.10.

Since it is well known (see [1, 23]) that Kazhdan-Lusztig polynomials of finite Coxeter
systems have nonnegative coefficients, (ii) follows immediately from Corollary 3.9.

To prove (iii) let1(W, S) be the Coxeter complex of(W, S) (see, e.g., [5], or [21],
Section 1.15, for the definition and further information about the Coxeter complex). By a
result of Björner (see [5], Theorems 1.6, 2.1, and Proposition 1.2, or [11], Theorem 2.3)
theh-vector of1(W, S) is (d0(W), d1(W), . . . ,d|S|(W)). But, again by a result of Bj¨orner
([5], Theorem 2.1),1(W, S) is a shellable simplicial complex and (iii) follows from
Theorem 5.1.15 of [12]. 2

Note that it is a long standing conjecture (see, [22], p. 166, and also [21], Section 7.9,
p. 159) that Kazhdan-Lusztig polynomials have always nonnegative coefficients. It is there-
fore natural to conjecture that part (ii) of Theorem 4.7 holds also for infinite Coxeter sys-
tems. Given the close connection existing between theR-polynomials and the Kazhdan-
Lusztig polynomials ofW (see, e.g., [21], Section 7.10, p. 160, Eq. (20)) one can ask
whether there is a direct proof of part (ii) of Theorem 4.7 from Theorem 4.6. If this
could be found then it would probably yield a proof of our conjecture. Also note that,
by the remarks following Theorem 3.12, part (i) is not a consequence of part (iii) in
Theorem 4.7.

If (W, S) is a Coxeter system of typeAn then it is well known thatx P(W; x) = An+1(x)
anddk(W) = A(n + 1, k + 1) for n ∈ P andk ∈ N, whereAn(x) and A(n, k) denote
thenth Eulerian polynomialand the(n, k)th Eulerian number, respectively. Though these
objects have been widely studied (see, e.g., [17], [14], Section 6.5, and the references cited
therein) the preceding result seems to be new even in this special case.

Corollary 4.8 Let n∈ P. Then1
x An(x) is a Hilbert polynomial and{A(n, k)}k=1,...,n is a

Hilbert function.

We don’t know any combinatorial proof (i.e., avoiding commutative algebra) of the fact that
{A(n, k)}k=1,...,n is anO-sequence. Note thatAn(x) is not in general a Hilbert polynomial,
for exampleA2(x) = 〈x〉2.

Some of the combinatorial sequences that have been most studied in enumerative combi-
natorics are those of the Stirling numbers. Strange as this may seem, we have not found in
the literature any result relating to the question of whether these sequences areO-sequences.
We answer a more general question in the affirmative here. Forn, k, r ∈ P let Sr (n, k) be
the number of set partitions of [n] into k blocks, each of size≥r . The numbersSr (n, k)
are usually called ther -associated Stirling numbers of the second kind(see, e.g., [14],
Chapter V, Ex. 7, p. 221, for further information about these numbers).

Theorem 4.9 Let r, n ∈ P. Then:
(i) {c(n, n− k)}k=0,...,n−1 is a Hilbert function;

(ii) {Sr (n, k)}k=1,...,b n
r c is a Hilbert function.
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Proof: It is clear from the definitions that 1+ i x is anO-series for alli ≥ 1. But it is
well-known (see, e.g., [33], Proposition 1.3.4, p. 19) that

n−1∑
k=0

c(n, n− k)xk =
n−1∏
i=1

(1+ i x)

so (i) follows from part (i) of Proposition 2.4.

To prove (ii) letV = {S⊆ [n− 1] : n− r ≥ |S| ≥ r } and1
def= {F ⊆ V : S∩ T = ∅

for all S, T ∈ F such thatS 6= T , and
∑

S∈F |S| ≤ n − r }. It is then clear that1 is a
simplicial complex on vertex setV . Also,

fk−1(1) = Sr (n, k+ 1)

for all k = 0, . . . , b n
r c − 1 (since if {S1, . . . , Sk} ∈ 1 then {S1, . . . , Sk, [n]\(⋃k

i=1 Si )}
is a partition of [n] into k + 1 blocks, each of size≥r , and this is a bijection). Hence
{Sr (n, k)}k=2,...,b n

r c is the f -vector of a simplicial complex and therefore{Sr (n, k)}k=1,...,b n
r c,

by Theorem 2.3, is anO-sequence. 2

We now prove that a rather general class of polynomials arising from the enumeration
of Stirling permutations are always Hilbert polynomials. Fixk ∈ P andm1,m2, . . . ∈ P.

Recall (see, e.g., [8], Section 6.6) that a permutationa1a2 · · ·am1+···+mk of the multisetMk
def=

{1m1, 2m2, . . . , kmk} is called aStirling permutationif 1 ≤ u < v < w ≤ m1 + · · · +mk

andau = aw imply av ≥ au. Stirling permutations have been first introduced and studied
in [19] in the casem1 = · · · = mk = 2, and later in [18] (in the casem1 = · · · = mk) and
[8] (in the general case). We denote byQk the set of all Stirling permutations ofMk. So,
for example,Qk = Sk if m1 = · · · = mk = 1. Given a permutationπ = a1a2 · · ·am1+···+mk

of Mk a descentof π is an index j ∈ [m1 + · · · + mk − 1] such thataj >aj+1. For
0 ≤ i ≤ |Mk| − 1 we let Bk,i be the number of Stirling permutations ofMk with exactly
i descents. So, ifm1 = · · · = mk = 1, thenBk,i is just the Eulerian numberA(k, i + 1).
There are (at least) two important generating functions associated with the numbersBk,i ,
namely

Bk(x)
def=
|Mk|−1∑

i=0

Bk,i x
i , (23)

and

fk(x)
def=
|Mk|∑
i=1

Bk,i−1

(
x + |Mk| − i

|Mk|
)

(24)

(see, [8], Section 6.6, for further information on these two polynomials). As noted in [8],
p. 78, (24) is usually the better behaved of these two generating functions. This turns out
to be true also from our present point of view. In fact, we will prove that (23) is always a
Hilbert polynomial while{ fk(n+ 1)}n∈N is always a Hilbert function.



P1: KCU

Journal of Algebraic Combinatorics KL540-Brenti January 21, 1998 12:5

150 BRENTI

Theorem 4.10 Let k∈ P and m1, . . . ,mk ∈ P. Then:
(i) { fk(n+ 1)}n∈N is a Hilbert function;
(ii) Bk(x) is a Hilbert polynomial.
In particular, fk(x + 1) is a Hilbert polynomial.

Proof: We first prove (i) by induction onk ∈ P. If k = 1 thenB1(x) = 1 and hence
f1(x) = ( x+m1−1

m1
) = (( x

m1
)) and the result follows since{(( n+1

m1
))}n∈N is the Hilbert function

of k[x0, . . . , xm1]. So letk ∈ P and assume that
∑

n≥0 fk(n+ 1)xn is anO-series. From
Proposition 6.6.1 (see also the proof of Theorem 6.6.2) of [8] we deduce that

∑
n≥0

(n+ 1) fk(n+ 1)xn =
∑
n≥0

|Mk+1|∑
i=1

Bk+1,i−1

(
n+ 1+ |Mk| + 1− i

|Mk| + 1

)
xn

= Bk+1(x)

(1− x)|Mk|+2
, (25)

by (23) and the binomial theorem (see, e.g., [33], p. 16). Therefore, again by the binomial
theorem, we conclude from (23), (24), and (25) that

∑
n≥0

fk+1(n+1)xn = Bk+1(x)

(1− x)|Mk+1|+1
= 1

(1− x)mk+1−1

∑
n≥0

(n+1) fk(n+1)xn. (26)

Since
∑

n≥0 xn and
∑

n≥0(n + 1)xn are bothO-series, (i) follows from our induction
hypothesis and parts (i) and (iv) of Proposition 2.4.

To prove (ii) note that it follows from [8], Proposition 6.6.1 (and it can also be verified
directly), thatB2(x) = 1+m1x, and

B3(x) = 1+ (3m1+m2)x +m1(m1+m2− 1)x2.

ThereforeB1(x) andB2(x) are Hilbert polynomials, andB3(x) is a Hilbert polynomial if
m1 ≥ 2 or if m2 ≥ 3 by part (i) of Corollary 3.10. But it can be verified directly, using
Proposition 3.4, that 1+ 5x + 2x2 and 1+ 4x + x2 are also Hilbert polynomials and this
proves (ii) if k ≤ 3. If k ≥ 4 then we see easily from our definitions thatBk,1 ≥ 2k−1 ≥ 8
andBk,2 ≥ 3k−3 ≥ 3 (see also Proposition 6.6.1 of [8]) and (ii) again follows from part (i)
of Corollary 3.10. 2

Note that the proof of Theorem 4.10 actually yields an inductive procedure for con-
structing a ringRk having{ fk(n+ 1)}n∈N as Hilbert function by alternatively taking Segre
products and tensor products with polynomial rings on 2 andmk−1 variables, respectively.
It would be interesting to study these rings and the corresponding varieties, and to see
whether they can be defined directly in some explicit way. Also, note that, as observed in
[8], Section 6.6, p. 79, no combinatorial interpretation of the integersfk(n+ 1) is known
except in the casesm1 = · · · = mk = 1 andm1 = · · · = mk = 2. While Theorem 4.10
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does not provide such a combinatorial interpretation, it does provide an algebraic interpre-
tation. Furthermore, if the ringsRk referred to above can be constructed explicitly, then a
combinatorial interpretation of their Hilbert function would probably follow.

It is well-known (see, e.g., [19]), and also easy to see, thatS(n + k, n) is a polyno-
mial function ofn, for eachk ∈ N. An interesting consequence of Theorem 4.10 is the
following.

Corollary 4.11 Let k ∈ N. Then{S(n + 1+ k, n + 1)}n∈N is a Hilbert function. In
particular, S(x + 1+ k, x + 1) is a Hilbert polynomial.

Proof: Takingmi = 2 for all i ∈ P yields, by part (ii) of Proposition 6.6.4 of [8], that
fk(n + 1) = S(n + 1+ k, n + 1) for all n ∈ N, and the result follows from part (i) of
Theorem 4.10. 2

The polynomialsS(x+ k, x) are usually calledStirling polynomials(see, e.g., [19], or [8],
Section 6.6, p. 80).

Corollary 4.11 can, in turn, be generalized in another direction using the theory of
symmetric functions. We need first the following simple observation.

Proposition 4.12 Let f ∈ 3. Then there exists a(necessarily unique) polynomialf̄ (x) ∈
Q[x] such that

f̄ (n) = f (1, 2, . . . ,n, 0, 0, . . .) (27)

for all n ∈ P.

Proof: It is well-known (see, e.g., [25], Chapter I, Section 2, Ex. 11, p. 23), and easy to
see, that

S(n+ k, n) = hk(1, 2, . . . ,n, 0, 0, . . .) (28)

for all n ∈ Pandk ∈ N, and that, as noted before Corollary 4.11,S(n+k, n) is a polynomial
function ofn for all k ∈ N. By definition (see, e.g., [25], Chapter I, Section 2) we have
that

hλ(x1, x2, . . .) =
l∏

i=1

hλi (x1, x2, . . .) (29)

if λ= (λ1, . . . , λl ), hence the result holds for the complete homogeneous symmetric func-
tionshλ, λ ∈ P. But every f ∈ 3 can be expressed as a finite linear combination ofhλs,
and the result follows. 2

Thus Corollary 4.11 is asserting (by (28) and (27)) that{hk(1, 2, . . . ,n + 1)}n∈N is a
Hilbert function and̄hk(x+1) is a Hilbert polynomial. This naturally suggests the problem
of determining those symmetric functionsf ∈ 3 for which these properties hold.
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Theorem 4.13 Letλ ∈ P. Then the following are Hilbert functions:
(i) {hλ(1, 2, . . . ,n+ 1)}n∈N;

(ii) {pλ(1, 2, . . . ,n+ 1)}n∈N.
In particular, bothh̄λ(x + 1) and p̄λ(x + 1) are Hilbert polynomials.

Proof: (i) Follows immediately from (28), (29), Corollary 4.11, and Proposition 2.4.
To prove (ii) note that it follows from the definition (see, e.g., [25], Chapter I, Section 2)

that

∑
n≥0

p̄k(n+ 1)xn =
(∑

n≥0

xn

)(∑
n≥0

(n+ 1)kxn

)
(30)

for all k ∈ P. Since
∑

n≥0 xn and
∑

n≥0(n + 1)xn are both Hilbert series this shows,
by Proposition 2.4, that{ p̄k(n + 1)}n∈N is a Hilbert function for allk ∈ P. Since, by
definition (see, e.g., [25], Chapter I, Section 2),pλ(x1, x2, . . .) =

∏l
i=1 pλi (x1, x2, . . .) if

λ = (λ1, . . . , λl ), (ii) follows from Proposition 2.4. 2

Given aZ-basis{bλ}λ∈P of3we say thatf ∈ 3 is b-positiveif f =∑λ∈P aλbλ implies
thataλ ≥ 0 for all λ ∈ P. Then Theorem 4.13 has the following immediate consequence.

Corollary 4.14 Let f ∈ 3 be h-positive. Then̄f (x + 1) is a Hilbert polynomial.

Another consequence of Theorem 4.13 is the following. We denote byBk(x) the kth
Bernoulli polynomial, fork ∈ P (see, e.g., [14], Chapter I, Section 14, p. 48, for the
definition and further information about Bernoulli polynomials).

Corollary 4.15 Let k∈ P. ThenBk(x + 2)− Bk(0) is a Hilbert polynomial.

Proof: It is well known (see, e.g., [14], Section 3.9, p. 155) that(k + 1) p̄k(n + 1) =
Bk+1(n+ 2)− Bk+1(0) for all k, n ∈ P. Hence

Bk+1(x + 2)− Bk+1(0) = (k+ 1) p̄k(x + 1) (31)

and the result follows from Theorems 3.5 and 4.13 and the fact thatB1(x+ 2)−B1(0)=
x+ 2 is a Hilbert polynomial. 2

Note thatBk(x+2) cannot be a Hilbert polynomial since, in general,Bk(N) 6⊂ Z, and that
Bk(x + 1)− Bk(0) is not always a Hilbert polynomial (for example,B2(x + 1)− B2(0) =
x2+ x).

5. Open problems

Despite the fact that Hilbert functions and polynomials are preserved by many natural
operations on formal power series and polynomials, respectively (see Proposition 2.4 and
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Theorem 3.5), there are many sequences and polynomials naturally arising in enumerative
and algebraic combinatorics for which we have been unable to decide whether they are
Hilbert. In this section we survey the most striking such cases, and we present some
conjectures together with the evidence we have in their favor.

Our first conjecture is naturally suggested by Theorem 4.9.

Conjecture 5.1 Let n∈ P. Then{S(n, n− k)}k=0,...,n−1 is a Hilbert function.

We have verified this conjecture forn ≤ 24. In addition to the numerical evidence, there
is a heuristic reasoning that suggests the validity of Conjecture 5.1. A sequence of positive
integers is a Hilbert function if it “does not grow too fast”. Now, it is well-known (see, e.g.,
[14], Section 7.1, Theorem D, p. 271) that the sequence{S(n, k)}k=1,...,n is log-concave and
unimodal, hence the real content of Conjecture 5.1 is for the values ofk that precede the mode
of the sequence. But it is known (see, e.g., [33], Chapter 1, Exercise 18, p. 47) that the mode
of {S(n, k)}k=1,...,n is less thanb n

2c. Hence one expects the sequence{S(n, n−k)}k=0,...,n−1

to grow “less rapidly” than{S(n, k)}k=1,...,n and therefore we expect Conjecture 5.1 to be
true since Theorem 4.9 holds.

Theorem 3.8 allows one to settle the question of whether a given polynomial is Hilbert
pretty easily if its coefficients with respect to the basis{xi }i∈N are nonnegative and have a
combinatorial interpretation. However, there are many polynomials for which this is not
the case (especially polynomials that “count something” when evaluated at nonnegative
integers) but that seem to be Hilbert. In this respect, we feel that the following is the most
interesting and outstanding open problem arising from the present work.

Conjecture 5.2 Let G be a graph on at least4 vertices, andχ(G; x) be its chromatic
polynomial. Thenχ(G; x) is a Hilbert polynomial.

We have verified the above conjecture for all graphs with at most 15 vertices. Two related
conjectures are the following:

Conjecture 5.3 Let d∈ P, d ≥ 4. Then(x)d is a Hilbert polynomial.

Conjecture 5.4 Let d∈ P. Then3d( x
d ) is a Hilbert polynomial.

We have verified these conjectures ford ≤ 15. Note that, by Proposition 4.2, Conjec-
tures 5.2 and 5.3 are equivalent, while by Theorem 3.5 Conjecture 5.4 implies Conjecture 5.3.

For what concerns the symmetric functionsf ∈3 such thatf̄ (x + 1) is a Hilbert poly-
nomial we have the following conjectures.

Conjecture 5.5 Letλ ∈ P. Thens̄λ(x+ 1) is a Hilbert polynomial if and only if|λ| ≥ 3.

Conjecture 5.6 Letλ ∈ P. Thenm̄λ(x+1) is a Hilbert polynomial if and only if|λ| ≥ 3.

We have verified the above conjectures for|λ| ≤ 7. Note that since any Schur symmet-
ric function ism-positive (see, e.g., [25], Chapter I, Section 6), Conjecture 5.6 implies
Conjecture 5.5 as well as Corollary 4.14.
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While the specializationf 7→ f (1, 2, . . . ,n+ 1, 0, 0, . . .), for f ∈ 3, has been sug-
gested by Corollary 4.11, there is one other specialization which is routinely used in the the-
ory of symmetric functions (see, e.g., [25], Chapter I, Section 2, Ex. 1, and Section 3, Ex. 4)
namely f 7→ f (1, 1, . . . ,1︸ ︷︷ ︸

n

, 0, 0, . . .). Since it is easy to verify thatf (1, 1, . . . ,1︸ ︷︷ ︸
n

, 0, 0, . . .)

is a polynomial function ofn for any f ∈ 3 (see, e.g., [8], Proposition 6.2.1), it is natural
to wonder for which symmetric functionsf ∈3 one has thatf (1, 1, . . . ,1︸ ︷︷ ︸

n+1

, 0, 0, . . .) is a

Hilbert polynomial (as a function ofn). The answer for thepλs is of course trivial. For the
Schur functions we believe that the following holds.

Conjecture 5.7 Let λ = (λ1, . . . , λr ) ∈ P be such that|λ| ≥ 7. Then sλ(1, 1, . . . ,1︸ ︷︷ ︸
n+1

, 0,

0, . . .) is a Hilbert polynomial if and only ifλ1+ λ2 ≥ 4.

We have verified Conjecture 5.7 for|λ| ≤ 12. It is worth noting that the “only if” part
of Conjecture 5.7 also holds for 4≤ |λ| ≤ 6 (but not the “if” part, take, e.g.,λ = (3, 3),
(2, 2, 2), (2, 2, 1), or (3, 1)). What makes Conjecture 5.7 particularly tantalizing is that
there is an explicit closed formula forsλ(1, . . . ,1︸ ︷︷ ︸

n+1

, 0, 0, . . .), namely

sλ(1, . . . ,1︸ ︷︷ ︸
n+1

, 0, 0, . . .) =
∏
(i, j )∈λ

(
n+ 1+ j − i

h(i, j )

)
, (32)

where h(i, j ) is the hook lengthof (i, j ) in λ (see, e.g., [25], Chapter I, Section 1,
Ex. 1, and Section 3, Ex. 4). This allows us to conclude in particular, by part (vi)
of Theorem 3.8, that Conjecture 5.7 does hold ifl (λ) = 1 (i.e., for complete homo-
geneous symmetric functions) or ifλ1 = 1 (i.e., for elementary symmetric functions).
Note thatsλ(1, 1, . . . ,1︸ ︷︷ ︸

n

, 0, 0, . . .) is also equal to the order polynomial of a column strict

labeled Ferrers poset of shapeλ (see, e.g., [8], Section 5.2, for further information).
The monomial symmetric functions seem to exhibit an extremely mysterious behavior
and we have been unable to extract any general conjecture from the data that we have.
For example, if|λ| ≤ 8 andl (λ) ≥ 2 then we have verified thatmλ(1, . . . ,1︸ ︷︷ ︸

n+1

, 0, 0, . . .)

is a Hilbert polynomial if and only ifλ∈ {(3, 2, 1), (4, 2, 1), (3, 2, 1, 1), (2, 2, 1, 1, 1, 1),
(3, 2, 1, 1, 1), (3, 2, 2, 1), (4, 2, 1, 1), (4, 3, 1), (5, 2, 1)}.

The results in Section 3 also suggest several open problems. In particular, it would be in-
teresting to answer the following questions, which are naturally suggested by Theorems 3.12
and 3.13.

Problem 5.8 Let {h0, . . . , hd} be a Hilbert function. Is it true that then
∑d

i=0 hi ((
x
i )) is

a Hilbert polynomial?

Problem 5.9 Let ( f0, . . . , fd) be the f -vector of a simplicial complex. Is it true that
then

∑d
i=0 fi (x)i ,

∑d
i=0 fi (

x+d−i
d ), and

∑d
i=0 fi ((

x
i )) are Hilbert polynomials?
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Finally, there is a general “open problem” that arises naturally with almost any result
presented in this work. Namely, whenever we prove that a certain polynomial (or sequence)
is Hilbert it is natural to ask whether one can construct, in a natural way, a standard graded
k-algebra having the given Hilbert polynomial or function. Besides giving a more illumi-
nating proof of the original result, such a graded algebra would probably have interesting
properties in its own right. We have not investigated this problem. However, we do believe
that natural constructions of graded algebras exist that “explain” all parts of Theorems 3.5,
3.12, 3.13, and 4.7.
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