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Abstract. We give a bound on the sizes of two sets of vertices at a given minimum distance in a graph in terms
of polynomials and the Laplace spectrum of the graph. We obtain explicit bounds on the number of vertices at
maximal distance and distance two from a given vertex, and on the size of two equally large sets at maximal
distance. For graphs with four eigenvalues we find bounds on the number of vertices that are not adjacent to a
given vertex and that haye common neighbours with that vertex. Furthermore we find that the regular graphs
for which the bounds are tight come from association schemes.
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1. Introduction

In an earlier paper by van Dam and Haemers [6], a bound on the sizes of two sets of vertices
at a given minimum distance in a graph in terms of polynomials and the spectrum of the
graph was derived. The problem is to choose good polynomials. This problem arose in [3,
6, 10] where the diameter of a graph is bounded in terms of its eigenvalues. Chung et al. [3]
and van Dam and Haemers [6] used Chebyshev polynomials, while Fiol et al. [10] looked
at the best possible polynomials.

Here we shall use the tool of van Dam and Haemers for other purposes than bounding the
diameter of a graph. We shall derive a number of new results, i.e., bounds on special subset:
in terms of the Laplace eigenvalues, always by considering the optimal polynomials, thus
illustrating the strength of the used technique. We obtain an upper bound on the number of
vertices at maximal distance, and a lower bound on the number of vertices at distance two
from a given vertex. For graphs with four eigenvalues we prove a more general result. Here
we shall bound the number of verticegthat are not adjacent to a given vertex and have
a fixed numbey of common neighbours with that vertex, in terms of the spectrumuand
and we characterize the case of equality. This particular numjggays an important role
in a characterization of the graphs in a three-class association scheme (cf., [5]), and our
bound is evidence for a conjecture on this number.

Another application of our tool gives bounds on the size of two equally large sets of
vertices at maximal distance, or distance at least two (i.e., with no edges in between). The
latter has applications for the bandwidth of a graph. Here we also find graphs (including
some strongly regular graphs) for which the bound is tight.
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The Laplace spectrum of a graph is the spectrum of its Laplace matrix. This is a square
matrix Q indexed by the vertices, witQ,, = dy, the degree of, andQ,y, = —1if x andy
are adjacent, an@yy = 0 if x andy are not adjacent. If the graph is regular of dedtee
then its (adjacency) eigenvalugsand its Laplace eigenvalu@sare related by, = k— A;.

In this paper we use the method of interlacing eigenvalues. For this we refer to the paper
by Haemers [11]. For distance-regular graphs and association schemes we refer to the bool
by Brouwer et al. [1].

2. Thetools

The next theorem, which is our main tool, is a theorem by van Dam and Haemers [6], except
that here the Laplace matrix instead of the adjacency matrix is used.

Theorem 2.1 Let G be a connected graph anvertices with r+ 1 distinct Laplace
eigenvalue® = 6y < 6, < --- < 6. Let m be a nonnegative integer and let X and Y be
sets of vertices, such that the distance between any vertex of X and any vertex of Y is at leas
m+ 1. If p is a polynomial of degree m such thatOp= 1, then

X]1Y] < max p*(6).
W— XD — Y] ~ i#0

Proof: LetG have Laplace matri®), thenp(Q)xy = O for all verticesx ¢ X andy € Y.
Without loss of generality we assume that the fikstrows of Q correspond to the vertices
in X and the lastY| rows correspond to the verticesYn Now consider the matrix

O : PO
pQ : O

Note thatM is symmetric, has row and column sums equal to 1, and its spectrum is
{£p@) |i =0,1,...,r}, multiplicities included. LetM be partitioned symmetrically in
the following way.

O : O : 0\ X
O : O : : }ov—1X]

O : O} v=1Y]

o : 0 0/} Y
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Let B be its quotient matrix (the matrix of average row sums in the blocks of this partition),
then

0 0 1 0
0 0 1- vl—ﬁ|><| v|—\1|><|

B u‘—)ﬂ/\ 1- v‘—)ﬂw 0 o |
0 1 0 0

with eigenvalues\o(B) = — A3(B)=1, A1(B)= — A»(B) =‘/%. Since the

eigenvalues oB interlace those oM (cf., [11]), we have that

3(B) = 2a(M) = max|p(@)l.
and the theorem follows. O

To obtain the sharpest bound we have to minimize {ina¥;)| | i # 0} over all polyno-
mials p of degreem such thatp(0) = 1. This problem occurred in earlier papers [3, 6, 10]
to obtain bounds on the diameter of graphs. In the first two papers Chebyshev polynomials
were used, which are good but not optimal. In the more recent paper by Fiol et al. [10]
the optimal polynomials were investigated. The problem in fact is one from the theory of
uniform approximations of continuous functions (cf., [2, 13]).

Let She a compact set of real numbers andd¢g) be the set of continuous functions
on Sto the reals. Leff € C(S), with uniform norm

I flle = max| f(2)].
ZeS

Let W be a subspace @(S) of dimensiom, thenw* is called a best approximation &f
in W if

LT;IVQIIf —Wlleo = [I'f — w*lo-
The set of critical points of a function is the SE{f,S) = {z € S| || fllc = |f (@]}
The sign ofz # 0 is defined by sgizj = z|z|~* (sgn(0)=0). Now we have the following

characterization of best approximations (cf., [13]).

Lemma 2.2 The function Wis a best approximation of f if and only if there are distinct
points z, ..., z € E(f —w*, S), and positive numbeks, ..., o; such thatforalw € W

t
Y aisgnf(z) — w*(z)w(z)=0,
i=1

where t< n+ 1.
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After substitution ofp(0) = 1 our problem is to find

min max|pm9 +oo o+ pab
Pm.-, P11

sowe wantabestapproximation ofthe functiehonS = {6, ..., 6, } fromW ={w | w(2)

= pmZ™ + --- + p12}, which is anm-dimensional subspace 6fS). It follows that p(z)

is the unique optimal polynomial if and only if there azpe {6 | i = 1,...,r}, j =
1,...,m+1 suchthalz; <z < --- < Zm1, and p(z;) is alternatingt max{| p(&)| | i

# 0} (cf., [13, Theorem 2.8 and 2.10]). It also follows that we must have- 6, and
Zm+1 = 6. Form = 2, where we have to find the optimal quadratic polynomial, it is easily
verified that we have to take = 6, the Laplace eigenvalue cIosest%tCBl +6;). Inthe
general case it follows (cf., [2, Theorem 7.1.6]) that there is a sUbsét1, ..., r} of size

m + 1 such that the polynomigl given by

zZ— 06
p@=cr Y ] oA

JeT ieT\{j

wherecr is such thatp(0) =1, is the unique optimal polynomial. Now I&, be the set
of polynomials of degrem such thafp(0) = 1, then it follows thatcr | = minpep, Max o

14CHIE

If T is an arbitrary subset ¢f, ..., r} of sizem+ 1, then

-1
fer'| = min 2?*"’”‘”‘(2 [l WJ—I> |

JET i€T/\{j

Now it follows that|cr| < |cr]|, and sdcr| < maxr 1
find that the required minimum equals

-1
O;
T'C{L...r LT |=m+1 it |91 6

3. The number of vertices at maximal distance and distance two

LT j=m+1 [C| < |ct]. Thus we

.....

Itis well known that if a graph has+ 1 distinct adjacency eigenvalues, then it has diameter
at mostr. The same holds for the Laplace spectrum, and this result can be derived quite
easily from Theorem 2.1. Using the results of the previous section we find a bound on the
number of vertices that are at maximal distanéem a fixed vertex. ByG; we denote the
distance graph ofG.

Theorem 3.1 Let G be a connected graph on v vertices with-rl distinct Laplace
eigenvalue® = 6y < 6; < --- < 6;. Let x be an arbitrary vertex, and let be the number
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of vertices at distance r from x. Then

v 0
k < —, Whel’ey = _—
2 Z l—[ |9j — 6

1+ 75 170 i40,]

If equality holds for every vertex, then. @& a strongly regular(v, k., A, 1) graph. If G
is a distance-regular graph with diameter r such that i& a strongly regular(v, k;, A, 1)
graph then the bound is tight for every vertex.

Proof: Take X = {x}, and letY be the set of vertices at distancdrom x. Now take

the optimal polynomial of degree— 1 given in the previous section, with= |cr|~* and
apply Theorem 2.1, then the bound follows. If the bound is tight, then it follows that in the
proof of Theorem 2.1 we have tight interlacing, and so the partitiokl a8 regular (cf.,
[11]). Therefore,

a :all @ 0"\, 1

PQ=|al : Sy @ S } v—1—k,

0 : S, I S/} ke

wherea = 1/(v — k), is regularly partitioned witts;, and Sy, having the same row sums.
If the bound is tight for every vertex, then it follows that- (v — k) p(Q) is the adjacency
matrix of G,, and that this graph is a strongly regulark., A, A) graph.

On the other hand, i€ is a distance-regular graph with diametesuch thatG; is a
strongly regulaxv, k;, A, A) graph then we shall show that

1

v
k= = wherey " = max| p(!
for some polynomiap of degreer — 1 such thatp(0) = 1. Because of the optimality of
the bound this suffices to prove that the bound is tight for every vertex. Now assun@ that
has degreg, then its Laplace eigenvalu@sand its adjacency eigenvalugsare related by
A = k—6,. Furthermore, lefA be the adjacency matrix @&, and letA; be the adjacency
matrix of the distance graphG; of G. SinceG is distance-regular, there is a polynomial
g of degree — 1 such that

aA =C-A)/v-k)=A_1+-+A+D/v—k),

and thermy(k) = 1. Now, letp(z) = q(k — z). We have thaG; is a strongly regulafv, k;,
A, A) graph, and such a graph has (adjacency) eigenvijuasd+./k- (v — k) /(v — 1).
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From this it follows that

. N= | — &
ﬂ‘l%x'p(@')' - r&a(l)xlq()»l)l Ve -D-k)’

which proves the claim. m]

A side result of Theorem 3.1 is thatif< 1+ y, so thati, < 1, then the diameter d&
is at mostr — 1, which was already found by van Dam and Haemers [6, Theorem 2.5].

Examples of graphs for which the bound is tight for every vertex are given by the two-
antipodal distance-regular graphs, with= 1 (G, being a disjoint union of edges). Other
examples are given by the Odd graph on seven pdigts (8) and the generalized hexagons
GH(q, q)(ks=0®). If Gis a connected regular graph with four eigenvalues then we can
also prove that a tight bound for every vertex implies distance-regularity, but we shall prove
this in more generality in the next section.

Remark By takingr = 2 in Theorem 3.1, we see that the bound is tight for strongly
regular(v, k, A, A’ 4+ 2) graphs. Using results from [7, Theorem 2.1], it is not hard to show
that for any connected graph with three Laplace eigenvalues the bound also follows from
the parameter restrictions of such a graph. Itis interesting to note that the bound is tight for
somevertex if and only ifG comes from a polarity in a symmetric design with at least one
absolute point. The absolute points correspond to the vertices for which the bound is tight.
For graphs with four eigenvalues, the upper boundkfogives a lower bound foko,
the number of vertices at distance 2 fromsincek, = v — 1 — dy — ks, wheredy is the
vertex degree of. This lower bound generalizes to graphs with more than four eigenvalues,
since we can bound the number of vertiggs at distance at least three, using the optimal
guadratic polynomial. B¥51 » we denote the graph on the same vertice& ashere two
vertices are adjacent if they have distance 1 or@in

Theorem 3.2 Let G be a connected graph on v vertices witlh A > 4 distinct Laplace
eigenvalue® = 6y < 0; < --- < 6, and letd, be an eigenvalue unequal &g andé;,
which is closest t(% (61 + 6;). Let x be an arbitrary vertex with vertex degreg dnd let
ko x be the number of vertices at distar@&om x. Then

v 6,
kgyxzu—l—dx—l+ s wherey=2 l_[ N

- j=Lhr i=Lhr 10 — 6il
i#]

If equality holds for every vertex, then the distaricer 2 graph G, , of G is a strongly
regular (v, dy + ko x, A, A" + 2) graph. If G is a distance-regular graph such that the
distancel or 2 graph G, ; of G is a strongly regulafv, k + ko, 1, 2" 4+ 2) graph then the
bound is tight for every vertex.

Proof: The proof is similar to the proof of Theorem 3.1. Here equality for every vertex
implies that “the distance at least 3 grapghs.. is a strongly regulatv, ks, A, 1) graph,
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and soGy  is a strongly regulatv, dy + ko x, A, A" + 2) graph. Note that in that cagg
must have diameter 3 or 4. O

Examples for = 3 for which this bound is tight were already given above. We do not
know of any graph with more than four eigenvalues for which the bound is tight.

4. Special subsets in graphs with four eigenvalues

In a graph with four eigenvalues being at distance 3 is the same as being nonadjacent anc
having no common neighbours. The purpose of this section is to generalize the bound on
the number of verticels; at distance 3 from a vertexto a bound on the number of vertices
nz that are not adjacent toand have. common neighbours witk. Here the reader should
keep in mind the analogue of the generalization of distance-regular graphs with diameter
three to three-class association schemes. The question of boumdiras raised after we
characterized, among the regular graphs with four eigenvalues, the graphs in a three-clas:
association scheme as those graphs for whiglequalsg(x, u), for every vertex, for
someu. Hereg(Z, w) is a (rather complicated) function of the spectriiof the graph
andu [5]. This result in fact is a generalization of a characterization of distance-regular
graphs with diameter 3 [8]. Furthermore, it turned out thag(E, 1) is a nonnegative
integer thems is at mostg(X, ). We think that the integrality condition can be dropped,
but are (so far) unable to prove so. Still, our bound is close, giving some evidence for the
conjecture.

Let us defines,, as the graph on the same vertice§&asvhere two vertices are adjacent
if in G they are not adjacent, and hayecommon neighbours. Leg-,, be the graph
with two vertices being adjacent if iB they are not adjacent, and do not haveommon
neighbours.

Theorem 4.1 Let G be a connected graph on v vertices with four distinct Laplace eigen-
valuesO = 0y < 61 < 6, < 63. Letu be a nonnegative integer, let x be an arbitrary
vertex, and let pbe the number of vertices that are not adjacent to x and hagemmon
neighbours with x. Then

2(9193 - v/,L) .
+1 if v <616, Or O03 <vu,
(03 — 02) (02 — 61)
v 2(6203 — vu) .
Nz < , wherey = +1 if 0100 < v <0105,
1+ 2 Y= 65— 0061 — 02) ' '
2(9192 - v/L) .
+1 if 6105 < v < 60203.
(62 — 03) (03 — 61)

If equality holds for every vertex, then,Gs a strongly regular(v, nz, A, A) graph. If G is
regular then equality holds for every vertex if and only if G, &d G-, form a three-class
association scheme and,Gs a strongly regularv, nz, A, 1) graph.
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Proof: Here we use a slight variation to the interlacing technique we used before. Let
pP(z) = p2Z% + p1z + po be a quadratic polynomial such that0) = 1+ povu. Let Q
be the Laplace matrix oB, then(p(Q? — 1J) + p1Q + po! )xy = 0 for all verticesy
that are not adjacent toand haveu common neighbours witk. If we replacep(Q) by
P2(Q?% — 1J) 4+ p1Q + pol in the proof of Theorem 2.1, then the matik has row and
column sums equal to 1, and spectrfiril} U {+p(6;) | i = 1, 2, 3} with corresponding
multiplicities. Now it follows that
v
ng < —, Wwherey?
1+5

= max|p(#)|.

So here the sharpest bound is obtained by minimizing{hpaé&)| | i # 0} over all
polynomialsp(z) = p.z? + p1z + po such thatp(0) = 1 + povu. Foru = 0 we know

the solution: there is a unique optimal polynommland p(61) = —p(62) = p(63). In
general the situation is more complicated. We shall see that the polynomial is not always
unigue anymore. However, we can use Lemma 2.2 to optimize our bound explicitly. Note
that in order to characterize the case of equality, we need to be sure that the bound we find
is indeed derived with the best possible polynomial. After substitutige(Of = 1+ povu

our problem becomes to find

i 67 6 +1
min max | pz(6° + vi) + paéh +

’

so we are looking for a best approximation of the functiehon S = {6y, 6,, 63} from
W = {w | w(2) = po(Z? + vu) + p1z}, which is a two-dimensional subspace@(sS).
Now suppose we have a best approximation(these always exist), and suppose that
it has one critical pointt = 1), say6,. Then it follows from the lemma that for alb €
W, w(6;) = 0, which implies tha®; = 0, a contradiction.
Now suppose that it has two critical poirgsandd;, with 5§ = sgnw*(6;) + 1) and
Sj = sgnw*(#;) + 1). Then there are;, «; > 0 such that for allp, and p; we have

s (p2(67 + vi) + Pabh) + ajsj (p2(67 + vp) + pa6y) = 0.

Settingp, = 0 givesy; s 6; +«;s;0; = 0, from which we find thas = —s;. Then we also
find by settingp; = 0 and using the derived equation, tiaf + v.)6; = (67 + vu)6i,
which is equivalent tau = 6;6;. Using thatw*(6;) + 1 = —(w*(8;) + 1), we find that in
this case the optimal value of our problem equals

16 — ;]
9i+9j '

Note that here the optimal polynomial is not unique, in fact there are infinitely many.
Next, consider the case that all three eigenval@esre critical points withs =
sgnw*(6;) + 1). Then it follows from Lemma 2.2 that there are> 0 such that

M

3
@s (02 +vp) =0, and aisth =0,
i=1 =1
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which is equivalent to
181 (03 — 01) (0103 — viu) + a2 (03 — 62) (6203 — vu) = 0,
a3S3(03 — 01) (0163 — vin) + a2%p(02 — 01) (0102 — vu) = 0.

So it follows that ifvu < 610, or v > 62603, thens; = — s, =s3. Now the optimal
polynomial is uniquely determined giving optimal value

(03 — 02)(02 — 01)
12(6105 — viu) + (03 — 02) (62 — 61)|

Similarly we find that if6160, < viu < 0103, then—s; = 5, = sz and if6103 < v < 0203,
thens; = s, = —s3, giving similar expressions as above for the optimal value. It is no
surprise that the optimal value is a continuous functiop.ofThus we find the “optimal”
bound.

If for every vertex the bound is tight, then it follows (similarly as before) that (v —
N3)(P2(Q? — nd) + p1Q + pol) is the adjacency matrix dB,, and that this graph is a
strongly regularv, ng, A, A) graph. Moreover, if5 is regular, then we have to prove that
we have a three-class association scheme. To show this, suppo& itheggular with
degreek and adjacency matril. Furthermore, lefA; be the adjacency matrix @&,,, and
A, = J — 1 — A— A; be the adjacency matrix d-,. As Q = kI — A, it follows
that Az, A; € (A2, A, 1, J), the adjacency algebra of G. SinceG is regular with four
eigenvalues, it follows tha&® € A. This implies that Az, Ay, A, 1) = A, and soG, G,
andG-,, form a three-class association scheme.

On the other hand, i& is a graph with four eigenvalues such t&tG, andG-,, form
a three-class association scheme @ngdis a strongly regulatv, ns, A, 1) graph then the
bound is tight for every vertex. The proof is similar to the situation in the previous section.
Here we have to show that the bound is tight for some polynopi@l = p,z% + p1z+ po
such thatp(0) = 1+ pouu. Now there areyp, q; andqp such thattJd — Az)/(v — ng) =
Oo( A% — 1 d) + aqr A+ qol . If we now takeq(z) = goz% + 12+ Qo, then it follows by taking
row sums in the matrix equation thatk) = 1+ v, and by takingp(z) = q(k — z), we
find the required polynomiainote thatp, = qy). It gives a tight bound, which is proven
similarly as in the proof of Theorem 3.1. m|

Examples of graphs for which the bound is tight, anek 0, are given by the line graph
of the Petersen graptx = 1, n3 = 8), the Johnson graph(7, 3) (u = 4, n3 = 18), the
distance two graph of the generalized hexaGth(q, q) (u =9+ 9> —q—1,n3 =q°)
and several graphs in the association schemes that are obtained by Hoffman-colorings in
strongly regulav, ns, A, A) graphs (cf., [5]).

The bound, in general, does not prove the conjecture mentioned in the beginning of
this section. For example, suppose we have a regular graph with spe@Bidniv/5]’,
[—-1]%, [—+/5]"}. After rounding the numbers, the bound gives< 2, 15, 3, 1, 0, O for
uw =012 3, 4,5, respectively. The conjectured bounds, however, afel2, 0, 0, 0,
respectively. There is precisely one graph with the given spectrum (cf., [9]), for which
every vertex hag; = 1,12, 1, 0, 0, 0, respectively.
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5. Equally large sets at maximal distance

In case we have two equally large sets at maximal distance, we derive the following from
Theorem 2.1.

Theorem 5.1 Let G be a connected graph on v vertices with-rl distinct Laplace
eigenvalue® = 6y < 61 < --- < 6. Let X; and X be sets of vertices of size such that
the distance between any vertex gfafd any vertex of Xisr. Then

v 0
K ,  Wherey = .
1+y ;JZO[] 0] — 6]

IA

If the bound is tight then again we must have tight interlacing in Theorem 2.1, and so the
partition of M is regular. It now follows that the partition qf( Q) induced by the partition
of the vertices intoX;, X, and the set of remaining vertices is regular with quotient matrix

£~ 1--X 0

v—K v—K
K 1— 2« K
v—K v—Kk  V—kK

0 1--£ £

V—K V—K

If we have only three Laplace eigenvalues then Theorem 5.1 states that if we have two sets
of vertices of size’, such that there are no edges between the two sets, then

1
k' < Ev(l —61/6;).

This bound on the size of two equally large sets of sizgith no edges in between, holds
for any connected graph with+ 1 distinct Laplace eigenvalues. Here we have to use the
first degree polynomigb(z) = 1 — 2z/(61 + 6;). This method was used by Haemers [11]
to find a bound due to Helmberg et al. [12] on the bandwidth of a graph. If the bound on
«’ is tight, then it follows that the Laplace matr@ is regularly partitioned with quotient
matrix

61 —61 0
301—6) 6 —61 3(61—6)
0 —61 61

Thus a necessary condition for tightness is that 6, is an even integer.

Connected graphs with three Laplace eigenvalues have a nice combinatorial characteri-
zation. They are the connected graphs with congtaartdz, that is, any two vertices that
are not adjacent haye common neighbours, and in the complement of the graph any two
vertices that are not adjacent hagveommon neighbours. Moreover, in such a graph only
two vertex degrees can occur, and the regular ones are precisely the strongly regular graph:

(cf, [7]).
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Families of (strongly regular) graphs for which we have a tight bound are given by the
complete muItlpart|te graph$mx.n for evenn, with « < n thetrlangulargraphf(n) for
evenn, withx < (2 ), and the lattice graphis,(n) forevenn withx < (5 1n)2. Checking
the list of feasible parameter sets in [7], it follows that besides the mentloned graphs, the
only connected graphs with three Laplace eigenvalues on at most 27 vertices for which the
bound can be tight are the graphs obtained from polarities(628, 4), 2-(16, 6, 2) and
2-(21,5, 1) designs. A symmetric design has a polarity if and only if it has a symmetric
incidence matrix, and then we consider the graph which has the incidence matrix minus its
diagonal as adjacency matrix. For example, the matrices given by

It 1P OO
It PI OO

I OO I P
D,

1 OO0 PI O J J O
N WIthDG ) ’
I P OO I ' KJ O)(O J>}

D3
PI OO [

OO0 I P 11
OO0 PI 11

D,

where

°=(60) =(1 1) 1=(6 %) = o)

are incidence matrices of 2-(16, 6, 2) designs with a polarity, and we obtain graphs with
Laplace spectrurf{8]™, [4]*>™, [0]*} form = 5, 6, 7, 8, and 9. For these graphs we have

kx < 4, and the bound is tight, as we can see from the matrices. The regular graphs in this
example are the Clebsch graph and the lattice gtajgh). The only other regular graph
obtained from a 2-(16, 6, 2) design with a polarity is the Shrikhande graph, and also here
the bound is tight. The triangular gragh(6) is an (the only regular) example obtained
from a 2-(15, 8, 4) design with a polarity, and it has tight bound 3. Furthermore, there

are precisely two graphs that can be obtained from a polarity in the 2-(21, 5, 1) design (the
projective plane of order 4), and for both graphs the bourd®6 is tight.

Besides the graphs we already mentioned, there are only two other strongly regular graphs
on at most 35 vertices for which the bound is tight: these are two of the three Chang graphs.
These graphs have the same spectrum as and are obtained from switching in the triangula
graphT(8). The one that is obtained from switching with respect to a 4-coclique and the
one that is obtained from switching with respect to an 8-cycle have a tight bound, the one
that is obtained from switching with respect to the union of a 3-cycle and a 5-cycle not.

Next, consider the connected regular graphs with four eigenvalues. Wheaéasea
2-antipodal distance-regular graph with diameter 3, so that it has eigenkaltes; >
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A2 = —1 > Az, With 143 = —k, thenG® J, (the graph with vertex s&f x {1,...,n},
whereV is the vertex set 0B, and where two distinct verticés, i ) and(w, j) are adjacent

if and only if v = w or v andw are adjacent il&) is a connected regular graph with four
eigenvalues (cf., [4]), for which the bound < n is tight. Checking the list of feasible
parameter sets in [9], it follows that the only other examples of regular graphs with four
eigenvalues on at most 30 vertices, for which the bound is tight, are given by the four
incidence graphs of 2-(15, 8, 4) designs, which all have a tight beun. The problem

of finding two sets of size 3 at distance 3 is equivalent to finding three points all of which
are incident with three blocks in the corresponding complementary 2-(15, 7, 3) designs.
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