On the Number of Group-Weighted Matchings

JEFF KAHN*

Dept. of Mathematics and RUTCOR, Rutgers University, New Brunswick, NJ 08903

ROY MESHULAM

Dept. of Mathematics, Technion, Haifa 32000, Israel

Received January 10, 1996; Revised January 23, 1997

Abstract. Let G be a bipartite graph with a bicoloration $\{A, B\}, |A| = |B|$, and let $w : E(G) \to \mathbf{K}$ where **K** is a finite abelian group with k elements. For a subset $S \subseteq E(G)$ let $w(S) = \prod_{e \in S} w(e)$. A perfect matching $M \subseteq E(G)$ is a w-matching if w(M) = 1.

It is shown that if $deg(a) \ge d$ for all $a \in A$, then either G has no w-matchings, or G has at least (d - k + 1)!w-matchings.

Keywords: bipartite matching, digraph, finite abelian group, group algebra, Olson's Theorem

1. Introduction

Let *G* be a bipartite graph with a bicoloration $\{A, B\}$, |A| = |B|. Let $E(G) \subseteq A \times B$ denote the edge set of *G*, and let m(G) denote the number of perfect matchings of *G*.

Let **K** be a (multiplicative) finite abelian group $|\mathbf{K}| = k$, and let $w: E(G) \to \mathbf{K}$ be a weight assignment on the edges of *G*. For $S \subseteq E(G)$ let $w(S) = \prod_{e \in S} w(e)$.

A perfect matching M of G is a w-matching if w(M) = 1. We shall be interested in m(G, w), the number of w-matchings of G.

M. Hall (see exercise 7.15 in [9]) showed that if $m(G) \ge 1$ and if deg $(a) \ge d$ for all $a \in A$, then $m(G) \ge d!$.

Hall's result is the case k = 1 of the following Theorem. The case k = 2 was proved in [1].

Theorem 1.1 Let $w : E(G) \to \mathbf{K}$. If $m(G, w) \ge 1$ and $\deg(a) \ge d$ for all $a \in A$, then $m(G, w) \ge (d - k + 1)!$.

Theorem 1.1 is tight when $\mathbf{K} = \mathbf{C}_k$, the cyclic group of order k. More generally, for a finite abelian group \mathbf{K} , let $s = s(\mathbf{K})$ denote the maximal s for which there exists a sequence $x_1, \ldots, x_s \in \mathbf{K}$ such that $\prod_{i \in I} x_i \neq 1$ for all $\emptyset \neq I \subseteq [s] = \{1, \ldots, s\}$. The problem of determining $s(\mathbf{K})$ was suggested by Davenport (see [11]) and addressed by a number of authors [3, 5, 10, 11].

^{*}Supported in part by NSF and BSF.

Let $d \ge s = s(\mathbf{K})$ and let $G = K_{d,d}$ denote the complete bipartite graph on $[d] \times [d]$. Let $w: E(K_{d,d}) \to \mathbf{K}$ be given by w(i, j) = 1 if i = j or $i \ge s + 1$, and $w(i, j) = x_i$ otherwise, where x_1, \ldots, x_s are as above. Then m(G, w) = (d - s)!.

This construction suggests the following conjecture (which contains Theorem 1.1 since it's easy to see that $s(\mathbf{K}) \leq k - 1$).

Conjecture 1.2 ([1]) Let $w : E(G) \to \mathbf{K}$. If $m(G, w) \ge 1$ and $\deg(a) \ge d$ for all $a \in A$, then $m(G, w) \ge (d - s(\mathbf{K}))!$.

In Section 2 we utilize the complex group algebra of **K** to prove Theorem 1.1. In Section 3 we discuss a possible approach to Conjecture 1.2 when **K** is a p-group (the nice point here is the reduction to Conjecture 3.2 via Claim 3.3), and observe a connection with a conjecture of Griggs and Walker [8].

2. Proof of Theorem 1.1

The main ingredient of the proof of Theorem 1.1 is the following result on group-weighted digraphs.

Theorem 2.1 Let D = (V, E) be a simple digraph and let $\varphi : E \to \mathbf{K}$. If $\deg^+(v) \ge k$ for all $v \in V$, then there exist vertex-disjoint directed cycles C_1, \ldots, C_l such that $\prod_{i=1}^l \prod_{e \in C_i} \varphi(e) = 1$.

Proof: It is, of course, enough to prove the Theorem when deg⁺(v) = k for all v. Let $\mathbb{C}[\mathbf{K}]$ denote the complex group algebra of \mathbf{K} , $M_{n \times k}(\mathbb{C}[\mathbf{K}])$ the $n \times k$ matrices over $\mathbb{C}[\mathbf{K}]$ and $M_n(\mathbb{C}[\mathbf{K}]) = M_{n \times n}(\mathbb{C}[\mathbf{K}])$. (For group algebras see e.g., [12].) For a matrix $Q = (q_{ij}) \in M_n(\mathbb{C}[\mathbf{K}])$ and $x \in \mathbb{C}[\mathbf{K}]$, let $S(Q, x) = \{\sigma \in S_n : \prod_{i=1}^n q_{i\sigma(i)} = x\}$ (where S_n is the symmetric group).

Assume now that V = [n] and associate with D the matrix $Q = (q_{ij}) \in M_n(\mathbb{C}[\mathbf{K}])$ given by $q_{ii} = 1$ for all $1 \le i \le n$, $q_{ij} = \varphi(i, j)$ if $(i, j) \in E$, and $q_{ij} = 0$ otherwise.

Claim 2.2 There exists a matrix $C = (c_{ij}) \in M_n(\mathbb{C})$ with $c_{ii} = 1$ for all $1 \le i \le n$, such that the matrix $R = (r_{ij}) \in M_n(\mathbb{C}[\mathbf{K}])$ given by $r_{ij} = c_{ij}q_{ij}$ satisfies det R = 0 in $\mathbb{C}[\mathbf{K}]$.

Proof: Let χ_1, \ldots, χ_k denote the complex characters of **K**. For $1 \le i \le n$ let $N^+(i) = \{j : (i, j) \in E\}$.

With any $n \times k$ matrix $H = (h_{jl}) \in M_{n \times k}(\mathbb{C})$ and $1 \le i \le n$, we associate a $k \times k$ matrix H_i indexed by $N^+(i) \times [k]$ and given by $H_i(j, l) = \chi_l(q_{ij})h_{jl}$ for $j \in N^+(i)$, $1 \le l \le k$.

We may clearly choose an $H \in M_{n \times k}(\mathbb{C})$ such that rank $H_i = k$ for all $1 \le i \le n$. The non-singularity of H_i implies that there exists a vector $(c_{ij} : j \in N^+(i))$ such that for all $1 \le l \le k$

$$h_{il} = -\sum_{j \in N^+(i)} c_{ij} H_i(j,l) = -\sum_{j \in N^+(i)} c_{ij} \chi_l(q_{ij}) h_{jl}.$$
 (1)

Now define $c_{ii} = 1$ and $c_{ij} = 0$ if $i \neq j$ and $(i, j) \notin E$, and let $R = (r_{ij}) = (c_{ij}q_{ij}) \in M_n(\mathbb{C}[\mathbf{K}])$.

Then (1) implies that for all $1 \le l \le k$, $0 \ne (h_{1l}, \ldots, h_{nl})^T$ is a nullvector of the matrix $\chi_l(R) = (\chi_l(r_{ij})) \in M_n(\mathbb{C})$. It follows that $\chi_l(\det R) = \det(\chi_l(R)) = 0$ for all $1 \le l \le k$, hence det R = 0 in $\mathbb{C}[\mathbf{K}]$.

Claim 2.2 implies that

$$0 = \det R = \sum_{x \in \mathbf{K}} \left(\sum_{\sigma \in S(Q,x)} \operatorname{Sg}(\sigma) \prod_{i=1}^{n} c_{i\sigma(i)} \right) x.$$

Since the identity permutation id belongs to S(Q, 1) and $\prod_{i=1}^{n} c_{ii} = 1$, it follows that there exists id $\neq \sigma \in S(Q, 1)$. Then $E_0 := \{(i, \sigma(i)) : i \neq \sigma(i)\}$ is a non-empty union of vertex-disjoint directed cycles, say $E_0 = \bigcup_{i=1}^{l} C_i$, and

$$\prod_{i=1}^{l} \prod_{e \in C_i} \varphi(e) = \prod q_{i\sigma(i)} = 1.$$

Theorem 1.1 now follows from Theorem 2.1 as in [1]: Let *G* be a bipartite graph on $\{A, B\}, |A| = |B| = n$ and $w : E(G) \to \mathbf{K}$. For $a \in A$ let $U_G(a, w)$ denote the set of all edges incident with *a* which participate in *w*-matchings of *G*, and $|U_G(a, w)| = u_G(a, w)$.

The following result clearly implies Theorem 1.1 by induction on d.

Theorem 2.2 If G has a w-matching then there exists an $a \in A$ such that $u_G(a, w) \ge \deg_G(a) - k + 1$.

Proof: Let $M = \{(a_1, b_1), \dots, (a_n, b_n)\}$ be a *w*-matching of *G*. With no loss of generality we may assume that $w(a_i, b_i) = 1$ for all *i*. (Otherwise for each *i* and $e \ni a_i$, multiply w(e) by $w^{-1}(a_i, b_i)$.)

Construct a directed graph D on $\{1, ..., n\}$ by taking $(i, j) \in E(D)$ iff $(a_i, b_j) \in E(G) \setminus U_G(a_i, w)$, and let $\varphi: E(D) \to \mathbf{K}$ be defined by $\varphi(i, j) = w(a_i, b_j)$. Suppose for a contradiction that the assertion of the theorem is false, so that $\deg^+(v) \ge k$ for all $v \in V(D)$. It then follows from Theorem 2.1 that D contains vertex-disjoint cycles C_1, \ldots, C_l with $\prod_{i=1}^l \prod_{e \in C_i} \varphi(e) = 1$. Let $V_0 = \bigcup_{i=1}^l V(C_i)$ and define a permutation σ on V_0 by $\sigma(v_1) = v_2$ if $(v_1, v_2) \in \bigcup_{i=1}^l E(C_i)$. Then the perfect matching

$$M' = \{(a_i, b_i) : i \notin V_0\} \cup \{(a_i, b_{\sigma(i)}) : i \in V_0\}$$

is a *w*-matching. So, since $(a_i, b_{\sigma(i)}) \notin U_G(a_i, w)$ for any $i \in V_0$, we have the desired contradiction.

3. An approach to the *p*-group case

Let $\mathbf{K} = \mathbf{C}_{p^{e_1}} \times \cdots \times \mathbf{C}_{p^{e_t}}$ be an abelian *p*-group, and let $\mathbb{Z}_p[\mathbf{K}]$ denote the group algebra of \mathbf{K} over \mathbb{Z}_p . Let $I_p(\mathbf{K}) = \{\sum_{x \in \mathbf{K}} a_x x \in \mathbb{Z}_p[\mathbf{K}] : \sum_{x \in \mathbf{K}} a_x = 0\}$, the *augmentation ideal* of $\mathbb{Z}_p[\mathbf{K}]$. It was shown by Olson [11], and independently Kruyswijk (see [2]), that $I_p(\mathbf{K})$ is nilpotent of degree $\sum_{i=1}^{t} (p^{e_i} - 1) + 1$, and that this implies $s(\mathbf{K}) = \sum_{i=1}^{t} (p^{e_i} - 1)$.

For $S \subseteq \mathbb{Z}_p[\mathbf{K}]$ let $M_n(S)$ denote the set of $n \times n$ matrices with entries in S. For $l \leq n-1$ let $U_{\mathbf{K}}(n, l)$ denote the set of matrices $Q = (q_{ij}) \in M_n(\mathbf{K} \cup \{0\})$ such that for each $i \in [n]$, $q_{ii} = 1$ and $Q(i) := \{j \neq i : q_{ij} \neq 0\}$ has cardinality l.

By the proof of Theorem 1.1, Conjecture 1.2 for the p-group **K** will follow from the following analogue of Claim 2.2.

Conjecture 3.1 For any $Q = (q_{ij}) \in U_{\mathbf{K}}(n, s(\mathbf{K}) + 1)$ there exists a matrix $C = (c_{ij}) \in M_n(\mathbb{Z}_p)$ with $c_{ii} = 1$ for $1 \le i \le n$, such that $R = (r_{ij}) = (c_{ij}q_{ij}) \in M_n(\mathbb{Z}_p[\mathbf{K}])$ satisfies det R = 0 in $\mathbb{Z}_p[\mathbf{K}]$.

We next formulate another, perhaps more natural, conjecture which implies Conjecture 3.1.

Let $\mathcal{A} = (A_1, \ldots, A_n)$ be an ordered family of subsets of [n] such that $i \notin A_i$ for all $1 \leq i \leq n$. Let $W_p(\mathcal{A})$ denote the affine space of all matrices $C = (c_{ij}) \in M_n(\mathbb{Z}_p)$ such that $c_{ii} = 1$, and $c_{ij} = 0$ whenever $i \neq j$ and $j \notin A_i$.

Conjecture 3.2 If $|A_i| \ge l$ for all $1 \le i \le n$, then $W_p(\mathcal{A})$ contains a matrix of rank at most n - l.

To show that Conjecture 3.2 implies Conjecture 3.1 we need

Claim 3.3 Let $Q = (q_{ij}) \in M_n(\mathbf{K})$ and $C = (c_{ij}) \in M_n(\mathbb{Z}_p)$. If rank $C \le n - s(\mathbf{K}) - 1$, then $R = (r_{ij}) = (c_{ij}q_{ij}) \in M_n(\mathbb{Z}_p[\mathbf{K}])$ satisfies det R = 0.

Proof: Let $B \in M_n(\mathbb{Z}_p)$ be a non-singular matrix such that the first $s(\mathbf{K}) + 1$ rows of *BC* are zero. Then with $BR = (t_{ij}) \in M_n(\mathbb{Z}_p[\mathbf{K}])$, it follows that $t_{ij} \in I_p(\mathbf{K})$ for all $1 \le i \le s(\mathbf{K}) + 1, 1 \le j \le n$. Since $I_p(\mathbf{K})$ is nilpotent of degree $s(\mathbf{K}) + 1$ it follows that det $BR = \sum_{\sigma \in S_n} \text{Sg}\sigma \prod_{i=1}^n t_{i\sigma(i)} = 0$, hence det R = 0.

Conjecture 3.2 \Rightarrow **Conjecture 3.1** Suppose $Q = (q_{ij}) \in U_{\mathbf{K}}(n, s(\mathbf{K}) + 1)$, and let $\mathcal{A} = (Q(1), \ldots, Q(n))$. By Conjecture 3.2 there exists a $C \in W_p(\mathcal{A})$ such that rank $C \leq n - s(\mathbf{K}) - 1$. Let $Q' = (q'_{ij}) \in M_n(\mathbf{K})$ be given by $q'_{ij} = q_{ij}$ if $q_{ij} \in \mathbf{K}$ and q'_{ij} an arbitrary element of \mathbf{K} otherwise. Clearly $R' := (c_{ij}q'_{ij}) = (c_{ij}q_{ij}) = R$, therefore by Claim 3.3 det $R = \det R' = 0$.

Remarks.

- 1. The cases l = 1, n-1 of Conjecture 3.2 are trivial. We have proved the cases l = 2, n-2 by a graph theoretical argument similier to Proposition 4.1 in [1].
- 2. Again let $\mathcal{A} = (A_1, \ldots, A_n)$ with $i \notin A_i$ for all *i*. It is easy to see that the existence of a matrix of rank at most n l in $W_p(\mathcal{A})$ is equivalent to the existence of vectors $v_i \in \mathbb{Z}_p^l$, $i \in [n]$, satisfying
 - (a) $v_i \in \langle v_j : j \in A_i \rangle$ for all *i*, and
 - (b) $\langle v_i : i \in [n] \rangle = \mathbb{Z}_p^l$ (where $\langle \cdot \rangle$ is linear span).

(The $n \times l$ matrix H whose rows are the v_i 's will then satisfy MH = 0 for an appropriate $M \in W_p(\mathcal{A})$.) So Conjecture 3.2 is equivalent to the statement that such v_i exist whenever $|A_i| = l$ for all i.

For an *l*-uniform hypergraph $\mathcal{F} = \{F_1, \ldots, F_m\}$ on [n], say \mathcal{F} has property G_p if there exists a matrix $H \in M_{n \times l}(\mathbb{Z}_p)$ such that the $l \times l$ minors of H corresponding to the F_i 's are all non-singular. If \mathcal{A} as above is *l*-uniform and has property G_p with corresponding H, then the rows of H satisfy (a), (b), giving Conjecture 3.2 for \mathcal{A} . (For example, since property G_p clearly does hold for any fixed n and large enough p, the same follows for Conjecture 3.2.)

Of course, we cannot expect (and do not need) property G_p in general; still, sufficient conditions for the property are of interest. A conjecture of Griggs and Walker [8] says that for any n and $A \subset \mathbb{Z}_n$, the hypergraph $\{A + i : i \in \mathbb{Z}_n\}$ has property G_2 . (This was motivated by, and would imply, a conjecture proposed in [4, 6].) For |A| = 3, the Griggs-Walker Conjecture was proved by Füredi et al. [7], who actually showed property G_2 for an arbitrary 3-uniform, 3-regular \mathcal{F} .

For general l, such a generalization does not hold, but we believe the following, less extreme relaxation may be correct.

Conjecture 3.4 If \mathcal{F} is *l*-uniform on [n] and for each *t* and distinct $F_1, \ldots, F_t \in \mathcal{F}$,

 $|F_1 \cap \cdots \cap F_t| \le \max\{k - t + 1, 0\},\$

and

 $|F_1 \cup \cdots \cup F_t| \ge \min\{k + t - 1, n\},\$

then \mathcal{F} has property G_p .

This contains (via the Cauchy-Davenport Theorem) the Griggs-Walker conjecture when *n* is prime, and would presumably shed some light on the general case as well.

References

- R. Aharoni, R. Meshulam, and B. Wajnryb, "Group weighted matching in bipartite graphs," J. Alg. Combin. 4 (1995), 165–171.
- 2. P.C. Baayen, "Een combinatorisch probleem voor eindige Abelse groepen," Math. Centrum Syllabus 5, Colloquium Discrete Wiskunde Caput 3, Math. Centre Amsterdam, 1968.
- R.C. Baker and W.M. Schmidt, "Diophantine problems in variables restricted to the values 0 and 1," J. Number Theory 12 (1980), 460–486.
- F.R.K. Chung, P. Frankl, R. Graham, and J.B. Shearer, "Some intersection theorems for ordered sets and graphs," J. Combinatorial Theory Ser. A 48 (1986), 23–37.
- 5. P. van Emde Boas and D. Kruyswijk, "A combinatorial problem on finite abelian groups III," Z.W. 1969-008 (Math. Centrum, Amsterdam).
- R. Faudree, R. Schelp, and V.T. Sós, "Some intersection theorems on two-valued functions," *Combinatorica* 6 (1986), 327–333.

- 7. Z. Füredi, J.R. Griggs, R. Holzman, and D.J. Kleitman, "Representations of families of triples over *GF*(2)," *J. Combinatorial Theory Ser. A* **53** (1990), 306–315.
- J. Griggs and J. Walker, "Anticlusters and intersecting families of subsets," J. Combinatorial Theory Ser. A 51 (1989), 90–103.
- 9. L. Lovász, Combinatorial Problems and Exercises, North-Holland, New York, 1979.
- 10. R. Meshulam, "An uncertainty inequality and zero subsums," Discrete Math. 84 (1990), 197-200.
- 11. J.E. Olson, "A combinatorial problem on finite abelian groups I," J. Number Theory 1 (1969), 8-10.
- 12. D.S. Passman, The Algebraic Structure of Group Rings, Wiley-Interscience, New York, 1977.