Elementary Proof of MacMahon's Conjecture

DAVID M. BRESSOUD
bressoud@macalester.edu

Dept. of Mathematics and Computer Science, MacAlester College, St. Paul, MN 55105

Received August 20, 1996; Revised February 10, 1997

Abstract

Major Percy A. MacMahon's first paper on plane partitions [4] included a conjectured generating function for symmetric plane partitions. This conjecture was proven almost simultaneously by George Andrews and Ian Macdonald, Andrews using the machinery of basic hypergeometric series [1] and Macdonald employing his knowledge of symmetric functions [3]. The purpose of this paper is to simplify Macdonald's proof by providing a direct, inductive proof of his formula which expresses the sum of Schur functions whose partitions fit inside a rectangular box as a ratio of determinants.

Keywords: plane partition, symmetric plane partition, Schur function

By a plane partition, we mean a finite set, \mathcal{P}, of lattice points with positive integer coefficients, $\{(i, j, k)\} \subseteq \mathbb{N}^{3}$, with the property that if $(r, s, t) \in \mathcal{P}$ and $1 \leq i \leq r, 1 \leq$ $j \leq s, 1 \leq k \leq t$, then (i, j, k) must also be in \mathcal{P}. A plane partition is symmetric if $(i, j, k) \in \mathcal{P}$ if and only if $(j, i, k) \in \mathcal{P}$. MacMahon's conjecture states that the generating function for symmetric plane partitions whose x and y coordinates are less than or equal to n and whose z coordinate is less than or equal to m is given by

$$
\prod_{i=1}^{n} \frac{1-q^{m+2 i-1}}{1-q^{2 i-1}} \prod_{1 \leq i<j \leq n} \frac{1-q^{2(m+i+j-1)}}{1-q^{2(i+j-1)}} .
$$

Our proof parallels that of Ian Macdonald [3] which divides into three distinct pieces. We shall concentrate on the middle piece which is the most difficult and the heart of his argument. Macdonald derived it as a corollary of a formula for Hall-Littlewood polynomials. Details of the proof of Macdonald's formula as well as a generalization may be found in [2]. We shall prove the middle piece directly by induction on the number of variables.

The first piece of Macdonald's proof is the observation, known before Macdonald, that there is a one-to-one correspondence, preserving the number of lattice points, between bounded symmetric plane partitions and column-strict plane partitions with y coordinates bounded by m, z coordinates bounded by $2 n-1$, and in which and non-empty columns have odd height. The column at position (i, j) is the set of $(i, j, k) \in \mathcal{P}$, and the column height is the cardinality of this set. To say that the partition is column-strict means that if $1 \leq h<i$ and the column at (h, j) is non-empty, then the column height at (h, j) must be strictly greater than the column height at (i, j).

From this observation and the definition of the Schur function, s_{λ}, as a sum over semistandard tableaux of shape λ, it follows that the generating function for bounded symmetric
plane partitions is given by

$$
\sum_{\lambda \subseteq\left\{m^{n}\right\}} s_{\lambda}\left(q^{2 n-1}, q^{2 n-3}, \ldots, q\right)
$$

where the sum is over all partitions, λ, into at most n parts each of which is less than or equal to m.

The second piece of Macdonald's proof is the following theorem which is the result that we shall prove in this paper.

Theorem For arbitrary positive integers m and n,

$$
\begin{equation*}
\sum_{\lambda \subseteq\left\{m^{n}\right\}} s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\frac{\operatorname{det}\left(x_{i}^{j-1}-x_{i}^{m+2 n-j}\right)}{\operatorname{det}\left(x_{i}^{j-1}-x_{i}^{2 n-j}\right)} . \tag{1}
\end{equation*}
$$

The final piece of Macdonald's proof is to rewrite the right side of Eq. (1) when $x_{i}=$ $q^{2(n-i)+1}, 1 \leq i \leq n$, as a ratio of products by employing the Weyl denominator formula for the root system B_{n} :

$$
\begin{equation*}
\operatorname{det}\left(x_{i}^{j-1}-x_{i}^{2 n-j}\right)=\prod_{i=1}^{n}\left(1-x_{i}\right) \prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)\left(x_{i} x_{j}-1\right) . \tag{2}
\end{equation*}
$$

There is a very simple inductive proof of this case of the Weyl denominator formula. Let $D_{n}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det}\left(x_{j}^{i-1}-x_{j}^{2 n-i}\right)$. This is a polynomial of degree $2 n-1$ in x_{1} with roots at $1, x_{2}, \ldots, x_{n}, x_{2}^{-1}, \ldots, x_{n}^{-1}$. The coefficient of $x_{1}^{2 n-1}$ is $-x_{2} \cdots x_{n} D_{n-1}\left(x_{2}, \ldots, x_{n}\right)$.

Before we begin the proof of the theorem, we note that it similarly implies Gordon's identity ([3], p. 86):

$$
\sum_{\lambda \subseteq\left\{m^{n}\right\}} s_{\lambda}\left(q^{n}, q^{n-1}, \ldots, q\right)=\prod_{1 \leq i \leq j \leq n} \frac{1-q^{m+i+j-1}}{1-q^{i+j-1}}
$$

Proof of the Theorem

We shall need the following lemma.

Lemma

$$
\begin{align*}
& x_{1} \cdots x_{n} \sum_{k=1}^{n}(-1)^{k-1}\left(1-x_{k}\right) x_{k}^{-1} \prod_{i \neq k}\left(1-x_{i} x_{k}\right) \prod_{\substack{1 \leq i<j \leq n \\
i, j \neq k}}\left(x_{j}-x_{i}\right) \\
& \quad=\left(1-x_{1} \cdots x_{n}\right) \prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right) . \tag{3}
\end{align*}
$$

Proof: We verify that this lemma is correct for $n=2$ or 3 and proceed by induction. The left side of Eq. (3) is an anti-symmetric polynomial. If we divide it by $\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)$, we obtain a symmetric polynomial. Let us denote this ratio by

$$
F\left(x_{1}, \ldots, x_{n}\right)=x_{1} \cdots x_{n} \sum_{k=1}^{n}\left(1-x_{k}\right) x_{k}^{-1} \prod_{i \neq k} \frac{1-x_{i} x_{k}}{x_{i}-x_{k}}
$$

As a function of x_{1}, F is a polynomial of degree at most n divided by a polynomial of degree $n-1$, and is therefore a linear polynomial in x_{1}. It is easily verified that

$$
\begin{aligned}
F\left(0, x_{2}, \ldots, x_{n}\right) & =1 \\
F\left(1, x_{2}, \ldots, x_{n}\right) & =F\left(x_{2}, \ldots, x_{n}\right) \\
& =1-x_{2} x_{3} \cdots x_{n}
\end{aligned}
$$

We use Eq. (2) to rewrite the right-hand side of the theorem as

$$
\frac{\operatorname{det}\left(x_{i}^{j-1}-x_{i}^{m+2 n-j}\right)}{\prod_{i=1}^{n}\left(1-x_{i}\right) \prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)\left(x_{i} x_{j}-1\right)} .
$$

We shall also use the representation of the Schur function as a ratio of determinants:

$$
s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\frac{\operatorname{det}\left(x_{i}^{\lambda_{j}+n-i}\right)}{\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)} .
$$

Combining these, our theorem can be restated as

$$
\begin{equation*}
\operatorname{det}\left(x_{i}^{j-1}-x_{i}^{m+2 n-j}\right)=\sum_{\lambda \leq\left\{m^{n}\right\}} \operatorname{det}\left(x_{i}^{\lambda_{j}+n-j}\right) \prod_{i=1}^{n}\left(1-x_{i}\right) \prod_{1 \leq i<j \leq n}\left(x_{i} x_{j}-1\right) \tag{4}
\end{equation*}
$$

When we expand these determinants, we see that the theorem to be proved is equivalent to

$$
\begin{align*}
& \sum_{\sigma, S}(-1)^{\mathcal{I}(\sigma)+|S|} \prod_{i \in S} x_{i}^{m+2 n-\sigma(i)} \prod_{i \notin S} x_{i}^{\sigma(i)-1} \\
& \quad=\sum_{\lambda, \sigma}(-1)^{\mathcal{I}(\sigma)} \prod_{i=1}^{n} x_{i}^{\lambda_{\sigma(i)}+n-\sigma(i)} \prod_{i=1}^{n}\left(1-x_{i}\right) \prod_{1 \leq i<j \leq n}\left(x_{i} x_{j}-1\right), \tag{5}
\end{align*}
$$

where $\mathcal{I}(\sigma)$ is the inversion number. The first sum is over all permutations, σ, and subsets, S, of $\{1, \ldots, n\}$. The second sum is over partitions $\lambda \subseteq\left\{m^{n}\right\}$ and permutations.

Our proof will be by induction on n. It is easy to check that this equation is correct for $n=1$ or 2 . Let RHS denote the right-hand side of Eq. (5). We shall sum over all possible values of λ_{n} and $k=\sigma^{-1}(n)$. Given λ_{n} and k, we subtract λ_{n} from each part in λ to get
$\lambda^{\prime} \subseteq\left\{\left(m-\lambda_{n}\right)^{n-1}\right\}$. The permutation σ is uniquely determined by k and a one-to-one mapping $\sigma^{\prime}:\{1, \ldots, n\} \backslash\{k\} \rightarrow\{1, \ldots, n-1\}$. We can express the right-hand side of Eq. (5) as:

$$
\begin{aligned}
\text { RHS }= & \sum_{\lambda_{n}=0}^{m} \sum_{k=1}^{n}(-1)^{n+k}\left(1-x_{k}\right) x_{k}^{-1}\left(x_{1} \cdots x_{n}\right)^{\lambda_{n}+1} \prod_{i \neq k}\left(x_{i} x_{k}-1\right) \\
& \times \sum_{\lambda^{\prime}, \sigma^{\prime}}(-1)^{\mathcal{I}\left(\sigma^{\prime}\right)} \prod_{i \neq k} x_{i}^{\lambda_{\sigma^{\prime}(i)}^{\prime}+(n-1)-\sigma^{\prime}(i)} \prod_{\substack{i=1 \\
i \neq k}}^{n}\left(1-x_{i}\right) \prod_{\substack{1 \leq i<j \leq n \\
i, j \neq k}}\left(x_{i} x_{j}-1\right) .
\end{aligned}
$$

We apply the induction hypothesis to the inner sum and then sum over λ_{n} :

$$
\begin{aligned}
\text { RHS }= & \sum_{k=1}^{n}(-1)^{n+k}\left(1-x_{k}\right) \prod_{i \neq k}\left(x_{i} x_{k}-1\right) \\
& \times \sum_{\sigma, S}(-1)^{\mathcal{I}(\sigma)+|S|} \prod_{i \in S} x_{i}^{m+1+2 n-2-\sigma(i)} \prod_{i \in \bar{S}} x_{i}^{\sigma(i)} \frac{1-x_{k}^{m+1} \prod_{i \in \bar{S}} x_{i}^{m+1}}{1-x_{k} \prod_{i \in \bar{S}} x_{i}},
\end{aligned}
$$

where the inner sum is over all one-to-one mappings σ from $\{1, \ldots, n\} \backslash\{k\} \rightarrow\{1, \ldots$, $n-1\}$ and subsets S of $\{1, \ldots, n\} \backslash\{k\}$. We use \bar{S} to denote the complement of S in $\{1, \ldots$, $n\} \backslash\{k\}$.

It is convenient at this point to replace x_{i}^{m+1} by $t_{i} x_{i}^{2-2 n}$ on each side of the equation to be proved. Our theorem is now seen to be equivalent to

$$
\begin{align*}
& \sum_{\sigma, S}(-1)^{\mathcal{I}(\sigma)+|S|} \prod_{i \in S} t_{i} x_{i}^{1-\sigma(i)} \prod_{i \notin S} x_{i}^{\sigma(i)-1} \\
& =\sum_{k=1}^{n}(-1)^{n+k}\left(1-x_{k}\right) \prod_{i \neq k}\left(x_{i} x_{k}-1\right) \\
& \quad \times \sum_{\sigma, S}(-1)^{\mathcal{I}(\sigma)+|S|} \prod_{i \in S} t_{i} x_{i}^{-\sigma(i)} \prod_{i \in \bar{S}} x_{i}^{\sigma(i)} \frac{1-\prod_{i \notin S} t_{i} x_{i}^{2-2 n}}{1-\prod_{i \notin S} x_{i}} . \tag{6}
\end{align*}
$$

The sum on σ on the right-hand side is a Vandermonde determinant in $n-1$ variables. We replace it with the appropriate product and then interchange the summation on S, which must be a proper subset of $\{1, \ldots, n\}$, and k, which cannot be an element of S :

$$
\begin{aligned}
\mathrm{RHS}= & \sum_{S \subset\{1, \ldots, n\}}(-1)^{|S|} \prod_{i \in S} t_{i} x_{i}^{-1} \prod_{i \notin S} x_{i}\left(\frac{1-\prod_{i \notin S} t_{i} x_{i}^{2-2 n}}{1-\prod_{i \notin S} x_{i}}\right) \\
& \times \sum_{k \notin S}(-1)^{n+k}\left(1-x_{k}\right) x_{k}^{-1} \prod_{i \neq k}\left(x_{i} x_{k}-1\right) \prod_{\substack{i<j \\
i, j \neq k}}\left(x_{j}^{\epsilon_{j}}-x_{i}^{\epsilon_{i}}\right),
\end{aligned}
$$

where $\epsilon_{i}=-1$ if $i \in S,=+1$ if $i \notin S$. We rewrite

$$
\begin{aligned}
(-1)^{n+k} \prod_{i \neq k}\left(x_{i} x_{k}-1\right)= & \prod_{i<k}\left(x_{i} x_{k}-1\right) \prod_{i>k}\left(1-x_{i} x_{k}\right) \\
= & \prod_{\substack{i<k \\
i \nless S}}\left(x_{i} x_{k}-1\right) \prod_{\substack{i>k \\
i \notin S}}\left(1-x_{i} x_{k}\right) \\
& \times \prod_{i \in S} x_{i} \prod_{\substack{i<k \\
i \in S}}\left(x_{k}-x_{i}^{-1}\right) \prod_{\substack{i>k \\
i \in S}}\left(x_{i}^{-1}-x_{k}\right),
\end{aligned}
$$

and then factor all terms that involve $x_{i}, i \in S$, out of the sum on k. The sum on $k \notin S$ can now be evaluated using the lemma:

$$
\begin{aligned}
\mathrm{RHS}= & \sum_{S \subset\{1, \ldots, n\}}(-1)^{|S|} \prod_{i \in S} t_{i}\left(1-\prod_{i \notin S} t_{i} x_{i}^{2-2 n}\right) \prod_{1 \leq i<j \leq n}\left(x_{j}^{\epsilon_{j}}-x_{i}^{\epsilon_{i}}\right) \\
= & \sum_{S, \sigma}(-1)^{\mathcal{I}(\sigma)+|S|} \prod_{i \in S} t_{i} x_{i}^{1-\sigma(i)} \prod_{i \notin S} x_{i}^{\sigma(i)-1} \\
& -t_{1} \cdots t_{n} \sum_{S, \sigma}(-1)^{\mathcal{I}(\sigma)+|S|} \prod_{i \in S} x_{i}^{1-\sigma(i)} \prod_{i \notin S} x_{i}^{\sigma(i)+1-2 n},
\end{aligned}
$$

where both sums are over all proper subsets S of $\{1, \ldots, n\}$. Equation (6)—which we have seen is equivalent to the theorem-now follows from the observation that when we sum over all subsets S of $\{1, \ldots, n\}$,

$$
\sum_{S, \sigma}(-1)^{\mathcal{I}(\sigma)+|S|} \prod_{i \in S} x_{i}^{1-\sigma(i)} \prod_{i \notin S} x_{i}^{\sigma(i)+1-2 n}=\operatorname{det}\left(x_{i}^{j+1-2 n}-x_{i}^{1-j}\right)=0 .
$$

References

1. George Andrews, "Plane partitions (I): The MacMahon conjecture," Studies in Foundations and Combinatorics, Advances in Mathematics Supplementary Studies 1 (1978), 131-150.
2. Jacques Désarménien, "Une generalisation des formules de Gordon et de MacMahon," C.R. Acad. Sci. Paris Series I, Math. 309(6) (1989), 269-272.
3. I.G. Macdonald, Symmetric Functions and Hall Polynomials, second edition, Oxford University Press, 1995.
4. P.A. MacMahon, "Partitions of numbers whose graphs possess symmetry," Trans. Cambridge Phil. Soc. 17 (1898-1899), 149-170.
