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Elementary Proof of MacMahon’s Conjecture
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Abstract. Major Percy A. MacMahon's first paper on plane partitions [4] included a conjectured generating
function for symmetric plane partitions. This conjecture was proven almost simultaneously by George Andrews
and lan Macdonald, Andrews using the machinery of basic hypergeometric series [1] and Macdonald employing
his knowledge of symmetric functions [3]. The purpose of this paper is to simplify Macdonald’s proof by providing

a direct, inductive proof of his formula which expresses the sum of Schur functions whose partitions fit inside a
rectangular box as a ratio of determinants.
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By a plane partition, we mean a finite sef?, of lattice points with positive integer co-
efficients, {(i, j, k)} € N3, with the property that ifr,s,t) e Pand1<i <r, 1 <

j <s, 1<k <t,thend, j,k) mustalso be ifP. A plane partition issymmetric if

@, j,k) e Pifand onlyif (j,i, k) € P. MacMahon’s conjecture states that the generating
function for symmetric plane partitions whos@ndy coordinates are less than or equal to
n and whose coordinate is less than or equalrtois given by

n 1— qm—t—2i—1 1— q2(m+i+j—l)

Hl_iqul

—g2i+i-b

1<i<j<n

Our proof parallels that of lan Macdonald [3] which divides into three distinct pieces. We
shall concentrate on the middle piece which is the most difficult and the heart of his argument.
Macdonald derived it as a corollary of a formula for Hall-Littlewood polynomials. Details
of the proof of Macdonald’s formula as well as a generalization may be found in [2]. We
shall prove the middle piece directly by induction on the number of variables.

The first piece of Macdonald’s proof is the observation, known before Macdonald, that
there is a one-to-one correspondence, preserving the number of lattice points, between
bounded symmetric plane partitions asmdumn-strict plane partitions with y coordinates
bounded bym, z coordinates bounded byn2- 1, and in which and non-empty columns
have odd height. The column at positi@n ) is the set of(i, j, k) € P, and the column
height is the cardinality of this set. To say that the partition is column-strict means that if
1 < h < i and the column ath, j) is non-empty, then the column height(at j) must be
strictly greater than the column height(atj).

From this observation and the definition of the Schur functgnas a sum over semi-
standard tableaux of shapeit follows that the generating function for bounded symmetric
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plane partitions is given by

Z S(an 1 n—S,H"q)’

AS{mn}

where the sum is over all partitions, into at mostn parts each of which is less than or
equal tom.

The second piece of Macdonald’s proof is the following theorem which is the result that
we shall prove in this paper.

Theorem For arbitrary positive integers m and n,

det( J -1 Xm+2n—j)

y ooy Xp) = - . 1
Z S)L(Xl X) det(xilil_xiznil) ( )

AS{mn}

The final piece of Macdonald’s proof is to rewrite the right side of Eq. (1) whes
g?"D+1 1 <i < n, as a ratio of products by employing the Weyl denominator formula
for the root systenB,:

detfl! T —x" ) =TJa-x) ] & —xpexix —1. )
i=1

I<i<j=<n

There is a very simple inductive proof of this case of the Weyl denominator formula. Let
Dn(Xq, ..., Xn) = det(xi‘1 2” ') This is a polynomial of degreen2- 1 in x; with roots
atl Xp, ..., Xn, X oy, Xt The coefficient o&k2" 1 is =X - - - Xa Dn_1(Xa, - . . , Xn).

Before we begin the proof of the theorem, we note that it similarly implies Gordon’s
identity ([3], p. 86):

Yos@a o= J]

Ac{mn} 1<i<j=n

1_qm+i+j—1
1— qi+jfl ’

Proof of the Theorem

We shall need the following lemma.

Lemma

an( DA —xox [Ja-xxo [T o —x)

ik 1<i<j<n
i,j#k

=@-x%) [] =% €)

1<i<j<n
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Proof: We verify that this lemma is correct for= 2 or 3 and proceed by induction. The
left side of Eq. (3) is an anti-symmetric polynomial. If we divide itm5i<j5n(xl' —X),
we obtain a symmetric polynomial. Let us denote this ratio by

— Xi Xk
X — X¢

F(Xt, .+ Xn) = X1+ Xn Z(l— xk)xk’ll_[
i#k

As a function ofx;, F is a polynomial of degree at mostdivided by a polynomial of
degreen — 1, and is therefore a linear polynomiabiq. It is easily verified that

F@O, X, ..., Xy =1,
F( X2, .... %) = F(X2, ..., Xn)
=1— XXz Xn. |
We use Eq. (2) to rewrite the right-hand side of the theorem as
det(xijfl _ Xim+2n7j)
[Tima (@ = %) TTaciojen = X6 Xj — 1)

We shall also use the representation of the Schur function as a ratio of determinants:

det(xl)\J"rn—l)
Hl§i<j§n(xi - Xj).

SU(X1, ..oy Xn) =

Combining these, our theorem can be restated as

det(x) ™" — X" J Z det(x" """ J 1_[(1— Xi) 1_[ (% Xj — 1). (4)

AC{m"} I<i<j=n

When we expand these determinants, we see that the theorem to be proved is equivalent tc

Z( 1)I((r)+|S\l_[Xm+2n o) l—lxa(u) 1

ieS i¢S

_ Z(_l)l(a) l_[Xi)»o(iﬁn*U(i) H(l —x) 1—[ (X Xj — 1), (5)
Ao i=1 i=1

1<i<j<n

whereZ (o) is the inversion number. The first sum is over all permutatienand subsets,
S, of {1, ..., n}. The second sum is over partitiohsC {m"} and permutations.

Our proof will be by induction om. It is easy to check that this equation is correct for
n=1 or 2. Let RHS denote the right-hand side of Eq. (5). We shall sum over all possible
values ofx, andk = o~1(n). Giveni, andk, we subtract,, from each part irk to get
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A C {(m— Ay"1). The permutatiorw is uniquely determined bl and a one-to-one
mappings’: {1, ..., n}\{k} — {1,...,n — 1}. We can express the right-hand side of
Eq. (5) as:

RHS= )" > (—1)™*(@ — x)x g+ ) P [ % — D)

im0 k=1 ik
. 3 H(=D=0"()
x Z( DI TT%"" ]_[(1—X.) [T oxix-0.
i £k I<i<j=n
|7k i, j 2k

We apply the induction hypothesis to the inner sum and then sumiqver

RHS = Z( DML —x0) [ Joa % — D

i #k
1 2n—2—0 ) ()1 11—[ B m+1
x 1 Z(o)+|S| Xm+ +2n—2—0o(l x° | ieS | ,
2 v [
ieS ieS ie
where the inner sum is over all one-to-one mappindgsom {1, ..., n}\{k} — {1,...,

n— 1} and subsetSof {1, ..., n}\{k}. We useSto denote the complement &fin {1, ...,

ni\{k}.
It is convenient at this point to replac** by t; x*~2" on each side of the equation to
be proved. Our theorem is now seen to be equivalent to

Z( 1)I(a)+|8\1_[tl 1= U(I)l_[xa(l) 1

ieS igS

—Z( D™= x0 [ [0 % — D)

i#k
1—TJiusti Nl
1)Z@)+S t X—U(I) XG(I) igst A ' 6
XZ< ) H [ o (6)
ieS ieS ¢S

The sum orv on the right-hand side is a Vandermonde determinant-inl variables.
We replace it with the appropriate product and then interchange the summatwbith
must be a proper subset(f, . .., n}, andk, which cannot be an element 8f

_ 1-T1I tixiz_2n
RHS = Z ( DS T (ﬁ)

Sc{y,..., ieS igS
x Z(—D”*"(l— xox [Toax =D [T (4" -
kes ik i<j

ij#k
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whereg; = —1ifi € S,=+1ifi € S. We rewrite

D™ e — D = [Joax — D[ =% %0

ik i<k i~k
=[x =D ]]d-xx0
i<k i>k
1¢S 1¢S
T T - TT 067 -,
= 2

and then factor all terms that involwg, i € S, out of the sum ok. The sum ork ¢ Scan
now be evaluated using the lemma:

RHS= SCZ n}(_1)|3\ [Tt <1 ~TT¢ Xi22n> T & -x)

{1,..., ieS igS 1<i<j<n

= Z(_1)1<a)+|5\ l_[ti Xil—o(h 1—[ Xia(i>—1
So

ieS igS

-ty Z(—l)ﬂ"”'s' l—[ Xil—a<i> l—[ Xiﬁ(i)-‘rl—Zn’

So ieS igS

where both sums are over pliopersubsetsSof {1, ..., n}. Equation (6)—which we have
seen is equivalent to the theorem—now follows from the observation that when we sum

over all subset§of {1,...,n},

Z(_l)I(U)HS\ l—[ Xil—a(i) l_[ Xia(i)+1—2n _ del(Xij+172n _ Xilfj) -0

So ieS igS
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