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Abstract. A Coxeter group element is fully commutative if any reduced expression forcan be obtained

from any other via the interchange of commuting generators. For example, in the symmetric group ofdegree
the number of fully commutative elements is tith Catalan number. The Coxeter groups with finitely many fully
commutative elements can be arranged into seven infinite familje8,,, Dy, En, Fn, Hy andlz(m). For each
family, we provide explicit generating functions for the number of fully commutative elements and the number of
fully commutative involutions; in each case, the generating function is algebraic.
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0. Introduction

A Coxeter group element is said to be fully commutative if any reduced word forcan
be obtained from any other via the interchange of commuting generators. (More explicit
definitions will be given in Section 1 below.)

For example, in the symmetric group of degreehe fully commutative elements are
the permutations with no decreasing subsequence of length 3, and they index a basis for the
Temperley-Lieb algebra. The number of such permutations istth€atalan number.

In [9], we classified the irreducible Coxeter groups with finitely many fully commutative
elements. The result is seven infinite families of such groups; nagl\B,,, Dy, En, Fn,
H, andl>(m). An equivalent classification was obtained independently by Graham [7], and
in the simply-laced case by Fan [4]. In this paper, we consider the problem of enumerating
the fully commutative elements of these groups. The main result (Theorem 2.6) is that for
six of the seven infinite families (we omit the trivial dihedral famiifym)), the generating
function for the number of fully commutative elements can be expressed in terms of three
simpler generating functions for certain formal languages over an alphabet with at most four
letters. The languages in question vary from family to family, but have a uniform description.
The resulting generating function one obtains for each family is algebraic, although in some
cases quite complicated (see (3.7) and (3.11)).

In a general Coxeter group, the fully commutative elements index a basis for a natural
quotient of the corresponding Iwahori-Hecke algebra [7]. (See also [4] for the simply-laced
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case.) For,, this quotient is the Temperley-Lieb algebra. Recently, Fan [5] has shown that
for typesA, B, D, E and (in a sketched proofj, this quotient is generically semisimple,

and gives recurrences for the dimensions of the irreducible representations. (Féf,type

the question of semisimplicity remains open.) This provides another possible approach to
computing the number of fully commutative elements in these cases; namely, as the sum of
the squares of the dimensions of these representations. Interestingly, Fan also shows thar
the sum of these dimensions is the number of fully commutative involutions.

With the above motivation in mind, in Section 4 we consider the problem of enumerating
fully commutative involutions. Inthis case, we show (Theorem 4.3) that for the six nontrivial
families, the generating function can be expressed in terms of the generating functions
for the palindromic members of the formal languages that occur in the unrestricted case.
Again, each generating function is algebraic, and in some cases, the explicit form is quite
complicated (see (4.8) and (4.10)).

In Section 5, we provide asymptotic formulas for both the number of fully commutative
elements and the number of fully commutative involutions in each family. In the Appendix
we provide tables of these numbers up through rank 12.

1. Full commutativity

Throughout this papeiV shall denote a Coxeter group with (finite) generating Set
Coxeter graphi’, and Coxeter matrisM = [M(s, t)]stes. A standard reference is [8].

1.1. Words

For any alphabef, we useA* to denote the free monoid consisting of all finite-length
wordsa = (ay, ..., &) such thatgy € A. The multiplication inA* is concatenation, and
on occasion will be denoted *. Thus (a,b)(b,a) = (a,b) - (b,a) = (a,b,b,a). A
subsequence a@f obtained by selecting terms from a set of consecutive positions is said to
be asubwordor factor of a.

For eachw € W, we defineR(w) C S* to be the set of reduced expressionsiuoi.e.,
the set of minimum-length words= (s, ...,5) € S*suchthatw =s;--- 5.

For each integem > 0 ands, t € S, we define

(s, thm=(s,t,st,...),
—_——
m

and let~ denote the congruence &4 generated by the so-callédaid relations namely,

(S, sty = (L, Sims,t

forall s, t € Ssuch tham(s,t) < oo.

It is well-known that for eachw € W, R(w) consists of a single equivalence class
relative to~. That is, any reduced word far can be obtained from any other by means of
a sequence of braid relations [2, Section IV.1.5].
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1.2. Commutativity classes

Let ~ denote the congruence &igenerated by the interchange of commuting generators;
i.e., (s,t) ~ (t,s) forall s,t € Ssuch thatm(s,t) = 2. The equivalence classes of this
congruence will be referred to asmmutativity classes

Givens = (s, ...,5) € S, theheapof sis the partial order ofl, 2, ..., |} obtained
from the transitive closure of the relations< j for all i < j such thats = s; or
m(s, sj) > 3. Itis easy to see that the isomorphism class of the heap is an invariant of
the commutativity class d. In fact, although it is not needed here, it can be shown that
s~t=(,...,1)ifand only if there is an isomorphism— i’ of the corresponding heap
orderings withs = t;. (for example, see Proposition 1.2 of [9]).

In [9], we definedw € W to befully commutativef R (w) consists of a single commu-
tativity class; i.e., any reduced word farcan be obtained from any other solely by use of
the braid relations that correspond to commuting generators. It is not hard to show that this
is equivalent to the property that for allt € Ssuch tham(s, t) > 3, no member oR (w)
has(s, t), as a subword, whem = m(s, t).

It will be convenient to letWF© denote the set of fully commutative membera/\éf

As mentioned in the introduction, the irreducible FC-finite Coxeter groups (i.e., Coxeter
groups with finitely many fully commutative elements) occur in seven infinite families
denotedA,, B,, Dn, En, Fn, H, andl>(m). The Coxeter graphs of these groups are
displayed in figure 1. It is interesting to note that there are no “exceptional” groups.

For the dihedral groups, the situation is quite simple. Only the longest elemEsitof
fails to be fully commutative, leaving a total ofrf?— 1 such elements.

Henceforth, we will be concerned only with the groups in the remaining six families.

1.3. Restriction

For any words € S* and anyJ C S, let us defines|; to be the restriction ofto J; i.e., the
subsequence formed by the termsdifiat belong toJ. Since the interchange of adjacent
commuting generators imhas either the same effect or no effecsjip, it follows that for
any commutativity clas€, the restriction ofC to J is well-defined.

A family F of subsets oSis completsf for all s € Sthere exists) € F suchthas € J,
and for alls, t € Ssuch tham(s, t) > 3 there exists] € F such thas, t € J.

Proposition 1.1 If F is a complete family of subsets of S, then foisadl € S*, we have
s~ g ifandonlyifs|; ~ s|;forall J € F.

Proof: The necessity of the stated conditions is clear. For sufficiency, supposeishat
the first term ofs. Sinces € J for someJ € F, there must also be at least one occurrence
of sin . We claim that any terrh that precedes the firstin S must commute witls. If

not, then we would havsls1; # S|st), contradicting the fact thad; ~ s|; for someJ
containing{s, t}. Thus we can replacg with somes’ ~ s whose first term is. If we
delete the initiak from sands’, we obtain words that satisfy the same restriction conditions
assands. Hences ~ s’ follows by induction with respect to length. O
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Figure L The irreducible FC-finite Coxeter groups.
2. The generic case

Choose a distinguished generagpre S, and letW = Wy, W5, W, . .. denote the infinite
sequence of Coxeter groups in whidh is obtained from\;_; by adding a new generator
s such thatm(s, s_;) = 3 ands commutes with all other generators 8§ _;. In the
language of [9],{s, ..., S} is said to form a simple branch in the graph\f. For
n>1letS = SU{s,..., s} denote the generating set féf,, and letl", denote the
corresponding Coxeter graph (see figure 2). It will be convenient also & lahd '
denote the corresponding data for the Coxeter gidybtained whers; is deleted from
S. ThusS, = U (s, ..., s} foralln > 0.

Figure 2 A simple branch.
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2.1. Spines, branches, and centers

For anyw € WnFC, we define thespineof w, denotedr (w), to be the paixl, A), wherel
denotes the number of occurrences,ah some (equivalently, every) reduced word for
and A is the subset ofl, ...,| — 1} defined by the property that € A iff there is no
occurrence of, between theéth and(k + 1)th occurrences of; in some (equivalently,
every) reduced word fan. We refer td as thelengthof the spine.

Continuing the hypothesis thatis fully commutative, ford C §, we letw|; denote the
commutativity class d| ; for any reduced word € R (w). (It follows from the discussionin
Section 1.3 that this commutativity class is well-defined.) In particular, for eaehV"C,
we associate the pair

(wl|g-5, wls)-

We refer tow|s,—g, andw|g, as thebranchandcentralportions ofw, respectively.

For example, consider the Coxeter graep We label its generatoral, t, sq, ..., Ss}
in the order they appear in figure 1, so thisy . .., ss} is a simple branch. The heap of a
typical fully commutative member d%; is displayed in figure 3. Its spine (s, {1, 4}), and
the heaps of its central and branch portions are displayed in figure 4.

DefineB, (the “branch set”) to be the set of all commutativity clasBewer the alphabet

S — S ={si...,S ) such that

Figure 3 An F7-heap.
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Figure 4 Center and branch.

(B1) If (s, s) is a subword of some member Bf theni = 1.
(B2) If (s, sj,s) is a subword of some member Bf theni = 1.

Furthermore, given a spine = (I, A), we defineB3,(o) to be the set of commutativity
classesB € B, such that there afleoccurrences of; in every member o8, and

(B3) Thekth and(k + 1)th occurrences af; occur consecutively in some memberff
and only ifk € A.

We claim (see Lemma 2.1) thAt (o) contains the branch portions of every fully commu-
tativew € W, with spines. Note also thas, depends only on, notW.

Similarly, let us defin€ = Cy (the “central set”) to be the set of commutativity classes
C over the alphabe®;, = Ssuch that

(C1) For alls € S, no member o€ has(s, s) as a subword.
(C2) If (s, t)n is a subword of some member®f wherem = m(s, t) > 3, thens; occurs
at least twice in this subword. (In particulaf,= sors; =t.)

In addition, we say that € Cy is compatiblewith the spines = (I, A) if every member
of C hasl occurrences of;, and

(C3) If {s,t)m is a subword of some member Gf wherem = m(s,t) > 3, then this
subword includes thkth and(k + 1)th occurrences of; for somek ¢ A.
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LetC(o) = Cw(o) denote the set of -compatible members af. We claim (again, see
Lemma 2.1) tha€ (o) contains the central portions of evarye W/ with spines. Note
also thatC (o) depends only otV = W, (more precisely, on the Coxeter grapj not the
length of the branch attached to it.

Lemma 2.1 The mappingw — (w|s,—g,, w|s,) defines a bijection

Wr'fc — UBn(a) x Cw (o).

Proof: For all non-commuting pairs,t € S,, we have(s,t} C S or{s,t} C § — S,
so by Proposition 1.1, the commutativity class of anye W'C (and hencaw itself) is
uniquely determined by|s,_s, andw|s . Thus the map is injective.

Now choose an arbitrary fully commutative € W, with spinec = (I, A), and set
B = w|s_g, C = w|g. The defining properties of the spine immediately imply the
validity of (B3). Since consecutive occurrences of ary S, do not arise in ang € R(w),
it follows that for allk > 1, thekth and(k + 1)th occurrences of in s must be separated
by somet € S, such thaim(s,t) > 3. Fors = s, S3, ..., S, the only possibilities fot
are in§, — &; hence (B1) holds. F® € &, the only possibilities fot are inS, so (C1)
could fail only if s = s; and for somék, the only elements separating tktd and(k + 1)th
occurrences of; in sthat do not commute witk; are one or more occurrences®f In
that case, we could choose a reduced wordifsio that the subword running from tkéh
to the(k + 1)th occurrences of; forms a reduced word for a fully commutative element
of the parabolic subgroup isomorphic£g generated bys,, ..., s,}. However, it is easy
to show (e.g., Lemma 4.2 of [9]) that every reduced word for a fully commutative member
of A, has at most one occurrence of each “end node” generator. Thus (C1) holds.

Concerning (B2), (C2) and (C3), suppose tfgis;j, s) occurs as a subword of some
member of the commutativity clag If i > 1, then evens € S, that does not commute
with 5 belongs tds, — . Hence, some reduced word fiormust also contain the subword
(s, sj, s ), contradicting the fact that is fully commutative. Thus (B2) holds. Similarly, if
we suppose thgs, t), occurs as a subword of some membe€ofvherem = m(s, t) > 3
ands, t € S, then again we contradict the hypothesis thas fully commutative unless
s = g 0rt = gy, sinces; is the only member of, that may not commute with some member
of §, — S. In either case, sinces, t),, cannot be a subword of arsye R(w), it follows
thats; occurs at least twice ifs, t), (proving (C2)), and between two such occurrences
of 51, say thekth and(k + 1)th, there must be an occurrencespin s. By definition, this
meank ¢ A, so (C3) holds. Thu8 € B,(o) andC € Cw(o).

Finally, it remains to be shown that the map is surjective. For thisy let (I, A) be a
spine, and choose commutativity clasBes B, (o) andC € Cw(o). Selectrepresentatives
sg € (§ — &)* andsc € S for B andC. SinceS, N (S, — S) = {s1} is a singleton, and
this singleton appears the same number of timesg iandsc (hamely,l times), it follows
that there is a word € S whose restrictions t&, — § andS; aresg andsc, respectively.
We claim thatsis a reduced word for some € WnFC, and hencew — (B, C).

To prove the claim, first consider the possibility that for seene S,, (s, s) occurs as
a subword of some member of the commutativity class. ofn that case, depending on
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whethers € S, the same would be true of eithBror C, contradicting (B1) or (C1). Next
consider the possibility th&s, t),, occurs as a subword of some wag'dn the commutativity
class ofs, wherem = m(s,t) > 3. We must have eithes;t ¢ S, — S ors, t € §, and
hence the same subword appears in some memhkRroofC, respectively. In the former
case, (B2) requires that= s; andm = 3. However the restriction of to S would then
have consecutive occurrencesspf contradicting (C1). In the latter case, (C2) and (C3)
require thats; = sors; = t, and that the subworb, t), includes thekth and(k + 1)th
occurrences of; in s for somek ¢ A. It follows thats, does not occur between these two
instances of; in S, and thus they appear consecutively in the restrictiosi tf S, — S,
contradicting (B3). Hence the claim follows. O

The above lemma splits the enumeration of the fully commutative parts of the Coxeter
groupsWp, Wi, Wy, ... into two subproblems. The first subproblem, which is universal
for all Coxeter groups, is to determine the number of branch commutativity classes with
spineo; i.e., the cardinality of3,(c) for all integersn > 0 and alle. The second
subproblem, which needs only to be done once for each séfjess to determine the
number of central commutativity classes with spine.e., the cardinality o€w (o).

2.2. Spinal analysis

The possible spines that arise in the FC-finite Coxeter groups are severely limited. To make
this claim more precise, suppose thét= Wy, W, . . . is one of the six nontrivial families

of FC-finite Coxeter groups (i.eA, B, D, E, F, or H). The Coxeter graph d can then

be chosen from one of the six in figure 5. For convenience, we havesugethe label for

the distinguished generator previously denaied

Lemma 2.2 If C € Cw is compatible with the spine = (I, A) and W is one of the
Coxeter groups in figurg, then AC {1,1 — 1}.

Proof: Lets e S* be arepresentative &, and towards a contradiction, let us suppose
that A includes somé such that 1< k < | — 1. Note that it follows that thé&th and
(k + Dth occurrences of in sare neither the first nor the last such occurrences.

For the H-graph, property (C1) implies that the occurrences ahdt alternate ins.
Hence, théth and(k + 1)th occurrences of appear in the middle of a subword of the form

t' 4
A o t F o—o—o0
s s u t s
D s E
t
BOiO t Ho—5—o
t s u t s

Figure 5
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(s, t,s,t,s,t,5). In particular, these two occurrencessgiarticipate in a subword of of
the form(t, s, t, s, t), contradicting (C3).

For theF-graph, property (C1) implies that any two occurrences wiust be separated
by at least on¢. On the other hand, the subword between two occurrencesmfst be
a reduced word for some fully commutative member of the subgroup generateduby
(property (C2)), so the occurrencesfndt must alternate, and in the restriction ©f
to {s, t}, thekth and(k + 1)th occurrences o$ appear in the middle of a subword of
the form(s, t, s, t, s, t,s). By (C3), these two occurrences sannot participate in an
occurrence oft, s, t,s) or (s,t,s,t) ins. Hence, the two occurrences osurrounding
thekth (respectively(k + 1)th) occurrence 0§ must be separated by an occurrence.of
However in that casgu, t, u) is a subword of some member of the commutativity class
of s, contradicting (C2).

For theE-graph, at least one @fandt’ must appear between any two occurrences of
(otherwise (C1) is violated), arlubth t andt’ must appear between tkéh and(k + 1)th
occurrences o8, by (C3). On the other hand, property (C3) also implies that the subword
(strictly) between thek — 1)th and(k + 2)th occurrences of in smust be a reduced word
for some fully commutative member @f, a Coxeter group isomorphic #. In particular,
this implies that’ can appear at most once, anat most twice, in this subword. Since we
have already accounted for at least four occurrencésnélt’, we have a contradiction.

This completes the proof, since the remaining three graphs are subgraphs of the preceding
ones. O

2.3. Branch enumeration

The previous lemma shows that for the FC-finite Coxeter groups, we need to solve the
branch enumeration problem (i.e., determine the cardinalif§,65)) only for the spines
o = (I, A) such thatA C {1,1 — 1}. For this, we first introduce the notation

B 2n—-1 2n—1\ 2+1 (2n
" nl -1 n+l+1)  n+l+1\n+I
for the number ofn + |, n — I)-ballot sequencesThat is, B, is the number of orderings
of votes for two candidates so that the winning candidate never trails the losing candidate,
with the final tally beingn + | votes ton — | votes (for example, see [3, Section 1.8]). This

quantity is also the number of standard Young tableaux of strapel, n —I).
Let x(P) = 1if P is true, and O otherwise.

Lemma 2.3 Forintegers nl > 0, we have
|Bn(l, #)| = By,

1Ba(, (1)) = Ba(l. {1 — 1) = Byy_z + Byy_y — (| fz) (I =2).

n+1

1Ba(l, {1, 1 =1} = Bn+1,|—3—2<| B 3> +x(l=n+4 (=3
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Proof:  Fori =0, 1,2, letB] denote the cardinality (o) for o = (I, %), (, {1}) and
{,{1,1 — 1}, respectively. In the case = (I, ¢), the defining properties (B1) and (B3)
for membership oB in B, (o) can be replaced with

(B1) Forl1l<i < n,nomemberoB has(s,s) as a subword.

Itfollows thatfor 1< k < |, thekth and(k+ 1)th occurrence of; in any member oB must
be separated by exactly osg and the total number of occurrencesspmust be — 1,1,
orl +1, according to whether the first and last occurrenceag affe preceded (respectively,
followed) by ans,. Furthermore, the restriction & to {s,, ..., s} is @ commutativity
class with no subwords of the forgs, 5) or (s, Sj, S) except possibly(s,, Sz, ). By
shifting indices { + 1 — i), we thus obtain any one of the member®3qf,(I’, #), where

I” denotes the number of occurrencesof Accounting for the four possible ways thet
ands; can be interlaced (or two, if= 0), we obtain the recurrence

0) 0) (0) :
© _ ) Baluisa+ 2By + BTy, il =1

g = .
" B\ o+ B, if1 =0.

On the other hand, it is easy to show th&{, satisfies the same recurrence and initial
conditions, soBrﬂ) = By,. (In fact, one can obtain a bijection with ballot sequences by
noting that the terms of the recurrence correspond to specifying the last two votes.)

By word reversal, the cases corresponding te (I, {1}) ando = (I, {I| — 1}) are clearly
equivalent, so we restrict our attention to the former. Properties (B1) and (B3) imply that
the restriction of anyB in B, (o) to {s1, S} must then take the form

(*9817511327515527815"'725519*)1

where eachs’ represents an optional occurrencesgf We declare the left side @& to be
openif the above restriction has the for(,, s1, S1, S, . . .), and there is ng; separating
the first two occurrences &f. Otherwise, the left side idlosed

Case |.The left side is open. In this case, if we restiicto {s,, . . ., s4} (and shift indices),
we obtain any one of the members®f_,(l’, {1}), wherel’ =1 or| — 1, according to
whether there is an occurrence sffollowing the lasts;. (If | = 2, then there is no
choice:lI’ =1 = 2 is the only possibility.)

Case Il.The left side is closed. In this case, if we delete the first occurrensefadm B,
we obtain any one of the commutativity classe®&jiil — 1, 9).

The above analysis yields the recurrence

6 6 ©
@ _ ) Batuima+Byly + By, if1 =3
1= _
"B+ By if 1 =2.



FULLY COMMUTATIVE ELEMENTS OF COXETER GROUPS 301

It is easy to verify that the claimed formula fﬁiﬁ,l,) satisfies the same recurrence and the
proper initial conditions.
Foro = (I, {1,1 — 1}), the restriction of anB in B,(o) to {5, S,} takes the form

(%, S1, S1, %, S1, 2, S, - - - 5 S2, S1, St %),

where again each’ represents an optional occurrencesgfn the special cade= 3, this
becomegx, 1, S1, S1, *); by deleting one of the occurrences®f we obtain any one of
the commutativity classes ii, (2, {1}).

Assumingl > 4, we now have not only the possibility that the left sideBoik open (as
in the caser = (I, {1})), but the right side may be open as waetlytatis mutandis

Case |.The leftand right sides d are both open. Inthis case, if we resticto{s,, ..., S}
(and shift indices), we obtain any one of the member§ofi(I — 1, {1,1 — 2}).

Case Il.Exactly one of the left or right sides @ is open. Assuming it is the left side
that is open, if we restridB to {s,, . .., s} (and shift indices), we obtain any one of the
members of3,_1(I’, {1}), wherel’ = | — 1 orl — 2, according to whether there is an
occurrence o$; following the lasts;.

Case Ill.The left and right sides dB are both closed. In this case, if we delete the first and
lasts; from B, we obtain any one of the membersif( — 2, ¥).

The above analysis yield3?; = B and the recurrence
@ _ p@ @ W ©
Bn.I - Bnfl,lfl + 2(anl,lfl + Bnfl,I72) + Bn,|72

for| > 4. Once again, it is routine to verify that the claimed formuIaBﬁ? satisfies the
same recurrence and initial conditions. O

Remark 2.4 The union ofBy(l, ¥) for all | > 0 is the set of commutativity classes
corresponding to the fully commutative members of the Coxeter gByuphose reduced
words do not contain the subwo(si, s, 51). In the language of [10], these are the “fully
commutative top elements” dB,; in the language of [4], these are the “commutative
elements” of the Weyl grou@.,.

Let R(x) denote the generating series for the Catalan numbers. That is,

R0 = T 5 = = S e = 3 ()

=5 nZOn+1 n

Note thatx R(x)?> = R(x) — 1. The following is a standard application of the Lagrange
inversion formula (cf., Exercise 1.2.1 of [6]). We include below a combinatorial proof.

Lemma 2.5 We have} o By ix"=x"Rx)?*! = RX)(R(x) — 1)’
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Proof: A ballot sequence in which A defeats B bywtes can be factored uniquely into

2l + 1 parts by cutting the sequence after the last moment when candidate B trails by
votes,i = 0,1,...,2 — 1. The first part consists of a ballot sequence for a tie vote,
and all remaining parts begin with a vote for A, followed by a ballot sequence for a tie.
After deleting the P votes for A at the beginnings of these parts, we obtain an ordered
(2 + 1)-tuple of ballot sequences for ties, for which the generating serigedg” 1. O

2.4. The generic generating function
To enumerate the fully commutative elements of the fardily= W;, W, ..., all that
remains is the “central” enumeration problem; i.e., determining the cardinaliti&g ©f)

for all spiness of the form described in Lemma 2.2. Setting aside the details of this problem
until Section 3, let us define

Go=ICw(,M|, ci=ICw(, {ID|=ICwd, {I =1D], c2=[Cw(, {11 -1},
and letC; (x) (i = 0, 1, 2) denote the generating series defined by

Co) =) aox, Cil0=Cn+2) GiX 2 Cox)=) cx"
120 1>3 1>3

Although these quantities depend \8h we prefer to leave this dependence implicit.
Theorem 2.6 If W is one of the six Coxeter groups displayed in fighjrere have

Z [WFCIx" = R(X)Co(R(X) — 1) + R(X)?C1(R(X) — 1) + R(X)*C2(R(x) — 1)

n>0
1 X 2 X 1
- C — C Ca(X).
1-x l(1—x) (1 —x)2 2<1—x)+1—x 2(X)

Proof: Successive applications of Lemmas 2.1, 2.2, and 2.3 yield

IWES| =3 " 1Ba(o)] - ICw (o)

=Y 6.oBJ + 1B +2Y caB + Y 6.2.BY
1>0 >3 >3

= ZCl,an,l +C1(Bho+ Bn1—1)
>0

n
+ZZC|.1 (Bm—z + Bnj-1— <I B 2>>

>3

1
+ 30z (Buara=2(] 1) a0 =n4), 2.1)
1>3
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Using Lemma 2.5 to simplify the corresponding generating functiae, obtain

Z |W§C|Xn

n>0

1
=Y G oRO(RX) - D' + c2,1(R<x) + ROO(R(X) — 1) — m)
1>0
|

-2
+2) aga (R(X)(R(X) ~ 12 4 RX)(R(X) — 1)) 1 — X4)

3 (1 _ X)I—l

1—4 14
+Zq2(le(x)(R(x)_1)'3_2 X 4 X )

3 1-x'2 1-x

Bearing in mind thaR(x)? = x (R(x) — 1), it is routine to verify that this agrees with
the claimed expression. O

Remark2.7 Aswe shall see inthe nextsection, for each safigthe generating functions
Ci(x) are rational, so the above result implies that the generating serig&/f6t belongs
to the algebraic function fiel@(R(x)) = Q(+/1 — 4x).

3. Enumerating the central parts

In this section, we determine the cardinalities of the central&ets = C\w (o) for each of

the six Coxeter groupd/ displayed in figure 5. (The reader may wish to review the labeling
of the generators in these cases, and recall that the distinguished gesignatbeen given

the aliass.) We subsequently apply Theorem 2.6, obtaining the generating function for the
number of fully commutative elements W,.

3.1. The A-series
In this cases is a singleton generator, so there is only one commutativity class of each
length. It follows easily from the defining properties that the only central commutativity

classes are those ) and() (the empty word). These are compatible only with the spines
o = (1, ¥) and(0, @), respectively. Thus we have

Cox)=1+x, Ci(X)=Cr(x) =0,
and Theorem 2.6 implies

3 A" = R0? = xH(R(X) — 1),

n>0
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Extracting the coefficient of", we obtain

1 /2n+2
ACl = — , 3.1
A= r2(nra) @

a result first proved in [1, Section 2].

3.2. The B-series

In this case, we hav8 = {s, t}, and the defining properties imply that the central commu-
tativity classes are singletons in which the occurrencesaofdt alternate. It follows that

G o is simply the number of alternatir{g, t}-words in whichs occurd times; namely, 4 (if

| > 0) or 2 (ifl =0). Also, the only alternatingg, t}-word that is compatible with a spine
(I, A) with A £ @is (s, t, s), which is compatible with2, {1}). Thus we have

4x
Co(x) =2+ 1-x Cix)=1, Cox)=0.
After some simplifications, Theorem 2.6 yields

3 BEG X" = x "M@ - 4072~ 1)+ xHR(X) — 1) — Tlx

n>0

Extracting the coefficient af"~1, we obtain

2/(2
B85 = " <n)—1, 3.2)
n+1\n

a result first proved in [10, Section 5].

3.3. The D-series

In this case, a set of representatives for the central commutativity classes consist of the
subwordsofs, t, s, t/, s, t,s,t, ...), togetherwitht, t'), (s, t, t'), (t, t’, s),and(s, t, t’, s).

Of these, only(s, t, t’, s) is compatible with a spind, A) with A £ ¢; the remainder are
compatible only with(l, @) for somel. Among the subwords af, t, s, t, s, t,s,t/,...),

the number with occurrences ofis 8 (if| > 2), 7 (if| = 1), or 3 (ifl = 0). Thus we have

2

8
Co(X) = (1+2x+x2)+<3+7x+ T X

), Cix) =1, Cyx)=0,

and after some simplifications, Theorem 2.6 implies

1

1
Z |Dr'ffz|x“ = ﬁ((l —A)2 1 2%) + X 2(R(X) —1—X) — 1

n>0



FULLY COMMUTATIVE ELEMENTS OF COXETER GROUPS 305

Extracting the coefficient of"~2, we obtain

n+3 /2n
DFC| = -1, 3.3
| n | 2n+2(n) (3:3)

a result obtained previously in [4] and [10, Section 10].

3.4. The H-series

Asin theB-series, the central commutativity classes are the singletons formed by each of the
alternating(s, t}-words. In particular, the value @f(x) is identical to itsB-series version.

The words that are compatible with spines of the far{1}) are those that begin with

(and have at least two occurrencespfand(t, s, t, s); thusc, 1 = 3andg ; = 2forl > 3.

The words compatible with spines of the fofin | —1} are those that both begin and end with
sand have at least four occurrencesigfe.,c3 2 = 0 andg » = 1 forl > 4. Thus we have

4x 4x 1
Co0) =247 GO =347, C00=71—1.

After some simplifications, Theorem 2.6 yields

8 +4—3x
1-2x  (1-x)?2

3 IHEG X" = x2((1— 4072 — 1 2x) —

n>0

Extracting the coefficient af"~1, we obtain

2n+2
yHnFCy=<n+1>—2“+2+n+3. (3.4)

3.5. The F-series

In this case, we can select a canonical representatvB* from each central commutativity

class by insisting that wheneveandu are adjacent is, u precedes. Any such word has

a unique factorizatios = 53, - - - § with 5 € {t, u}* ands, ..., § each being words con-
sisting of an initiak followed by a{t, u}-word. Infact, given our conventions, we must have

S € {(), (1), (W), (t,u), (u,t)} ands € {(s), (s, 1), (s, t,w)}forl <i <I,withsg = ()
allowedonlyifi = I. We also cannothavs, t, u) preceded byu), (t, u), or(s, t, u); other-

wise, some member of the commutativity class@fntains the forbidden subwofd, t, u).
Conversely, any word meeting these specifications is the canonical representative of some
central commutativity class. The language formed by these words therefore consists of

{0, ®, (U b, (u,s b, tu s b-{(st,ust), (s D}
HO, 5.t w}-{0, (9} (3.5)
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together with the exceptional casge), (t, u), (u, s), (t, u, s)}. Hence

B+20(1+x?  (1+x)(5+3%)

Co(X) = 2+ 2X) + T x—x2  — 1-x_x2

Turning now toCy(x), note that the central commutativity classes that are compatible
with a spine of the form{l, {1}) are those for which the first two occurrencessafo not
participate in an occurrence of the subwotdd, s, t), or (t, s, t, s). If soccurs three or
more times, this require) to be the first factor in (3.5), followed by an occurrence of
(s, t,u, s, t). Hence, the canonical representatives compatible @vjtfi}) consist of

(Sv t? u,s, t) : {(Sv t’ u,s, t)v (Sv t)}* : {()7 (59 t’ u)} : {()7 (S)} (36)

and four additional cases with= 2: {(s,t,s), (u,s,t,s), (s, t,s, u), (t,u,st,s)}. It
follows thatc, 1 = 5, and therefore

B (14 x)2 4 4 2x
Cix)=c¢ 2 X2=342""" 14— "
1(X) = C21 + gcl,l t2r T X2

To determineC,(x), note first thais, t, u, s, t, s) is the unique canonical representative

compatible with the spin€s, {1, 2}). For the spined, {1,| —1}) with| > 4, compatibility
requires(s) to be the last factor in (3.6), and it must be precededsby, u, s, t). Hence

X
Ca(X) = Zq,zx"“ =xt+ ——.
= 1-x—X

After simplifying the generating function provided by Theorem 2.6, we obtain

+ X HRX) — 1)

Z‘F ’ n_10—5(1+X)(R(X)—1)
n+2]% 1—4x — x2

6 — 4x n 1+ x 1
1—3x+x2 1—x—x2 1-—x

n>0

(3.7)

While it is unlikely that there is a simple closed formula f&f €|, it is interesting to note
that the Fibonacci numberfg satisfy

1-x
E X" = —— E fonx" = ) E fanx" = )
= —X— = 1- 3x 1-3x+x2 = 1—4x—x2

so when the coefficient of"~2 is extracted in (3.7), we obtain
n-1
f3k,5 2n — 2k 1/2n-2
FC| =5fgn4—5) —— -
[Fa”] sn—a kz;n—k+1 n—k ) Taln_1

—2fon2—2fona+ fro1 — 1.
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3.6. The E-series

We claim that there is a unique member of each central commutativity class (imifgct,
commutativity class irS*) with the property thats, u), (t’, u), and(t’, t) do not occur

as subwords. To see this, note first that the set of left members of these pairs is disjoint
from the set of right members. Secondly, these pairs are precisely the set of commuting
generators ofV. Hence, for any pair of words that differ by the interchange of two adjacent
commuting generators, one member of the pair can be viewed as a “reduction” of the other,
in the sense that the set of positions wheesdt occur are farther to the left. Furthermore,
since the set of instances of the forbidden pairs in any given word are pairwise disjoint, it
follows by induction that any sequence of reductions eventually terminates with the same
word, proving the claim.

Let L denote the formal language over the alphabftrmed by the canonical represen-
tatives (in the sense defined above) of the central commutativity classes. Given any formal
languageK over S, we will write K (x) for the generating function obtained by assigning
the weightx' to eachs e K for which s occursl times. Note that by this convention, we
haveCoy(x) = L(X).

Any word s € S* has a unique factorization = ss;---§ with 5 € {t,t’, u}* and
s, ..., S each being words consisting of an initgfollowed by a{t, t’, u}-word. For
membership irL, every subword o not containings must be a member of

E:={0, ®, W, t,w, u,b), ), ¢t), ut), (tut), utt)}

the set of canonical representative for the fully commutative members of the subgroup
generated byt, t’, u}. Whens is prepended to these words, only six remain canonical:

a1 =(s), a=(s,t), ag= (s, t,u), as = (s, 1), as = (s, t,t), ag = (s, t, u, t').

Thus we have. C E - {ay, ..., ag}*.

For eache € E, let L. denote the set of € L for which the initial factorsy is e. If
S = (), then eithers = (), s = (s), or deletion of the initiak in s yields a member of
L, for somee € {(1), (t, u), ('), (t,t"), (t, u,t")}, and conversely. In terms of generating
functions, we have

LoX) =14+ X+ X(Ley(X) + Li,uyX) + Lay(X) + L,ry(X) + Loy (X)).

Similarly, deletion of from the second position defines a bijection frog, — {(u), (u, s)}
to L(u,t) U L(u,t/) U I—(u.t.t’)1 S0 we have

L) =1+ X+ X(LuyX) + Luty(X) + Luttry(X).
Combining these two decompositions, we obtain
L) =) Le(X)
ecE

=Lo) +Xx LX) =1 —=%) + LX) +x LX) —1—x)
= XL+ (LX) + LX) = 2). (3.8)
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Now consider the languadgée = L N {ay, ..., ag}*, and the refinements; (2 <i < 6)
consisting of those nonvoid memberstkofwhose initial factor iss;. Since the result of
appendingy = (s) to anys € L remains inL if and only if s does not already end 8) it
follows thatL , = K{(), a;1}. Similarly, we have

(s,t) - Lw = Ks{(), &},
s0 (3.8) can be rewritten in the form
LX) = X 2L+ x)?K(X) + X 2(1+ X)?Kz(X) — 2x (1 + ). (3.9)
For2<i < 6, the commutativity classes of
a3, asuas, &&, aas(i#3), asy, aas ay (I #2),
each have representatives in which one or more of the subwipigls), (t’, s, t'), (u, t, u)
and(t, u, t) appear, and hence cannot be central. Conversely, as a sulagt.of, ag}*,

membership irK is characterized by avoidance of the subwords listed above. It follows
thatKs = {as}, Kg = {ag} U asK, and

Kz = {a2} U axKy,
K3 = {a3, azas, azas} U {ag, azas} Ky,
Ks = {aq} U auKo U a4Ks.

Solving this recursive description of the languaggegessentially a computation in the ring
of formal power series in noncommuting variabées. . . , ag), we obtain

Kz = {2, axasasas) U (@284, axauds, 82848384} K3,
Ks = {agas} U {ag, asau} K,

Ka = {4885} U {au, 483, sdzaa} K5,

Ke = asK5,

whereK; = {()} U K, = {@xau, 328483, @28483au}* - {(), 8, &284a83a5}. Thus

X(L+2x — x?
KaX) = X2 4+ X+ xX)A+x+xH1—-x?>—x3—xH1= %

14 5% + 6x2 + 3x°
1-x2—x3—x* "~

6
Ko =14 K=
i=2

and hence (3.9) implies

(1 4+ x)(10+4 7x + 4x?)

Cox) = "
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The central commutativity classes compatible with spines of the forfi}) are those
for which the first two occurrences sflo not participate in an occurrence of the subwords
(s,t,s) or (s,t', s). These correspond to the memberd.dbr which the first occurrence
of one of the factors; is eitheras or ag, followed by at least one more occurrence of
ai, ..., a. If asis the first factor, the possibilities are limited{to), (u), (t, u)}asa;, since
as can be followed only by, . Ifthe first factor isag, then the choices consist of the members
of Ke{(), a1} other thanag, since no nonvoid member & can precedes. Hence, the
language of canonical representatives compatible with the sginds) is

{O, (W), (t, wiasay U Ke{(), a1} — {ae}.

In particular, (s, t, t’, s), (u,s,t,t',s), (t,u,s,t,t',s), (s, t,u,t’,s), and(s,t,u,t’, s, t)
are the members compatible with the spi@e{1}), soc,1 = 5. Hence, using the decom-
position ofKg determined above, we obtain

2
Ci(X) = =5+ 2x2(—x + 3% + (1 + 0 Kge(x)) = -1+ %.

The canonical representatives of the central commutativity classes compatible with spines
of the form(l, {1,1 — 1}) must have a factorization in which there are at least three occur-
rences of the wordsg;, the first and penultimate of these beiagor as. Sinceag cannot
be preceded by any of the fact@s as must be the penultimate factor. Sinagcan be
followed only byay, the first factor must therefore lag, there is no non-void member &f
precedinggs, and the last factor must lzg. From the above decompositionsto§ andK.",
it follows that the language formed by the memberd dhat start withag and terminate
with aga; is

85 - {apdy, QAdg, paudau}” - pyAasay, (3.10)

and therefore

X2 X2
X2 —x3—x4 A+x)A—-x—x3"

Cox) = 1

Combining our expressions f@; (x) (i = 0, 1, 2), the generating function provided by
Theorem 2.6 can be simplified to the form

FC [y — 16— 52x + 45x% — x " H(R(X) — 1)

E -
%’ 3 1— 7x + 14x2 — 9x3
6 — 14x + 122 1—x3—x4

(3.11)

Tl ax 523 | 1-—x)L—x—x3"
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4. Fully commutative involutions

We will say that a commutativity class is palindromicif it includes the reverse of some
(equivalently, all) of its members. A fully commutatiuee W is an involution if and only
if R(w) is palindromic.

In the following, we will adopt the convention thatXf is a set of commutativity classes,
then X denotes the set of palindromic membersXofSimilarly, W and W™ shall denote
the set of involutions itW andWFC, respectively.

4.1. The generic generating function

Consider the enumeration of fully commutative involutions in a series of Coxeter groups
W =W, W, ... of the type considered in Section 2. It is clear thate W'C is an
involution if and only if its branch and central portions are palindromic. Thusby Lemma2.1,
determining the cardinality aV=C can be split into two subproblems: enumeratifgo)
(the palindromic branch classes) afl(o) (the palindromic central classes).

For integers, | > 0, we defineB,,; = (v), wherek = {”—;'1.

Lemma4.1 We have

1Ba(l, 8)| = Bny,
1Bo(l, {1)] = B0 —1 (f| =2 0r0,ifl > 2),
IBa(l, {11 —=1})| = Byyai—3 — x(I <n+4) (fl > 3).

Proof:  Following the proof of Lemma 2.3, far= 0, 1, 2, let B{} denote the cardinality
of By(o) foro = (I, 9), (I, {1}) and(l, {1, 1 — 1}), respectively. Recall that the occurrences
of s; ands, must be interlaced in any representativeBok 5, (1, ), and that when we
restrictB to {s, ..., &} (and shift indices), we obtain a member®f_,(’, ¥), wherel’
denotes the number of occurrencesofTo be palindromic, it is therefore necessary and
sufficient that thes,, . .., s,}-restriction of B is palindromic, and thdt =1 + 1 orl — 1

(or 0, if| = 0). This yields the recurrence

5(0) 5(0) ;
5O _ By nisa + Brlya 1= 1
nl 7 ) RO =(0) ;
By_11+ Bnl1o if | =0.
It is easy to verify thaB,,| satisfies the same recurrence and initial conditions.

For spines of the forre = (I, {1}), it is clear that there can be no palindromic classes
unlessl = 2, since forl > 2, there must be an occurrencesfbetween the last two
occurrences o$,;, but not for the first two. Assuminig= 2, the bijection provided in the
proof of Lemma 2.3 preserves palindromicity, and thus proves the recurrence

51 _ /@ 5 (0)
Bn2=Bn1,+ By
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It is routine to check that the claimed formula fo]g satisfies the same recurrence and
initial conditions.

Foro = (I, {1,1 — 1}), the left and right sides of any palindromi& € B,(c) must be
both open or both closed, in the sense defined in the proof of Lemma 2.3. Furthermore, a
branch class with this property is palindromic if and only if its restrictiofsto. . . , s,} is
palindromic, so the bijection provided in Lemma 2.3 for this case yields

Bl =B 11+ By, (=4

andB'% = B,. Once again, itis routine to check that the claimed formul@f@fsatisfies
the same recurrence and initial conditions. ]

Lemma4.2 We have)_, ., By x" = 1;%) X' R(x?)".

Proof: We have)_,_o BniX" = Fio(x) + F 1(X), whereF j (x) = Y nti mod 2 Bl X"

We can interpref j(x) as the generating function for sequences of votes in an election in
which A defeats B by + j votes. Such sequences can be uniquely factored by cutting the
sequence after the last moment when B trails A bptes,i = 0,1,...,1 + j — 1. The

first factor consists of an arbitrary sequence for a tie vote, which has generating function
1/+/1— 4x2, and the remainin§ + j factors each consist of a vote for A, followed by a
“pallot sequence” for a tie vote (cf., Section 2.3), which has generating funciox?). O

Turning now to the palindromic central commutativity classes, let us define
Go=ICw(, DI, C1=ICw@ {1, G2=ICw(, {11 -1,
and associated generating functions

Co(x) = ch,oxl, Ci2(x) = Cax 1 + Z x4
1>0 1>3

Theorem 4.3 If W is one of the Coxeter groups displayed in figbiréhen

1 R
> IWEexn +X7(’()«:0@ ROG) + R()Caz2(xRX)) —

1 _
C12(x).
n>0 V1 —X

Proof: As noted previouslyw e WFC is an involution if and only if the central and
branch portions ofv are palindromic. Successive applications of Lemmas 2.1, 2.2, and 4.1
therefore yield

Wil

Z Ba(o)] - 1Cw(0)| =Y GoBY +CaB+ Y G2BY

1>0 1>3

=) GoBni+C1(Brio— D+ Y G2(Buris—x( <n+4). (4.1)
>0 >3
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The corresponding generating function thus takes the form

1+xR(x) 14+ XRX? 1
WFC R 251 1( _ )
;_J " Ji_ax2 Z;q X RO + G2 Vi—ax2 1-x

_ 1+xR(x)|4 23 x4
+§Q'Z<W O

using Lemma 4.2. O

_As we shall see below, botBy(x) andC1,(x) are rational, so the generating series for
|WFC| belongs to the algebraic function fieQ(x, R(x?)) = Q(X, v/1 — 4x2).

4.2. The A-series

In this case, we hav€y(x) = 1+ x andCi»(x) = 0, since there are only two central
commutativity classes (namely, those(gfand(s)), and both are palindromic. Hence

Z | AECx" _ A+x R(x?))? - (1 + xR(x?) B 1)
= V1—14x2 V1—14x2 ’

Either by extracting the coefficient af', or more directly from (4.1), we obtain

iEC| B _ n+1 )
|ALS| = Bni1o= (f(n-i- y/21) 4.2)

4.3. The B-series

In this case, the central commutativity classes are singletons in which the occurrences of
s andt alternate. For each> 0, there are two such words that are palindromic and have

| occurrences of. Among these(s, t, s) is the only one that is compatible with a spine

(I, A) with A # 3. HenceCy(x) = 2/(1 — x), C12(X) = x~1, and Theorem 4.3 implies

1+ xR(x?) 2 1
B¢ = —_— -1 — .
Z| n+l|X ( ﬁ1—4x2 +1—2X 1—x

n>0

Extracting the coefficient af"~1, we obtain

~FC| _ »n n _
B 2 +<W21> 1 4.3)
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4.4. The D-series

In this case, the palindromic central classes are represented by the odd-length subwords
of (s, t,s,t/,s,t,s,t/,...) whose middle term i or t’, together with(), (s), (t,t), and

(s, t,t', s). In particular, leaving asides, t, t’, s), there are exactly four such words with
occurrences aof for each eveth > 0, so we have

Co(X) = x + X2 .
0(X) XT3

Also C1o(x) = x~ 1, since(s, t, t', s) is the only representative compatible with a spine of
the form(l, A) with A # @. After simplifying the expression in Theorem 4.3, we obtain

355, x° 143 1 1) 4+ 2 x~1
mET T 2 \ Vi 1-2x 1-x

n>0

Extracting the coefficient of"—2 yields

3
-ty < n2> 1 if nis even
55| = " (4.4)
iy NN 0 inisodd
2\(n+1)/2

4.5. The H-series

The palindromic central classes in this case are the same as those Basénies; the only
difference is that those correspondingpt), (s, t)o, ... are now compatible with spines
of the form(l, {1,1 — 1}) for| > 4. Thus we have

-1

1-—x’

_ 2 _
Co(X) = 1—x Co(x) =

The generating function provided by Theorem 4.3 is therefore

4 2—X

FC _ _
nZ(:)‘Hn-&-l’X 1—2x (1_X)2’
and hence
|HFC| =21 — (n+ D). (4.5)

4.6. The F-series

Recall that in Section 3.5, we selected a set of canonical representatives for the central
commutativity classes by forbidding the subwdgju). If sis one such representative,
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let s* denote the canonical representative obtained by revessang then reversing each
offending(s, u)-subword.

If sis the canonical representative of a palindromic class @.es s*), then either
se {(), (W}, or elses has a unique factorization fitting one of the forms

a(s)a*, a(u,s)a*, a(t)a",

whereais itself a canonical representative for some central commutativity class. Conversely,
any canonical representative endingshcan be uniquely factored into one of the two forms
a- (s)ora- (u,s), and the corresponding word obtained by appendingmains central.
Similarly, any canonical representative ending with but not (u, t) or (u, s, t), when
factored into the forna - (), remains central whea" is appended.

Now from (3.5), the language of canonical representatives enditg) tonsists of the
exceptional set(u, s), (t, u, s)}, together with

{O,®, (U, D), (U,s ), (tu,s v} -{(st,u,s 1), (s D {(9. (s t,u,5)}, (4.6)
and the language of representatives ending itlout not(u, t) or (u, s, t) is

{®OYU{O, @), (U, 1), (u,s,b), (¢, u, s, D} - {(s,t,u, s, 1), (5, 1)} - (s, 1). (4.7)
Including the exceptional caség and(s), this yields

B+23)(x+x3)  x*B+2x?) 14 24 5% 4 x2 4+ 3x3

Co(X) = 3+ 2x =
0(X) text 1—x2— x4 1—x2—x4 1—x2—x4

The unique palindromic classes compatible with the spi@e&l}) and (3, {1, 2}) are
represented bys, t, s) and(s, t, u, s, t, s). For the spines = (I, {1,1 — 1}) with | > 4,
recall from Section 3.5 that a canonical representative compatibleowitlast begin with
(s,t,u, s, t) and end with(t, u, s, t, s). Selecting the portions of (4.6) and (4.7) that begin
with (s, t, u, s, t) yields the languages

(s,t,u,s,t)-{(s,t,u,s,t), (s, 0)}*-{(s), (s, 1, U, 9)},
(s,t,u,s,t) - {(s, t,u,s, 1), (S, 1)}* - (S, 1),
so we have

X+ x2 4 x3

Cro(x) =2x 1+ —— .
12(X) R —

Simplification of the generating series provided by Theorem 4.3 yields

S = 4+ 10x + 2x* + x*(1 + 5x + 3x* — 5x%) Q(X)

n+2 1—4x2 — x4

n>0

34 4x + 2x% + 3x3 N 1

+A+30Q) - =

(4.8)

whereQ(x) = ((1 — 4x?)~%2 — 1)/2x2.
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The coefficients can be expressed in terms of the Fibonacci numbers as follows:

n 1
— 2k 1/2n
|FiC| = fan + fan2+ = Z(fsk 2+ fa 4)( K >+§<n> — fa2+1,

5nt 2n—2k\ 3/2n
|F2n+l|_5f3nl EZf3k3<n_ >+§(n>—fn+2—fn+1.

4.7. The E-series

In Section 3.6, we selected a canonical representatiee each central commutativity
class. As in the previous section, we Btdenote the canonical representative for the
commutativity class of the reverse ®f

If s e S*isarepresentative of any palindromic commutativity class, then the set of gener-
ators appearing an odd number of times must commute pairwise. Indeed, the “middle”
occurrence of one generator would otherwise precede the “middle” occurrence of some
other generator in every member of the commutativity class. Aside from the exceptional
caseg), (u), and(s) (which cannot be followed and preceded by the same memig=od
remain central), it follows that every central palindromic class has a unique representative
fitting one of the forms

a*(t)a, a*(tha, a*(t,tha, a*(u,tha, a“(u,sa, (4.9)

wherea is the canonical representative of some central commutativity class. However,
we cannot assert that the above representatives are themselves canonical; for example, if
a= (s, t), thena*(u, t")ais a representative of a central palindromic class, but the canonical
representative of this class(@s u, s, t’, s, t).

For the representatives whose middle factait)s (t'), (t,t’), or (u, t’), observe thas
must be the first term of, assuming thah is nonvoid. Furthermore, if we prepend an
initial s (or s, t, in the case ofu, t")), the resulting wordss, t)a, (s,t)a, (s,t, t")a, and
(s, t, u, t")aare (inthe notation of Section 3.6) members of the formal languaggs, (s)},
Ka{(), (9)}, Ks{(), (5)}, andKg{(), (S)}, respectively. Conversely, any member of these
languages arises in this fashion.

For a representative whose middle factoruss), if we prepend(s,t,t’) to (u, s)a,
we obtain a member of a central commutativity class whose canonical representative is
(s, t,u,t’, s)a, and hence amemberK&{(), (s)}. Conversely, any member &&{(), (s)}
other thareg = (s, t, u, t’) arises this way.

Collecting the contributions of the five types of palindromic central classes, along with
the exceptional cas€s§), (u), ()}, we obtain

Co(X) = 24X + X 2(14 x) (K2(x?) 4+ K4(x?) 4+ K5(x?)
6+ 3X+2%x2 —x3 4+ 3x4+x°
1—x2—x8 '

+ Ke(x?)) + x3((1 4+ xHKg(x?) — x?) =
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Forthe spine = (2, {1}), thereis aunique-compatible central class thatis palindromic;
namely, the class @f, t, t’, s). Forthe spines of the form(l, {1, | —1}), recall from (3.10)
that the canonical representatives ofétheompatible classes all begin witha,a, and end
with agzasa;. It follows that for a palindromic central class represented by a word of the
form (4.9) to be compatible with, it is necessary and sufficient theatnd withazasa;.
Using the decompositions obtained in Section 3.6, we find that

{2084, axauag, aasdzay}”* - Aaudaas,
{auazas} U {as, aydg, audzau) - {axas, axaudg, axaudzay}™ - axaudsas,
g - {axay, apauds, axauazau}” - axasasas

are the respective portions Kf, K4, andKg that end withagas; there are no such words
in Ks. It follows that

8 10 | W12 | 14 9
- X%+ 2X7 4+ X+ X X
Cro(x) = x T+ x*(x8+

12(X) TR~

1—x*—x5—x8
_1 x% 4+ x* 4+ x5+ x8
(14 %x2)(1—x2—x5"

The generating function provided by Theorem 4.3 can be simplified to the form

Z IEFC,|x" = (2—3x%)(3+5x — 6x% — 9x3) + Q(X) (1 + x — 4x2 — 3x3 4 2x%)
n+3 — 2 4 _ 6
1—7x%414x4 —9x

n>0
14+ x24+x5—x8
1—x)(1+x%x2)(1—x%x2—-x5)’

(4.10)
whereQ(x) = ((1 — 4x?)~Y2 — 1)/2x2.

5. Asymptotics

Given the lack of simple expressions for the number of fully commutative membé&s of
andF,, it is natural to consider asymptotic formulas.

Theorem 5.1 We have
(@) |EFC| ~ 5(25— 98 —48%)(B%+2)", where = 1.466is the real root of X = x?+ 1.
(b) |FFCl ~ (7y — 11)y*", wherey = 1.618is the largest root of X = x + 1.

Proof: Consider the generating functi@(x) = Y., W/ ¢|x" of Theorem 2.6.

In the case of,, we see from (3.7) that the singularities®fx) consist of a branch cut
atx = 1/4, together with simple poles at= 1 and the zeroes of 4 x — x?, 1 — 3x + x?,
and 1— 4x — x2. The latter are (respectivelyl/y, —y}, {1/y2, ¥}, and{1/y3, —y3},
wherey = (1+ +/5)/2 denotes the golden ratio. The smallest of these (in absolute value)
is 1/y2 = 0.236, a zero of 1- 4x — x2. In particular, since Ay® < 1/4, the asymptotic
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behavior of FF€| is governed by the local behavior@ix) atx = 1/y3. More specifically,
since there is a simple pole at= 1/y3, it follows that|F¢| ~ cy ", where

c= lim (1 2600 = 207 8A+ Yy

7y — 11,
x—1/y3 4+2/y3 4

using (3.7), together with the relatiop$ = y + 1 andR(1/y%) —1=1/y.

In the case oE,,, we see from (3.11) that the singularities@¢x) consist of a branch
cut atx = 1/4, together with simple poles at = +1 and the zeroes of + x — x,
1 — 4x 4 5x2 — 3x3, and 1— 7x + 14x? — 9x3. These polynomials are related by the fact
that if « is any zero of - x — x3, then 1— 4x + 5x? — 3x® is the minimal polynomial of
a/(14+a), and 1- 7x + 14x2 — 9x? is the minimal polynomial of/(1+a«)?. (The fact that
such a simple relationship exists is not coincidental; see Remark 5.3 below.) The smallest
of the nine zeroes of these polynomials (in absolute valug)dsa /(1 + «)? = 0.241,
wherex = 0.682 is the real zero of 4 x — x3. Equivalently, we have/8 = g2+ 2, where
B = 1/« is the real root ok® = x? + 1. Sinces < 1/4, the asymptotic behavior 0E}C|
is once again governed by the local behavioGgk) near a simple pole. In this case, we
obtain|EF¢| ~ ¢§™" = c (82 + 2)", where

16—525 +455° —a/5 1
7-28+2752 31

¢ = lim(1—6"H0x°G(x) = 8 (25— 98 — 4p7),

using (3.11) and the fact th&() — 1 = «. a

Remark 5.2 For the sake of completeness, it is natural also to consider the asymptotic
number of fully commutative elements &, By, D, andH,. Given the explicit formulas
(3.1), (3.2), (3.3), and (3.4), it is easily established that

rep . 4 3o rep . L 1o
A~ e~ e
|Dr'1:C| ~ 5 n—1/24n’ |HnFC| ~ ﬁn_1/24nv

N

using Stirling’s formula. In each of these cases, the dominant singularity in the correspond-
ing generating function is the branch cutxat 1/4.

Remark 5.3 If «isapole off (x), thena/(1+«) is a pole off (x/(1—x)) ande /(1+a)?

is a pole (of some branch) df(R(x) — 1). On the other hand, from Theorem 2.6, we
see that aside from the branch cutxat= 1/4 and a pole ak = 1, the singularities
of G(X) = 3,0 IWFCIX" are limited to those o€x(x), Ci(x/(1 — x)) (i = 1,2), and
Ci(R(x) —1) (i =0, 1,2). Thus, unless there is unexpected cancellation, for eachxpole
of C,(x), there will be a triple of poles at/(1+ «)' (i =0, 1, 2) in G(X).
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Now consider the asymptotic enumeration of fully commutative involutions. Again, given
the explicit formulas (4.2), (4.3), (4.4), and (4.5), it is routine to show that

_ 8 - - -
]AEC‘ -~ \/in—l/Zzn’ “35(:’ ~ " |DEC| ~ 1 |Hr|]:C‘ ~ N+l
T
In the following, 8 andy retain their meanings from Theorem 5.1.

Theorem 5.4 We have

(@) |E5SI ~ £(20— B+ 3D (B> + ™.
(b) [E5G | ~ (9 —28+68%)(8%+2)".
(C) |FFC| ~ J/3n+1.

(d) [FES I~ @+ y)y™.

Proof: Consider the generating seriégx) = Y, o [WFC|x" of Theorem 4.3.

In the case of,, we see from (4.8) that the singularities®¢x) consist of branch cuts
atx = +1/2, together with simple poles at= 1 and+y /2, +(—y)Y/? (the zeroes of
1—x2 — x4, and+y %2, £(—y)%? (the zeroes of 1- 4x?> — x%). In absolute value, the
smallest of these occur at= +y~%2. Sincey %2 < 1/2, it follows that the asymptotic
behavior of|F"C| is determined by the local behavior Gf(x) at x = +y~¥2. More
specifically, we haveF}C| ~ ¢,y and|F;S | ~ c_y"*%2, where

¢y = lim x(l y¥2)(G(x) £ G(—x)).

X—)y

Using (4.8) and the fact th&(y ~%/?) = y4, we obtain

8 + 4x?% + Xx%(2 + 6x) Q(X)
_ .32
Cr X_I)|Jr/‘n X*(1L= 7% 1—4x2 — x4
_84+4/y3+(2+6/vy

8+4/y3

and a similar calculation (details omitted) yields = (2 + y)y ~¥/2.

In the case of,, we see from (4.10) that the singularities®fx) consist of branch
cuts atx = +1/2, together with simple poles at = 1, ++/—1 and the square roots of
the zeroes of - x — x3 and 1— 7x + 14x?> — 9x3. Continuing the notation from the
proof of Theorem 5.1, the poles occurring closest to the origin ase=ai-5%/2, where
8 = 1/(B% + 2). Thus we haveELS| ~ c;.(82 + 2" and|ESS | ~ c (B2 + 2"/,
where

ce = lim x31 = 8Y2x)(G(x) F G(—x)).

X—81/2

Using (4.10) and the fact th®(8'/?) = 1/8(8 — 1), we obtain
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. 3 12, (2= 3x)(10x — 18x) + Q(x)(2x — 6x°)
¢, = lim x°(A—458"7x)
X—>81/2 1— 7x2 + 14x4 — 9x6
(2—-35)(105 — 182 +(2—-68)/(B—-1) 1
= > = —(20— B+ 367,
14— 565 + 545 31
and a similar calculation can be used to deterngsineve omit the details. a
Appendix
Table 1 The number of fully commutative elemerits.
n A B Dn En Fn Hn
1 2 2 2
2 7 (4) 5) 9
3 14 24 (14) (10) (24) 44
4 42 83 48 (42) 106 195
5 132 293 167 (167) 464 804
6 429 1055 593 662 2003 3185
7 1430 3860 2144 2670 8560 12368
8 4862 14299 7864 10846 36333 47607
9 16796 53481 29171 44199 153584 182720
10 58786 201551 109173 180438 647775 701349
11 208012 764217 411501 737762 2729365 2695978
12 742900 2912167 1560089 3021000 11496788 10384231

*The parenthetical entries correspond to cases in which the group in question is either reducible or
isomorphic to a group listed elsewhere.

Table 2 The number of fully commutative involutions.

n An Bn Dn En Fn

Hn
1 2 )
2 5 (@) ©) 5
3 10 (6) (6) (10) 12
4 10 21 16 (10) 18 27
5 20 41 25 (25) 48 58
6 35 83 61 42 89 121
7 70 162 98 106 220 248
8 126 325 232 178 405 503
9 252 637 381 443 968 1014
10 462 1275 889 756 1785 2037
11 924 2509 1485 1858 4195 4084
12 1716 5019 3433 3194 7758 8179
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Note

1.

It should be noted that when= —1, the coefficient of; > in (2.1) is zero. Thus the range of summation for
this portion of the generating function can be extended to—1.
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