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Abstract. Major Percy A. MacMahon’s first paper on plane partitions [4] included a conjectured generating
function for symmetric plane partitions. This conjecture was proven almost simultaneously by George Andrews
and Ian Macdonald, Andrews using the machinery of basic hypergeometric series [1] and Macdonald employing
his knowledge of symmetric functions [3]. The purpose of this paper is to simplify Macdonald’s proof by providing
a direct, inductive proof of his formula which expresses the sum of Schur functions whose partitions fit inside a
rectangular box as a ratio of determinants.
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By a plane partition , we mean a finite set,P, of lattice points with positive integer co-
efficients,{(i, j, k)} ⊆ N3, with the property that if(r, s, t) ∈ P and 1≤ i ≤ r, 1 ≤
j ≤ s, 1 ≤ k ≤ t , then(i, j, k) must also be inP. A plane partition issymmetric if
(i, j, k) ∈ P if and only if ( j, i, k) ∈ P. MacMahon’s conjecture states that the generating
function for symmetric plane partitions whosex andy coordinates are less than or equal to
n and whosez coordinate is less than or equal tom is given by

n∏
i=1

1− qm+2i−1

1− q2i−1

∏
1≤i< j≤n

1− q2(m+i+ j−1)

1− q2(i+ j−1)
.

Our proof parallels that of Ian Macdonald [3] which divides into three distinct pieces. We
shall concentrate on the middle piece which is the most difficult and the heart of his argument.
Macdonald derived it as a corollary of a formula for Hall-Littlewood polynomials. Details
of the proof of Macdonald’s formula as well as a generalization may be found in [2]. We
shall prove the middle piece directly by induction on the number of variables.

The first piece of Macdonald’s proof is the observation, known before Macdonald, that
there is a one-to-one correspondence, preserving the number of lattice points, between
bounded symmetric plane partitions andcolumn-strict plane partitions with y coordinates
bounded bym, z coordinates bounded by 2n − 1, and in which and non-empty columns
have odd height. The column at position(i, j ) is the set of(i, j, k) ∈ P, and the column
height is the cardinality of this set. To say that the partition is column-strict means that if
1≤ h < i and the column at(h, j ) is non-empty, then the column height at(h, j )must be
strictly greater than the column height at(i, j ).

From this observation and the definition of the Schur function,sλ, as a sum over semi-
standard tableaux of shapeλ, it follows that the generating function for bounded symmetric
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plane partitions is given by∑
λ⊆{mn}

sλ(q
2n−1,q2n−3, . . . ,q),

where the sum is over all partitions,λ, into at mostn parts each of which is less than or
equal tom.

The second piece of Macdonald’s proof is the following theorem which is the result that
we shall prove in this paper.

Theorem For arbitrary positive integers m and n,

∑
λ⊆{mn}

sλ(x1, . . . , xn) =
det

(
x j−1

i − xm+2n− j
i

)
det

(
x j−1

i − x2n− j
i

) . (1)

The final piece of Macdonald’s proof is to rewrite the right side of Eq. (1) whenxi =
q2(n−i )+1, 1 ≤ i ≤ n, as a ratio of products by employing the Weyl denominator formula
for the root systemBn:

det
(
x j−1

i − x2n− j
i

) = n∏
i=1

(1− xi )
∏

1≤i< j≤n

(xi − xj )(xi x j − 1). (2)

There is a very simple inductive proof of this case of the Weyl denominator formula. Let
Dn(x1, . . . , xn) = det(xi−1

j − x2n−i
j ). This is a polynomial of degree 2n−1 in x1 with roots

at 1, x2, . . . , xn, x−1
2 , . . . , x−1

n . The coefficient ofx2n−1
1 is−x2 · · · xn Dn−1(x2, . . . , xn).

Before we begin the proof of the theorem, we note that it similarly implies Gordon’s
identity ([3], p. 86):

∑
λ⊆{mn}

sλ(q
n,qn−1, . . . ,q) =

∏
1≤i≤ j≤n

1− qm+i+ j−1

1− qi+ j−1
.

Proof of the Theorem

We shall need the following lemma.

Lemma

x1 · · · xn

n∑
k=1

(−1)k−1(1− xk)x
−1
k

∏
i 6=k

(1− xi xk)
∏

1≤i< j≤n
i, j 6=k

(xj − xi )

= (1− x1 · · · xn)
∏

1≤i< j≤n

(xj − xi ). (3)
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Proof: We verify that this lemma is correct forn = 2 or 3 and proceed by induction. The
left side of Eq. (3) is an anti-symmetric polynomial. If we divide it by

∏
1≤i< j≤n(xj − xi ),

we obtain a symmetric polynomial. Let us denote this ratio by

F(x1, . . . , xn) = x1 · · · xn

n∑
k=1

(1− xk)x
−1
k

∏
i 6=k

1− xi xk

xi − xk
.

As a function ofx1, F is a polynomial of degree at mostn divided by a polynomial of
degreen− 1, and is therefore a linear polynomial inx1. It is easily verified that

F(0, x2, . . . , xn) = 1,

F(1, x2, . . . , xn) = F(x2, . . . , xn)

= 1− x2x3 · · · xn. 2

We use Eq. (2) to rewrite the right-hand side of the theorem as

det
(
x j−1

i − xm+2n− j
i

)∏n
i=1(1− xi )

∏
1≤i< j≤n(xi − xj )(xi x j − 1)

.

We shall also use the representation of the Schur function as a ratio of determinants:

sλ(x1, . . . , xn) =
det
(
x
λ j+n−i
i

)∏
1≤i< j≤n(xi − xj )

.

Combining these, our theorem can be restated as

det
(
x j−1

i − xm+2n− j
i

) = ∑
λ⊆{mn}

det
(
x
λ j+n− j
i

) n∏
i=1

(1− xi )
∏

1≤i< j≤n

(xi x j − 1). (4)

When we expand these determinants, we see that the theorem to be proved is equivalent to∑
σ,S

(−1)I(σ )+|S|
∏
i∈S

xm+2n−σ(i )
i

∏
i 6∈S

xσ(i )−1
i

=
∑
λ,σ

(−1)I(σ )
n∏

i=1

x
λσ(i )+n−σ(i )
i

n∏
i=1

(1− xi )
∏

1≤i< j≤n

(xi x j − 1), (5)

whereI(σ ) is the inversion number. The first sum is over all permutations,σ , and subsets,
S, of {1, . . . ,n}. The second sum is over partitionsλ ⊆ {mn} and permutations.

Our proof will be by induction onn. It is easy to check that this equation is correct for
n= 1 or 2. Let RHS denote the right-hand side of Eq. (5). We shall sum over all possible
values ofλn andk = σ−1(n). Givenλn andk, we subtractλn from each part inλ to get
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λ′ ⊆ {(m− λn)
n−1}. The permutationσ is uniquely determined byk and a one-to-one

mappingσ ′ : {1, . . . ,n}\{k} → {1, . . . ,n − 1}. We can express the right-hand side of
Eq. (5) as:

RHS=
m∑

λn=0

n∑
k=1

(−1)n+k(1− xk)x
−1
k (x1 · · · xn)

λn+1
∏
i 6=k

(xi xk − 1)

×
∑
λ′,σ ′

(−1)I(σ
′)
∏
i 6=k

x
λ′
σ ′(i )+(n−1)−σ ′(i )

i

n∏
i=1
i 6=k

(1− xi )
∏

1≤i< j≤n
i, j 6=k

(xi x j − 1).

We apply the induction hypothesis to the inner sum and then sum overλn:

RHS=
n∑

k=1

(−1)n+k(1− xk)
∏
i 6=k

(xi xk − 1)

×
∑
σ,S

(−1)I(σ )+|S|
∏
i∈S

xm+1+2n−2−σ(i )
i

∏
i∈S̄

xσ(i )i

1− xm+1
k

∏
i∈S̄ xm+1

i

1− xk
∏

i∈S̄ xi
,

where the inner sum is over all one-to-one mappingsσ from {1, . . . ,n}\{k} → {1, . . . ,
n−1} and subsetsSof {1, . . . ,n}\{k}. We useS̄ to denote the complement ofS in {1, . . . ,
n}\{k}.

It is convenient at this point to replacexm+1
i by ti x2−2n

i on each side of the equation to
be proved. Our theorem is now seen to be equivalent to∑

σ,S

(−1)I(σ )+|S|
∏
i∈S

ti x
1−σ(i )
i

∏
i 6∈S

xσ(i )−1
i

=
n∑

k=1

(−1)n+k(1− xk)
∏
i 6=k

(xi xk − 1)

×
∑
σ,S

(−1)I(σ )+|S|
∏
i∈S

ti x−σ(i )i

∏
i∈S̄

xσ(i )i

1−∏i 6∈S ti x2−2n
i

1−∏i 6∈S xi
. (6)

The sum onσ on the right-hand side is a Vandermonde determinant inn− 1 variables.
We replace it with the appropriate product and then interchange the summation onS, which
must be a proper subset of{1, . . . ,n}, andk, which cannot be an element ofS:

RHS=
∑

S⊂{1,...,n}
(−1)|S|

∏
i∈S

ti x
−1
i

∏
i 6∈S

xi

(
1−∏i 6∈S ti x2−2n

i

1−∏i 6∈S xi

)
×
∑
k 6∈S

(−1)n+k(1− xk)x
−1
k

∏
i 6=k

(xi xk − 1)
∏
i< j

i, j 6=k

(
x
ε j

j − xεi
i

)
,
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whereεi = −1 if i ∈ S,= +1 if i 6∈ S. We rewrite

(−1)n+k
∏
i 6=k

(xi xk − 1) =
∏
i<k

(xi xk − 1)
∏
i>k

(1− xi xk)

=
∏
i<k
i 6∈S

(xi xk − 1)
∏
i>k
i 6∈S

(1− xi xk)

×
∏
i∈S

xi

∏
i<k
i∈S

(
xk − x−1

i

)∏
i>k
i∈S

(
x−1

i − xk
)
,

and then factor all terms that involvexi , i ∈ S, out of the sum onk. The sum onk 6∈ Scan
now be evaluated using the lemma:

RHS=
∑

S⊂{1,...,n}
(−1)|S|

∏
i∈S

ti

(
1−

∏
i 6∈S

ti x2−2n
i

) ∏
1≤i< j≤n

(
x
ε j

j − xεi
i

)
=
∑
S,σ

(−1)I(σ )+|S|
∏
i∈S

ti x
1−σ(i )
i

∏
i 6∈S

xσ(i )−1
i

− t1 · · · tn
∑
S,σ

(−1)I(σ )+|S|
∏
i∈S

x1−σ(i )
i

∏
i 6∈S

xσ(i )+1−2n
i ,

where both sums are over allpropersubsetsSof {1, . . . ,n}. Equation (6)—which we have
seen is equivalent to the theorem—now follows from the observation that when we sum
over all subsetsSof {1, . . . ,n},∑

S,σ

(−1)I(σ )+|S|
∏
i∈S

x1−σ(i )
i

∏
i 6∈S

xσ(i )+1−2n
i = det

(
x j+1−2n

i − x1− j
i

) = 0.
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