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Abstract. LetI" be a graph an@ be a 2-arc transitive automorphism grougrofFor a vertex e T let G(x)T'®
denote the permutation group induced by the stabikzeérx) of x in G on the sefl"(x) of vertices adjacent to
xin T. ThenT is said to be a locally projective graph of type q) if G(x)"® containsPSL,(q) as a normal
subgroup in its natural doubly transitive action. Supposelthata locally projective graph of typen, q), for
somen > 3, whose girth (that is, the length of a shortest cycle) is 5 and suppog@ theacts faithfully onl*(x).
(The case of unfaithful action was completely settled earlier.) We show that under these conditionseither

gq = 2,T has 506 vertices and = M3, org = 4, PSLy(4) < G(x) < PGL,(4), andI" contains the Wells graph
on 32 vertices as a subgraph. In the latter case if, for a givahleast one graph satisfying the conditions exists
then there is a universal grapti(n) of which all other graphs for this are quotients. The grap(3) satisfies
the conditions and ha$2vertices.

Keywords: locally projective graph, graph of girth 5, 2-arc-transitive graph

1. Introduction

LetI" be a graph which is assumed to be undirected connected and locally finite (the latter
means that every vertex bfis adjacent to a finite number of other vertices). The vertex set
of I" will be denoted by the same lettBrwhile E(I") and Aut(T") will denote the edge set
and the automorphism group Bf respectively. For a vertex e I we denote by (x) the

set of vertices at distancdrom x with respect to the natural distance BnThe sefl"1(x)
(which consists of the vertices adjacenijowill be denoted simply by'(x). An s-arcin

[ is a sequencgy, Xq, ..., Xs Of vertices, such thatx;, i1} € E(C)for0<i <s—1
andx; # Xj42for0 <i < s— 2. Such an arc is eycleof lengths if X = Xs. Thegirth

of I' is the length of its shortest cycle. For a subsedf the vertex set of" the subgraph
induced byl" on A hasA as vertex set anfk, y} is an edge in this subgraphxfy € A
and{x, y} € E(T"). Let G be a group of automorphisms bBf that is a subgroup of AuT").

If A C T"thenG(A) andG{A} denote the pointwise and the setwise stabilizera aif

G, respectively. We writé5(X, y, ...) instead ofG({x, y, ...}) andG{x, y, ...} instead

of G{{x,y,...}}. If H < G{A} thenH” denotes the permutation group inducedHby

on A, so that abstracthiH® = H/H(A). If G acts transitively ors-arcs inI" thenG is
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done. The research was partially funded by a grant from the Australian Research Council.
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said to bes-arc transitive It is easy to see thas is 2-arc transitive if and only iG is
vertex-transitive and, fox € T, the permutation grou@(x)"® is doubly transitive. Let
G1(X) 1= G({x} UT'(x)) so thatG(x)'® = G(x)/G1(X).

LetI" be a graph an® be a 2-arc transitive automorphism grougofThenr" is said to
be alocally projective graph of typén, q) (with respect to the action &) if, for x € T, the
permutation grous(x)'® contains, as a normal subgroup, the projective special linear
group PSL,(q) in its natural doubly transitive action. This means tfatx)| = [{]q =
(" — 1)/(q — 1) (which is the number of 1-subspaces inradimensionalGF(q)-space)
andPSL,(q) < G(X)'™ < PI'L,(q). Examples of locally projective graphs come from
actions of finite groups of Lie type on certain incidence graphs of their parabolic geometries
and also from certain actions of the sporadic simple groups. In these examples the kernel
G1(x) is large compared with the size of this group for other 2-arc transitive actions, and
this is one of the reasons for the attention locally projective graphs have received in the
literature, see for example [19, 20].

The present paper contributes to the classification of locally projective graphs of type
(n,q), forn > 3, of small girth. We start with a brief survey of what has already been
achieved in this area (cf. [12] for further details).

If T is a locally projective graph of typé, q) and girth 3, then it is a complete graph
on [{]q + 1 vertices ands acts triply transitively on the vertex set bf being a one-point
transitive extension of a projective linear group. All such extensions are classified in [9].

Theorem 1.1 LetTI be a locally projective graph of typ@, q) with n > 3, and of girth
3, with respect to a subgroup G of automorphismg ofThenI" is a complete graph on
[1]q + 1 vertices and one of the following holds:

(i) g=2and G= AGL,(2);

(i) g=4,n=3and Mp < G < Aut(Myy).

Locally projective graphs of girth 4 were considered in [5] where complete classification
was achieved in the ca&® (x) # 1. The casé&(x) = 1 was completed in [6].

Theorem 1.2 LetTI be a locally projective graph of typ@, q) with n > 3, and of girth
4, with respect to a subgroup G of automorphism$ ofThen one of the following holds:
(i) T isthe complete bipartite graph dh [{]q vertices and PS|(q) x PSla(q) < G <
PTLn(Q):2;
(ii) T is the point-hyperplane incidence graph of @+ 1)-dimensional Gkq)-space
G contains PSk, 1(q) extended by a contragredient automorphism and is contained
in Aut (PSLa11(9));

(iii) the vertices off" are the maximal totally singular subspaces of@dimensional
GF(q)-space equipped with a non-degenerate orthogonal form of maximal Witt index,
two subspaces are adjacent if their intersection has codimersiorach O, (q) <
G < Aut(03,(Q));

(iv) T is the standard doubling@.K, of the complete graph on m= []]q + 1 vertices,

i.e., the vertices ofI" are ordered pairg(i, ) wherel < i < [7]q + 1, « € {0, 1}
with (i, @) and (], B) adjacent if i ## j and @ # B, moreover either g= 2 and
G =AGL,(q) x 2org=4,n=3and My, < G < Aut(Myp) x 2;
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(v) G contains an elementary abelian normal subgroup E which acts regularly on the
vertex set of" and E is a quotient of the GB)-permutational module of G\ ®;
(Vi) (n,q) = (3,4), IT| = 324 Us(3).2 < G < Us(3).(2%)120, PSIz(4) < G(x) <
PXLs4);
(i) (n,q) =(3,2), T =72 G = Gy(2) = Usz(3).2, G(X) = PSl5(2).

Remark 1 In the above theorer®(x) # 1 in the casesi)—(iii) andG;(x) = 1 in the
remaining cases.

Remark 2 In case(v) the grapHT” is a quotient of the’]]-dimensional cube. If is odd
thenr is either the cube itself or the folded cutpd. [4]), while if q is even there are more
quotients of the permutation module and correspondingly more possibiliti€s(fdr [14]
for some information about these quotients

In [11] the classification problem for locally projective graphs of girth 5 in the case
Gi1(xX) # 1 was reduced to the classification of flag-transitive Petersen type geometries,
namely geometries with a diagram of the following type:

where the rightmost edge represents the geometry of edges and vertices of the Peterser
graph with the natural incidence relation. The classification of such geometries was re-
cently completed (cf. [15]). All examples come from sporadic simple groups. As a direct
consequence of the classification we have the following:

Theorem 1.3 LetT be a locally projective graph of typ@, q) with n > 3, and of girth
5, with respect to a subgroup G of automorphismdof Suppose that @x) % 1. Then
g = 2, T contains the Petersen graph as a subgrggiid there are exactly eight possibilities
for the isomorphism type @f so that one of the following holds
() n=3and M, < G < Aut(My) or 3- My, < G < 3- Aut(Myy);
(i) n=4and G=Co,, 32%-Cop 0r Jy;
(i) n=5and G= J,, Fpor 3%37L. F,.

In the present paper we address the classification problem for locally projective graphs
of girth 5 in the cas&;(x) = 1. One such example, which we denotelbiM,3) comes
from the Petersen type geometry associated with the Mathieu gregiprd until recently
it was the only example known. The verticesIofM,3) are the blocks of the Steiner
systemS(5, 8, 24) which do not contain a given point (there are exactly 506 such blocks);
two blocks are adjacent if they are disjoint. The graph is distance-transitive [4] with the
following intersection diagram:

2 6

15 1 14 1/ 2\ 12 9 Q
15 210 280
(1) (g

['(My3) is a locally projective graph of typét, 2) with respect to its full automorphism
groupG = Mays. If x is a vertex andx, y} is an edge, theG(x) = PSl(2) = Ag,
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G(x, y) = 22 : PSl3(2) andG{x, y} is an extension dB(x, y) by an automorphism which
interchanges the two classes of complemenBAaG (X, y)) in G(X, y).

Very recently a new example of a locally projective graph of girth 5 was constructed
using computer calculations performed by L.H. Soicher. This graph is locally projective
of type (3, 4) and we will denote it byW/(3). The automorphism group &¥(3) contains
a non abelian normal subgroup of ordéf @hich acts regularly on the vertex set of the
graph. FurtheW(3) contains as a subgraph the Wells graph on 32 vertices which is a
distance-transitive graph with intersection diagram

3

and automorphism group isomorphic t6"2As. (The Wells graph was constructed by
A. L. Wells in [21] and also earlier by C. Armanios [1, 2].)

We summarise the results of this paper in the following theorem. It shows in particular
the significance of the Wells graph in our context. For a vext@f a locally projective
graphr" of type(n, q), wheren > 3 andq is a power of a prime numbay, let [T, denote
the projective space structure havifigx) as point set and preserved By(x). Choose a
line 1 of T and letG (1) be the pointwise stabilizer ofin G. Consider the subgraph in
" induced by the vertices fixed P(G(L)). Let A be the connected component of this
subgraph containing. The isomorphism type ok is clearly independent of the choices
of x andA.

Theorem 1.4 LetTI be a locally projective graph of typ@, q) with n > 3, and of girth
5, with respect to a subgroup G of automorphismg ofSuppose that gx) = 1. Then
one of the following holds
(i) n=4, q =2, Aisthe Petersen graph, add = I'(Mz3), G = My3;
(i) n> 3, g =4, Aisthe Wells graph. Graphs with these properties exist if and only if
the graph W) defined in Propositio.9 has girth5. Moreover
(a) if W(n) has girth5, then every grapli with these properties is a quotient of(W;
(b) W(3) has girth5, and has exactl?° vertices
(c) for every n> 3 the automorphism group of W) contains a normal subgroup
T acting regularly on the vertex set, such tfiat T, T] = 1, both T/[T, T] and
[T, T] are elementary abelia-groups of rank less thalj], and[}]4, respectively
(in particular W(n) is finite).

Our theoretical analysis proves thaft(3) has at least? vertices (see Proposition 7.7).
The fact that equality holds depends on the computer calculations of Leonard Soicher
mentioned above. An explicit presentation for a 2-arc transitive automorphism group of
W (3) is given in Section 8. We are grateful to Leonard for his assistance. Not only was the
new construction a very nice surprise, but also it suggested the line of investigation which
resulted in the construction of the graphign) for generah > 3. We are also very thankful
to Sergey Shpectorov for pointing out a few inaccuracies in the first draft of the paper.
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2. The stabilizer of an edge

For the remainder of the papErdenotes a locally projective graph of type q), where

n > 3, with respect to a 2-arc transitive subgraamf automorphisms of. We assume
that the girth ofT" is 5 and thatG;(x) = 1 for x € I". The latter means th&SL,(q) <
G(x) < PT'Lnx(q), andG(x) acts faithfully as a doubly transitive permutation group on the
setI'(x) of sizek := []]4. Let p be the characteristic @&F(q), that is, p is a prime and

is a positive power op.

Let IT1, denote the projective space structure havig) as the point set, which is
invariant under the action d&(x). Let Ly denote the set of lines ifiy considered as a
collection of (q + 1)-element subsets af(x). Fory € I'(x) let Ly(y) denote the set of
lines in Ly containingy and forz € T'(x) \ {y} letl«(y, z) denote the unique line ihy
which contains botly andz. We will usually be working with a given vertexe I and a
given pair of verticey, z € I'(x), and we sef’(X) = {y1 = Y, Y2 = 7, ¥3, ..., Yy3,} and
A=z y) ={Yu Y2, .., Y1}

We start by recalling some basic properties of the projective linear groups in their natural
doubly transitive actions. LelP; (= G(X,y), P, := G(X) N G{A}, P12 := Py N Py,
andR := G(x, Y, 2. This means thaP; and P, are two maximal parabolic subgroups
associated with the action &f(x) on Il andR < Pp,. We can and will identifyG (x) and
its subgroups with the corresponding subgroups in the automorphism grofuld,, where
A = PI'Ly(q). Let A° be the largest subgroup iy which consists of projective linear
transformations of1,, so thatA® = PGL,(q). For X being one of the subgrou@(x), Py,

P,, P1p, or R, setX% := X N A%, ThenX® is normal inX and X/ XY is a subgroup of the
automorphism group d&F(q) which is independent of the choice Xffrom the above list.

To describe the action @, onT"(x) \ {y}, we introduce some characteristic subgroups
of P;. First of all C; := Op(Py) is a characteristic subgroup &. MoreoverC; is
elementary abelian of ordef'—%, it stabilizes setwise every lidee Ly (y) and induces a
regular permutation group on {y}. Let H andH° denote the permutation groups induced
onthe set.«(y) by Py andPp, respectively. Theii® = PGL,_1(q) (notice that this is true
evenifG(x)°is a proper subgroup $GL,(q)) andPGL,_1(q) = H° < H < PI'L,_1(Q).
Moreover, it is easy to see that/H® = G(x)/G(x)°. The latter means that the kernel
C, of the action ofP; on Ly(y) is contained inPY. Let H! be the unique subgroup &f°
isomorphic toPSL,_1(q). We claim that botiH® and H? are characteristic subgroups of
H. Indeed, if(n—1, q) = (2, 2) or (2, 3) then the claim can be checked directly; otherwise
H? is the unique minimal non abelian normal subgroupgHofind hence is characteristic.
Let F = PI'L,_1(q)/H?*. ThenF is a split extension of a cyclic group of orderq — 1
(which is the image oHP) by a cyclic subgrouE of orderm, whereq = p™. Now if
d € D then the order o€ (d) is divisible byqg — 1 and ife € F \ D then the order of
Ck(e) is at most(p™? — 1)m. This means that all elements Bfwith centralizers having
order divisible byg — 1 are contained iD and henceD is characteristic. HencB? and
the full preimagePl1 of Hin Pl0 are characteristic subgroupseyf. Let us consider more
closely the kerneC, of the action ofP; on Ly(y). In terms of matrix groups, one can
see thatC; is a split extension o€, by a cyclic subgrougK, whose order divideg — 1
and is divisible by(g — 1)/gcd(n, g — 1). Moreover, every non-trivial element &f, acts
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fixed-point freely onC;. We claim thatC, is a characteristic subgroup &. Indeed, if
(n,q) = (3, 2) or (3, 3) this is straightforward; otherwigg; is the largest solvable normal
subgroup inP;.

Lemma2.1 Usingthe above notation letd G{x, y}\ G(X, ¥). Then one of the following
holds
(i) P. contains a unique class of complements toa@id t can be chosen to normalize
such a complement

(i) (n,g) = (4,2 or (n,q) = (3,4 and G(x) does not contain PGJ(4) in the latter
case there are more than one class of complements;tm@®; but t can be chosen to
normalize such a complement

(i) (n,g) = (4, 2) and the amalganiG(x), G{x, y}} is isomorphic to the amalgam of
vertex and edge stabilizers inyacting onI" (Mz3);

(iv) (n,q) = (3,4); G(X) = PSLs(4) and the amalganiG(x), G{x, y}} is isomorphic to
the amalgam of vertex and edge stabilizers in the vertex transitive action gfApt
on2.Ky, as in Theoreni.2 (iv);

(V) (n,q) = (3,4); G(x) = PXL3(4) and the amalganiG(x), G{x, y}} is isomorphic
to the amalgam of vertex and edge stabilizers in the action of M) on Ky, as in
Theoreml.1 (ii).

Proof: If (n,q) = (3, 2) or (3, 3) thenP; = S, or AGL,x(3), respectively and obviously
there is a unique class of complement£toin P;; andt can be chosen to normalize one
of them. In the remaining cases defibgto be the commutator subgroup Ié} so thaitC;
is a split extension o€, by a subgroup isomorphic t8L,_1(q). Let(n, q) # (4,2) and
(n,q) # (3,2M for m > 2. By [3] in this case all complements @ in C3 are conjugate
in Cs. Since every complement ©, in Py is the normalizer irP; of a complement t&€;
in Cz we are again in case (i). Suppose now ftmi) = (3, 2™) where eithem > 3, or
m = 2 andG(x) containsPGLz(4). We claim that in both casds; is non-trivial. Indeed,
in the former casg — 1 # gcd(g — 1, n) and so|K,| > (q — 1)/gcdlg — 1,n) > 1,
and in the latter case it is straightforward to see #at= Z3;. The subgrouX; is a
complement t&C; in C, and it is a Hall subgroup df;. Hence all the complements @&
in C, are conjugate. Sinde, acts fixed-point freely o4, every complement t€; in P,
is the normalizer irP; of a complement t&€; in C, provided that the latter complement is
non-trivial. Hence again we are in case (i).

If (n,q) = (4, 2), then by [3] there are two classes of complement€{o= 23 in
P, = 23 : PSl3(2). Ifthese two classes are permuted by the elements@pmy}\ G (X, y)
thenG{x, y} = Aut (G(X, y)) which immediately shows that the isomorphism type of the
amalgam{G(x), G{x, y}} is uniquely determined. This amalgam corresponds to the action
of Moz 0n I'(Ma3).

Let (n,q) = (3,4) andG(x) = PSls(4) or PXL3(4). ThenP, = 2* : L, where
L = As or S, respectively. By [3] there are four or two classes of complement ia
Py, respectively. If5{x, y} normalizes one of these classes then of course we are in case (ii).
On the other hand iG{x, y} is an extension oP; by an automorphism acting fixed-point
freely on the classes of complements and whose square is an inner automorphism, then its
isomorphism type is uniquely determined in each of the two cases. Na@lyy} is a
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split extension byL of the five-dimensional quotient of the six-dimensional permutation
module ofL. In each of the two cases the automorphism grouf® ©f, y) is factorized

by the normalizers 06 (x, y) in G(x) andG{x, y}. Hence the isomorphism type of the
amalgam{G(x), G{x, y}} is uniquely determined. In both cases the amalgam is contained
in Aut (Myy). O

We next discuss the relationship betweRnand P,. First notice that, even i65(x)°
is a proper subgroup ®*GL,(q), P? inducesPGLy(q) on the points of.. Its subgroup
O, (P2) is elementary abelian of ordgf"~2 and acts fixed-point freely oi(x) \ 1. Also
the subgrouP; is the full preimage inP; of the stabilizer inH = P,/C; of the linea;
Op(P12) has ordeq™~Y+(-2 and its center i, (P1) N Op(Py).

Lemma 2.2 Suppose we are not in cagd) of Lemma2.1 Then there is a bijective
mappinge from I';(X) onto the set of ordered pairs of distinct verticedi(x), such that

¢ commutes with the action of(®) and if (u) = (y, 2) for u € I',(x), then u and y are
adjacent.

Proof: Suppose first thagf = 2. ThenG(x,y) = P; = 2" : PSL,_1(2). Since we
are not in case (iii) of Lemma 2.1, we can choose G{x, y} \ G(X, y) to normalize a
complemeni to C; in P;. Sincet also normalize€; and the latter is the natural module
for N, t induces an inner automorphismif Hencet can be adjusted to centralidéand
C, as well. Thert? is in the center oP; which is trivial. HenceG{x, y} = P; x (t) where
t? = 1 andt is uniquely determined bix, y}. Foru e I'(y) \ {x} definep(u) to be(y, u').

It is easy to see that is bijective and commutes with the action®fx).

Now suppose that > 3. We observed in the paragraph before the statement of the lemma
that P inducesPGLy(q) on the points irk. This means in particular th&® = G(x, Y, 2)
does not stabilize il (x) any vertices other thaypandz. On the other hand, if the mapping
we are seeking exists, théhstabilizes the verten € I'(y) satisfyinge(u) = (y, 2). By
symmetryR = G(X, y, u) andR stabilizes only the verted in I'(y) \ {x}. Conversely, if
R stabilizes a (unique) vertaxe I'(y) \ {x}, then the mag defined byy(u) = (y, 2) has
the required properties.

It is clear thatR fixes a vertexu € I'(y) \ {x} if and only if there is an elemertt €
G{x, y}\ G(x, y) which normalizeR. First suppose that we are in case (i) of Lemma 2.1.
Then all complements t6; in P; are conjugated if?; and we can choogeto normalize
one of them, sayN. SinceN acts transitively orL,(y) we can choos¢ to normalize
the stabilizerN, of 2 in N. SinceN is from the unique class of complements, we have
P> = C1:Nao. Moreover Op(P1) N Op(P») is the centralizer ofO,(N,) in C4, and
(Op(P1) N Op(P2)) : Ny is the stabilizer inPy of a point ini \ {y}, so we can chooseto
be this point.

Finally let us assume that we are in case (ii), (iv) or (v) of Lemma 2.4fer2. Then
(n,q) = (3,4), G(x) = PSl3(4) or PXL3(4), andP; = 2% : A5 or 2* : S;, respectively.
There is a unique class of index 5 subgroup®jrand Py, is one of them. Hence we can
chooset to normalizeP;,. There are exactly two elementary abelian subgroups of order
2% in Oy(Py2). One of them iLC; and the other i€,(P,;) = O,(R). Sincet normalizes
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C; it normalizesO,(R). Finally R is the full preimage of the normalizer of a Sylow 3-
subgroup inPy5/02(R) = A4. Hence we can choodeto normalizeR and the result
follows. ]

3. A characterization of I'(M 23)

LetT be a locally projective graph of girth 5 which corresponds to case (iii) of Lemma 2.1
with respect to a 2-arc transitive subgroGpof automorphisms of'. We show in this
section that under these conditidns= I"(M»3) andG = Moa.

If ' corresponds to case (iii) of Lemma 2.1, th&iix) = PSL(2); G(X,y) = 23 :
PSls(2); G{x, Yy} is a split extension of an elementary abelian subgrQupf order 2
by PSl3(2) and Q is an indecomposabléF(2)-module forPSLs(2). Now Oy(G(X, Y))
stabilizes setwise every line fromm (y) U Ly(x), while PSLz(2) = G(X, y)/O02(G(X, y))
induces orL(y) and onLy(x) two equivalent natural actions of degree 7. Hence there is
a unique bijectionyyy of L (y) ontoL(x) which commutes with the action @(x, y).

By Lemma 2.1 (iii) the amalgafG(x), G{x, y}} is isomorphic to the amalgafM (x),
M{x, y}} associated with the action & = M,3 onT'(Ma3). LetI" be the covering tree
of I' and letG be the free amalgamated product®fx) andG{x, y} acting naturally on
['. ThenI is also a covering tree df (M,3) andG is the free amalgamated product of
M (x) andM{x, y}. This means that every local property of the actioGasnT" (that is, a
property shared with the action 6fon[") is also shared with the action ofMon T (Mys3).
This applies in particular to the action &f(x) on I'>(x) and to the action 06 (x, y) on
rxyury).

Asusual, let. = {y1 =Yy, Vo =z, y3} € Ly and set

3
A= G UL ey ).

i=1

The properties of"(My3) stated in the next lemma follow from standard facts about the
action of Mp4 0n S(5, 8, 24) and from the Petersen type geometry structure associated with
I'(My3), see [13].

Lemma 3.1 Letl’ = TI'(My3) and G= Mys. Then

(i) the subgraph induced dy on A is isomorphic to the Petersen graph

(i) G{A} = 2%: 3 x As) : 2, G{A}/G(A) = S, the center of GA) is trivial and G(A)
acts transitively o' (x) \ A.

SinceG is 2-arc transitive anfi is of girth 5, there are € I'(y) \ {X} andv € I'(2) \ {x}
which are adjacent. Sgt:= yryx(ly(U, X)), v := Yzx(l2(v, X)).

Lemma 3.2 LetT" be an arbitrary locally projective graph of girth with respect to a
2-arc transitive subgroup G of automorphismsIgfand suppose that corresponds to
case(iii) in Lemma2.1 Then
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(i) G(x,Y,u) acts transitively on the Cartesian produgt \ {y}) x (I'(x) \ u);
(i) w=v=2x
(iii) the subgraph induced dy on A is isomorphic to the Petersen graph.

Proof: Since the action o6 on T is locally isomorphic to that of iy on I"(My3), part
(i) follows directly from Lemma 3.1.

To prove part (ii) suppose first that=v. Thenu containsz and hence must be equal
tolx(y, 2) =A. So we may assume that# v. Notice thatG(x, y, z, u) must fixv since
otherwise there would be more than one 2-arc joiniagdz which is impossible, since the
girthof I"is 5. Hence5(x, Y, z, u) stabilized, (v, x) and alsa. Suppose that = . Then
by part (i),G (X, vy, z, u) acts transitively o"(x) \ u and hence it does not stabilizelity
any lines other thap = A, which is a contradiction. Henge# A. Because of the obvious
symmetry betweeg andz, alsov # A, and squ, v anda are pairwise distinct. LeE be the
hyperplane iffly which contains. andu. By (i), G(X, Y, z, u) acts transitively om \ {y}
which means thaG(x, y, z, u) does not stabilize lines iB not passing througi. Hence
v does not lie inE. Finally, G(x) N G(E) (which is the same a&(E) since there are no
4-cycles inl) permutes transitively the eight pointslirix) \ E andG(X, y, z, u) N G(E)
has index at most 2 i6(x) N G(E). HenceG(x, vy, z, u) does not stabilize lines outside
&, which is a contradiction. Thus part (ii) holds.

Now by (i) and (ii) it is easy to observe that the subgraph induceld by A is regular of
valency 3, girth 5, with 10 vertices. Hence it is isomorphic to the Petersen graph and (jii)
follows. |

Lemma 3.3 LetI be alocally projective graph of girth which corresponds to cagi)
of Lemma2.1 with respect to a subgroup G of automorphismsliaf ThenI" = I'(Myg)
and G= Mya.

Proof: Let A be the Petersen subgraphlinas in Lemma 3.2 (iii). By Lemma 3.1
and since the actions @ onI" and of Mz on I'(My3) are locally isomorphic, we have
(G(x) NG{A})* = S5 x Z,. Furthermore, one can see thatonsists ofx, y}, A, ¥xy (1)

and the vertices on the shortest paths joining vertices fkotm vertices fromyyy(1).
This observation shows that there existe G{x, y} \ G(X, y) which stabilizesA as a
whole. HenceG{A}/G(A) = Ss. We claim that the isomorphism type of the amalgam
G = {G(x), G{x, y}, G{A}} is uniquely determined. Indeed, the isomorphism type of the
amalgam{G(x), G{x, y}} is uniquely determined. Hendg{A} is a homomorphic image

of the free amalgamated produetof G(x) N G{A} andG{x, y} N G{A}. LetK be the
corresponding kernel. Since the centeiGyfA) is trivial andG{A}/G(A) acts faithfully

on G(A), we haveK > Cg(G(A)). On the other handr/(G(A)CE(G(A))) = Ss.
HenceK = Cg(G(A)) and the isomorphism type ¢f is uniquely determined. Thus

is isomorphic to the analogous amalgavh associated with the action of Mon I"(M3).

By the main result of [13] the Petersen type geometry associated\@iths) is 2-simply
connected. In accordance with a standard principle (cf. Section 12.4.3 in [17]) this is
equivalent to the fact that p4 is the universal completion of the amalgav. Since M
andg are isomorphic and M is a non-abelian simple group,Jlis the unique completion

of the amalgang; and the result follows. O
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4. The geometrical subgraphs

From now on we assume that, for everg I, there is a bijectio of I'>(x) onto the set
of ordered pairs of distinct vertices In(x) which commutes with the action & (x) and,
if o(u) = (y, 2), thenu andy are adjacent (see Lemma 2.2).

Leto be a subspace ifik of projective dimensiom — 1, where 2< m < n. Consider
the subgraph in" induced by the fixed vertices of the pointwise stabili&ge) of o in
G. Let ¥ = X[o] be the connected component of this subgraph contairintn what
follows the subgrapit[o] will be called thegeometrical subgraplorresponding te .
SetH = G{X}* be the action induced bg{=} on .

Lemma 4.1 With the above notatiolX is a locally projective graph of typem, q) with
respect to H. The sef (x) of vertices adjacent to x i& coincides withr. The action of
H (x) on this set is faithful and if i< n — 1 then H(x)*® contains PGk, (q).

Proof: Sincer is locally projective with respect t& and every point ofll« fixed by
G(o) is in o, we see thak (x) = o and thatH (x)*® containsPGLy,(q) provided that
m < n — 1. Hence the elementwise stabilizer»fx) in G coincides withG(c) which
fixes by the definition every vertex &. Thus all we have to show is that acts vertex-
transitively onX. Suppose thay € o. Then a poinu € I'(y) \ {x} is fixed byG(o) if
and only ifp(u) = (y, w) with w € o. Itis easy to observe that the pointsIify fixed
by G(o) form a subspace’ of projective dimensiom andG(c) = G(o’). Now since
G is vertex-transitive o™ and G(x) acts flag-transitively only, it follows thatH acts
vertex-transitively ork. O

In the rest of the paper we shall ugeto denote the geometrical subgraph= X[1]
defined with respectto the line={y1 =y, Yo =27,..., Yg+1}-

Lemma4.2 Every cycle of length passing through th-arc (y, X, z) is contained inA.

Proof: SinceG is 2-arc transitive and the girth @fis 5, there is a verted € I'(y) \ {X}
which is adjacent to a vertaxe I'(2) \ {x}. Letp(u) = (y, t) andg(v) = (z, s). To prove
the lemma we have to show that botnds are contained ih. Suppose that¢ A and letu
denote the plane il which contains. andt. Observe thaG(x, y, z, u) = G(X, Y, z, 1)
must fixv ands, since otherwise there would be more than one 2-path joinamgdz which

is impossible since the girth ¢fis 5. Hences is contained inb \ {z} where® is the set of
vertices in"(x) fixed by G(x, y, z, t). It follows from basic properties of projective linear
groups that one of the following holds:

() g=3and® = {y, z t};
(i) g=2andd = u.

If s = t, thenG(x, t) acts doubly transitively o sincet ¢ A. Hence the vertices
w € IM'2(xX) with (w) = (r,t) forr € A must be pairwise adjacent, which is impossible
since the girth of" is 5. If s = y thenG(X, y, z, s) = G(X, Y, z) and every vertex’ with
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) = (y,t), for somet’ ¢ A, must adjacent to both andv. So in this case we would
have 4-cycles if". This rules out case (i).

Now we turn to case (ii). Without loss of generality we may assumerthat3, that is,
that the geometrical subgrapt ] is the whole ofl". Let ® denote the graph oFi,(x)
in whichu andv are adjacent if they are adjacentlimand if they are not contained in any
of the images of"2(x) N A under elements dB(x). Then® is a graph on the 42 ordered
pairs of points of the projective plane of order 2 which is invariant under the natural action
of PSLs(2). In addition the valency of is at most 6 (since the valency Bfis 7) and the
girth of © is at least 5. We claim that such a graph has no edges. Cleanust be a
union of orbitals ofG(x) = PSlg(2) onT'y(x). Elementary calculations with characters
show that the rank of the action is 15 and that exactly 7 of the orbitals are self-paired.
MoreoverG(x, y, z) stabilizes exactly 6 vertices if,(x), namely those contained .
By the definition of® the corresponding 6 orbitals of valency 1 are not involve®inlt
is easy to see that exactly 4 of the orbitals of valency 1 are self-paired. This implies that
the remaining 9 orbitals all have valency 4 and exactly 3 of them are self-paired. If
involved a non-self-paired orbital of valency 4 it would also involve its paired orbital which
is impossible since the valency 6fis less than eight. The self-paired orbitals of valency
4 are the following:

Ri={(y,1),(z,9) [t =5, t ¢lx(y, 2D}
Re={(y,1),(z,9) | y=12 s¢Ix(y,D};
Rz = {(y, 1), (z,9) | Ix(y,t) Nlx(z,5) N {y, t, 2, s} = 7}

Itis easy to see that the orbital graph associated with each of the above three orbitals has
girth 3 and the claim follows. Thu® has no edges, and the lemma is proved. |

5. Wells subgraphs

As in the previous section let be the geometrical subgraphlirdefined with respect to the
linel={y1=Y,¥2=2Vs,..., Yq+1}. By Lemma 4.1 A is alocally projective graph of
type (2, q) with respect to the action dfi = G{A} andH (x)2® containsPGLy(q). By
Lemma 4.2 the girth oA is 5.

Lemma5.1 Every2-arc of A is in exactly a cycles of lengtth, where a is independent
of the2-arc and equald, g — 1 or q. The stabilizer in H of &-cycle induces the dihedral
group Dyp on the vertices of the cycle. Moreoyéira, = q, then g= 2 and A is the
Petersen graph.

Proof: SinceH acts transitively on the 2-arcs af, the number of cycles of length 5
containing a given 2-arc is a constamt independent of the 2-arc. Late A,(x) such
thate(u) = (y, 2. ThenH (x, u) = H(X, vy, 2) acts transitively on. \ {y, z}. On the other
hand, for 2<i < q + 1, the 3-arqu, y, X, ¥;) is contained in at most one 5-cycle, since
the girth of A is 5. Thusa, equals 1q — 1 orq.
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Let C be a 5-cycle containingx, y, u), and note that there exists an elemieim H (y)
interchanging« andu. If a, = 1 orq — 1 thenH (x, u) acts transitively on the 5-cycles
containing(x, y, u), and so we may assume tiefixesC setwise. It follows thaH {C}¢ =
D1o. Finally, ifa, = g thenA is a Moore graph of valenay+ 1 and hence (see [4, p. 207])
it is the Petersen graph and we ha¥¢C}¢ = Dy in this case also. O

Already the available properties & are strong enough to restrict dramatically the
possibilities for the isomorphism type @, but we shall exploit further the fact that
appears as a geometrical subgraph in a larger locally projective graph. We will show that
A must be isomorphic to the Wells graph of valency 5 on 32 vertices, sq thad.

Let « be a plane containingandF = G{X[u]}, whereX[u] is the geometric subgraph
defined with respect tp. (The definition ofX[u] is given before Lemma 4.1.) We will
study the natural homomorphism frof{A} into the automorphism group @,(F (A)).
Without loss of generality and to simplify the notation we assumertkat3 which means
thatyu = Iy andF = G. In this caséG(A) is a split extension of := Op(G(A)), which
is elementary abelian of ordgf, by a cyclic subgroufK such thatq—1)/gcdq—1, 3) <
|IK| < (g—1). Let& denote the natural homomorphism fr@4A} into the automorphism

group of Q.

Lemma 5.2

(1) 1fq # 4then&(G{A}) = §(G(x) N G{AD);

(i) ifg =4withTI" and G corresponding to cag®) or (v) of Lemma2.1thens (G{A}) =
S.

Proof: Suppose first thag # 4. If g = 2 thens(G(X) N G{A}) = PSL(2) = Aut (Q)
and the claim is obvious. So we may assume that the cyclic subdgtdnpG(A) is non-
trivial. Observe that in this case gf= p™ for an integem, then|K | does not dividgp? — 1
fora < m. ltis clear that (G{A}) normalizes (G(A)) = K and by the above observation
we haves (G{A}) < I'Lo(q). Onthe other hand (see Lemma &1 (x) NG{A}) contains
eitherGL,(q) or a subgroup of index 3 iGL2(q). This shows that(G(x) N G{A}) is
normal inT'L,(q) and hence i§(G{A}) as well. LetC = (x, Y, U, v, 2) be a 5-cycle in
A. By Lemma 5.1 there are elememtands in G{A} which induce orC the permutations
(X, ¥)(u, 2)(v) and(x)(Y, 2)(u, v), respectively. Note thdatgenerate§{A} together with
G(x) N G{A}. On the other hands induces a 5-cycle o€ and so we may choogeto
be a conjugate of by an element ofts) € G{A}. Then, sinces € G(x) N G{A} and
£(G(x) N G{A}) is normal ing(G{A}), it follows that&(t) € £(G(x) N G{A}), and part
(i) follows.

Now suppose thafg = 4 and we are in case (iv) or (v) of Lemma 2.1. In this case
Q is elementary abelian of ordef 2nd henceA := Aut (Q) = PSl4(2) = Ag. Let
N1 = G(x) N G{A} and N, = G{x, y} N G{A}. Then itis clear thalN; = Ngx) (Q)
and Nz = Ngx.y3(Q). ConsiderA; = N;/Cy,(Q) and A, = N,/Cy,(Q) as subgroups
in A. SinceG{A} is generated by; andN,, £(G{A}) is the subgroup irA generated by
A; and A,. Itis easy to see that the subamalggii, A.} in Ais uniquely determined by
the isomorphism type of the amalgd@(x), G{x, y}} (i.e., it is independent of particular
choice ofthe completio® of the amalgam). By Lemma 2.1 A(l,,) is a completion of the
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amalgam{G(x), G{x, y}}. Itis easy to observe that@ = Aut (M»,) thenG{A} = 2*: S5
is the stabilizer of a block of the Steiner syst&(8, 6, 22) and Q = O,(G{A}). This
specifieq A;, Az} uniquely and hence(G{A}) = S; for any completiorG. |

Lemma 5.3 If g # 4 then there is a normal subgroup N of{G}/G(A) which acts
regularly on the vertices oh.

Proof: By Lemma 5.2 it follows thatG{A} = Cga(Q)(G(x) N G{A}), and hence
that Cg)(Q) is transitive on the vertices ak. Moreover,Cgi2(Q) N G(X) = Q C
G(A), and soCgia}(Q) acts regularly on the vertices @&. Thus the subgroufN :
Csia}(Q)G(A)/G(A) has the required properties.

o

We now come closer to our first objective of showing tiafis the Wells graph, by
showing that either this is true, @& is a pentagraph. A connected graphis called a
pentagraphf it has girth 5, and contains a collectidh of 5-cycles such that every 2-arc
of A is contained in a unique cycle .

Lemma 5.4 One of the following holds:
(i) A is a pentagraph of valency at mdst
(i) A is the Wells graph of valen&on 32 vertices.

Proof: We consider the possible valuesafgiven in Lemma 5.1. I, = g then by
Lemma 5.1, = 2 andA is the Petersen graph. Since neither of the 2-arc transitive
automorphism groups of the Petersen graph has a normal subgroup acting regularly on the
set of vertices, this possibility cannot be realized by Lemma 5.3.

Suppose next tha = 1. Then every 2-arc oA is in a unique 5-cycle and there are no
cycles of length less than 5. Thus, by definition of a pentagrapk,a pentagraph which
is a locally projective graph of typ@, q). SinceH (x)2® > PGLy(q) (by Lemma 4.1), it
follows from the main result of [18] that < 4. Thus part (i) holds.

Finally, suppose that, = g — 1 > 1. Then every vertex oh,(X) is adjacent to exactly
one vertex ofAz(x) (by the same reason used inductively we observe that the action of
G{A} on A is distance-transitive). In particuldt (x) acts transitively om3(x). Letcs
denote the number of vertices&p(x) adjacent to a given vertex df3(x). Letu € A,(x)
with ¢(u) = (y, 2) andw € A(X). Then the distance fromtow in Ais Lifw =y, 3if
w = zand 2 otherwise. Let € Ay(X) N A(u) andg(v) = (a, b). From what we have
just observeda # vy, z, and by symmetry # a, b. Also if z = b then, sincey > 2, we
find (by considering the actions & (x, y, z2) and H (x, a, 2)) that A contains a triangle
(u, v, w), wherep(w) = (c, z) for somec € A(x)\ {y, z, a}. Sincerl has girth 5, we must
therefore have £ b. Thus the intersectiofy, z} N {a, b} must be empty. This shows that
each of thay — 1 vertices inA,(x) adjacent tau, and also the vertey, are inA,(z). Hence
C3 = Q.

Suppose that; = g + 1. ThenA3(x) has sizeg andH (x) > PGLy(q) acts faithfully
and transitively on this set. By [8, Section 268]= 5, 7 or 11, and sinc®GL,(q) acts,
only g = 5 is possible. In this casA is a distance-transitive graph with intersection
array {6, 5, 1; 1, 1, 6}, and hence (see [4, p. 223} is the graph(6 - K;); induced on
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the set of 42 points at distance 2 from a given vertex in the Hoffman-Singleton graph and
Aut (A) = S;. Again, since neither of the 2-arc transitive automorphism groups of this graph
has a normal subgroup acting regularly on the set of vertices, this possibility contradicts
Lemma 5.3.

Thusc; = q, |[A3(X)| = q + 1, andH (x)/H (A) acts naturally and doubly transitively
on this set. Now it is easy to conclude thiats a distance-transitive graph with intersection
array{q+1,9,1,1;,1,1,9,9+1}. If g =4 thenA is the Wells graph (cf. [4, p. 223]), so
suppose thag # 4. From the intersection array we see thais antipodal with antipodal
classes of size 2. Lek be the antipodal quotient af. ThenA is distance-transitive of
diameter 2 with intersection arrdg + 1, q; 1, 2}. By Lemma 5.3H acting onA has a
regular normal subgrouN. Forw € A let w denote the image ab in A. We can identify
i € N with the vertexx". The vertices il\,(X) are the antipodal classes of size 2 contained
in Ay(x). By Lemma 2.2 the vertices in,(x) are indexed by the ordered pairs of vertices
in A(X). Itis easy to see thatl (x) > PGLy(q) preserves a unique equivalence relation
on A,(x) with classes of size 2. The classes of this relation are indexed by the unordered
pairs of vertices im\ (x). Hence the vertices in,(X) = A \ ({X} U A(X)) are indexed by
the unordered pairs of vertices i(x). We claim that the exponent ®f is 2. In fact by
the above description for any € A \ {X} the subgrougH (X) N H () does not stabilize
vertices inA other tharx andw. On the other hand i@ (considered as an element )
had order greater than 2 thef(x) N H () would stabilizen?, a contradiction. Hench is
an elementary abelian 2-group. This means M a quotient of th&SF(2)-permutation
module forH (x)2® andA is a quotient of théq + 1)-dimensional cube. Sinde (x)2® is
triply transitive, A must be the halved cube (cf. [13]). The hal\gd- 1)-dimensional cube
has intersection arrajg + 1, g; 1, 2} if and only if g = 4. This contradiction completes
the proof. ]

Now to obtain the main result of the section it remains to show shdbes not satisfy
case (i) of Lemma 5.4, i.e., that cannot be a pentagraph.

We start by defining a series of pentagraphs coming from a class of Coxeter groups.
Let Hy denote the Coxeter group generated by involutigns = 1, ..., k, subject to the
relations(g e;))™ = 1, wherem;; = 2if [i — j| > 2,m;; = 3if |i — j| = 1 and both
i <kandj < k, andmg_1x = mgx—1 = 5. Itis well known thatH; = As x 2 (the
automorphism group of the dodecahedrdd);= (SLy(5) * SLy(5)).2 (wherex denotes
the central product) anH is infinite fork > 5. LetH,}, HS andH be the subgroups in
Hy generated by all the generators exceptgrey_1 ande_», respectively. Definé to
be the graph with vertices the right cosetsHjf in Hy such that two cosets are adjacent if
and only if they intersect non-trivially the same right coset¥§f Then (cf. [10])Hk acts
2-arc transitively omA and the stabilizer of a vertex induces the natural action,adrs
the adjacent vertices. Moreover, every 2-arc is in a unique 5-cycléHgrid the setwise
stabilizer of one of these 5-cycles. Notice thatis just the dodecahedron. LEt" be the
index 2 subgroup iHx which contains the products of even numbers of generators only.
ThenH,! acts naturally omy and the vertex stabilizer induces An the set of adjacent
vertices. ClearlyHyx containsH, for | < k in the obvious way. We will make use of the
following result.
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Lemma 5.5 Every non-trivial homomorphic image of:Hcontains an element of order
15.

Proof: Let K be a normal subgroup dfi". By definition, Ho is the subgroup oHs
generated by the elements := g¢ej, for1 <i < j <5. It follows from the presentation
given for Hs that f1, has order 3,f45 has order 5, and the commutatdi], fss] = 1. If
K N (fy, fss) = 1 then H5+/K contains an element of order 15, for examp{e f4sK.
Suppose then tha& intersectd f15, f45) hon-trivially. ThenK contains eitherf;, or fs5
or both. SetS, = (f12, fos, f34) and$ = <f34, f45>. ThenS = S = As. SinceK
containsfy, or f4s atleast one oK NS, andK N S is non-trivial. Hence, sinck N S is
normal in§ and§ is simple, at least one &, $ is contained irK. Then, sinces N S
containsfzs, bothK N S andK N S are non-trivial, and so botf, andS are contained
in K. Itis not difficult to see that, forall x i < j <5, fj; belongs to(S;, &) which in
turn is contained irK. HenceK = Hg". O

The following result (cf. [18, 10]) characterizes the locally projective pentagraphs of
type (2, q) withq < 4.

Proposition 5.6 LetX be a pentagraph of valency#g1 with q < 4, and let F be &-arc
transitive subgroup of automorphisms®f Suppose that £&)*® contains PGk(q) as a
normal subgroup. Then one of the following holds

(i) = isaquotient ofAq1 and F is a factor group of either H 1 or HJH;

(i) g=3andPSkL(1]) < F < (PSL(1) x 3).2;
(i) g =4and F is isomorphic to PSI31).

Lemma 5.7 The subgraph\ is isomorphic to the Wells graph.

Proof: By Lemma 5.2 and its proof there is a homomorphisof F := G{A}/G(A)
into the automorphism group of an elementary abelian group of @ftisuch that either
the image containBGL,(q) as a normal subgroup, gr= 4 andé(F) = Sg. Suppose that
A is not the Wells graph. Then, by Lemma 544 s a pentagraph of valenay+ 1 < 5,
and soF = G{A}/G(A) satisfies one of (i)—(iii) of Proposition 5.6. Itis obvious that there
is no such homomorphisgin any of these cases except wheis a factor group oHs or
HZ . In these latter cases we have a contradiction by Lemma 5.5. O

Thus we have established the following:

Proposition 5.8 LetI" be a locally projective graph of typ@, q), n > 3 of girth 5 with

respect to a2-arc transitive subgroup G of automorphisms bf such that G(x) = 1.

Then either

(I) I' = I'(My3) and G= Mys; or

(i) g = 4 and the geometrical subgraph of valensyn I" is isomorphic to the Wells
graph.
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6. The structure of W(n)

From now onI" will be a locally projective graph of typé, 4) with respect to a 2-arc
transitive subgrouf of automorphisms df', such that the geometrical subgrapllefined
with respect to the liné = {y; =y, Yo = Z, ¥3, Va4, Y5} is isomorphic to the Wells graph.

The Wells graph is the unigue distance-transitive graph with intersection{atréyl, 1;

1,1, 4,5}. An elementary description of this graph may be made as follows. Consider the
dodecahedrod as a solid body in three-dimensional space. There are exactly ten 4-subsets
Ti, 1 <i < 10, of vertices oD which are the vertex sets of tetrahedrons. Under the action
of the rotation grougR = A5 of D, these tetrahedrons split into two orb@®g andO,, each
of length 5. The vertices of the Wells graph may be identified with the verticBs thfe ten
tetrahedrong;j, and the orbit®;, O,, with adjacency being the natural adjacency relation
in D and setinclusion as appropriate. The full automorphism group is an extensiafby
the extraspecial groug?* of order 32 of minus type. The Wells graph has antipodal classes
of size 2 and the folded graph is the folded five-dimensional cube whose complement is
known as the Clebsch graph. The following two results are straightforward.

Lemma 6.1 Let A be the Wells graph and let H beZaarc transitive subgroup of auto-

morphisms ofA. Let xe A and{x, y} € E(A). Then

(i) H isthe full automorphism group &, it is a semidirect product of a normal subgroup
N = 2Y% and H(x) = As;

(i) Hx, y) = Asand H{x, y} = H(X, y) x (txy) where %y is an involution from N.

Lemma 6.2 Let X be a coset of Ain S5, so that X consists of either all the even
permutations or all the odd permutations obalement set. Let M be a group generated
by five involutionsis 1 < i < 5, subject to the relation,$1S:2) - - - Sz5y = 1 for every
permutationr € X. Then M= 2** andifo € S\ X thens1)S, (2 - - - S5 IS the unique
non-trivial element in the center of M.

Lemma 6.3 LetI’ and G be as above. Then
(i) G(X) = PSL(4) or PGL,(4);
(ii) either G(x,y) = 22D : GL,_1(4), or G(x) = PSL,(4), n is divisible by3, and
G(x,y) = 22D : SL, 1 (4);
(i) G{x,y} = G(X,y) x (txy), where §y is an involution which is the unique non-trivial
element of the center of (&, y};
(iv) if v e T'(y) \ {x} with ¢ (v) = (y, w) then t, mapsw ontov.

Proof: SinceA is the Wells graph, by Lemma 6.6,(x) N G{A} induces A on the points

of 1. Thus part (i) follows and immediately implies part (ii). To prove part (iii) assume first
thatn = 3. By Lemma 6.1G{A}/G(A) = 217 : As. Let Q := O,(G(A)) = 2* and let

& be the natural homomorphism froB{A} into Aut (Q) = PSLy(2). Thenitis clear that
£(G{A}/G(A)) = As and by Lemma 5.2 (i) we are not in case (iv) or (v) of Lemma 2.1.
This means that we can chodse G{x, y} \ G(X, y) such that normalizes a complement

K to O,(G(x, y)) in G(X,y). If t can be chosen to centralizg, then it is easy to see
that (iii) follows. OtherwiseG{x,y} = 2*: Ssor 2* : 3: S;. SinceG{x, y} N G{A} is
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of index 5 inG{x, y}, it must be isomorphic, respectively, t6 2S, or 2* : 3 : S, and
|02(G{x, y})| = 25. Onthe other hand by Lemma 6.1 (iB{x, y} N G{A} = 2* : (A4 x2)

or 28 : 3 : (As x 2) and|0x(G{x, y})| = 27 (notice thatt(G{A}) = As). Thisis a
contradiction, so we have proved part (iii) for= 3. If n > 4 then we may still choose
t € G{x, y} \ G(X, y) to normalize a complement = SL,_1(4) to O(G(X, y)) in the
commutator subgroup @ (x, y). Consider the geometrical subgraptin I" defined with
respect to a plane containingand stabilized by. Since part (iii) is proved for the case
n = 3, one can easily see thatannot induce a non-trivial field automorphism knand
hence can be chosen to centralikeand part (iii) follows. FinallyG(x, y) acts transitively
on the set of pairs

Pz{{yi,ui}‘wui):(y,yi), 2<i< m }
4

andtyy centralizes this action. Sinep= 4, G(X, y, z) does not stabilise il (x) vertices
other tharny andz. Thisimplies that different pairs iR have different stabilizers iG (x, y).
Hence the action df, on P is trivial and part (iv) follows. O

In what follows, for 1 < i < []]a, we sett; := tyy, the involution defined as in
Lemma 6.3 (iii) forG{x, y; }, and letT be the subgroup d& generated by the elemerits
i=1...,[7a

Lemma6.4 Let N=(t | 1 <i <5). Then one of the following holds
(i) N=2"*and N acts regularly on the vertex setf
(i) n=3, G(x) = PSlg(4) and N contains GA).

Proof: Since A is the Wells graph, by Lemma 6.1 the action inducedNbyon A is
isomorphic to 24, Let L be the kernel of the action. It is clear thatis contained in
G(A) andL is normal inG{A} N G(x). By Lemma 6.3 (iii))t; commutes withG(A) for
1 <i <5andhencd is in the center of5(A). If n > 4 orn = 3 andG(x) = PGL3(4)
then the center dB(A) is trivial and we are in case (i). In the case= 3, G(x) = PSlz(4)
the action ofG{A} N G(x) on G(A) is irreducible and hence if we are not in case (i),
should be equal to the wholg(A). O

Lemma 6.5 The casdii) in Lemmab.4is impossible.

Proof: The result follows from the triviality of groups defined in terms of generators
and relations which are implied by the conditions in Lemma 6.4 (ii). Nan@&ly) =
PSL3(4) and by Lemma 6.3 (iii}G{x, y} = G(X,y) x (t1). This specified the amalgam

B = {G(X), G{X, y}} up to isomorphism. Moreover, for4 i < 5 the element, is equal
tots" whereg; is an element i (x) which mapsy = y; ontoy;. Notice that the embedding

of G(x) into PT"L3(4) and the fact tha®{x, y} is a direct product shows that the amalgam
B possesses an automorphism which normalizes thétsds, t3, t4, ts} and induces an
odd permutation on this set. In view of this symmetry and sincis the Wells graph,

by Lemma 6.2 we can assume without loss of generality that the prgduet; totststs is
containedirG(A). Ifthe productisthe identity elementthenwe areincase (i) of Lemma6.4.
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Otherwiseq is one of 15 non-trivial elements iG(A) and we arrive with 15 possible
presentations. A coset enumeration with explicit presentations (cf. Section 8) performed
by L.H. Soicher has shown that each of the 15 presentations defines the trivial group.

Let ' be the covering tree df, and letG be the free amalgamated product®¢x)
andG{x, y} over G(x, y) acting naturally or". For an edgdd, } let f;; be the unique
non-trivial element (involution) in the center of the stabilizeGrof this edge. Lek be a
preimage ofk in I, and let{§, ¥», . .., Yip1,} be the set of vertices adjacenttan I. Set
fi :=fzy,, for 1 <i <[7]4, and letT be the subgroup db generated by these elemefits

Lemma 6.6
(i) T acts transitively on the vertex setiof
(i) T isnormalinG andT NG(x) = 1;
(i T is freely generated by the involutiofigor 1 <i < [11a-

The proof of the lemma uses the notion of permutation isomorphism of permutation
representations. We say that permutation representatios — Sym(2) anda’ : G’ —
Sym(2') (of groupsG andG’ on setx2, Q' respectively) ar@ermutationally isomorphic
if there exist a bijectiorp : @ — Q' and an isomorphism : (G)a — (G')&’ such that,
forallge Gandalli € Q, (i 9%)¢ = (ip) @,

Proof: We prove part (i) by induction. Leb be the orbit off containing® on the vertex
set of [". Clearly every vertex adjacent fois in ®. Suppose tha® contains all vertices
whose distance from is less than or equal to. Let? be at distanc& + 1 from X and let
(0, ...,0,X) be a path of shortest length joinifigandX. Thend = ¥; for somei and the
image ofd underf; is at distanceé from %. Thus?', and hence alsé, lie in ©. Part (i)
now follows by induction.

LetQ ={1,2,...,[}]s}. We will construct a homomorphism & into Sym(2) whose
kernel isT. The bijectiony; — i is such that the mapping : G(x) — Sym(Q2) defined
byi @« = jifand only if y? = yj, for g € G(x), is a permutation representation®fx)
on © which is permutationally isomorphic to the permutation representatidB(gj on
I'(x). Also the bljeCtIOI’l{y,, '} i is such that the mapping : G{x, y} — Sym(Q2)
defined byi @# = j ifand onIy if {y?, y,lg} ={yj, yllg} for g € G{x, y}, is a permutation
representation oG{x, y} on  which is permutationally isomorphic to its permutation
representation on

{ i, v} ‘i =2,...,|:ﬂ4}.

Note that the imag€G{x, y})8 is contained in the stabilizer of the point 1 in Sg@).
Note also that the restrictions efandg to G(x, y) are identical. Hence andg define a
homomorphisny of the free amalgamated produstof G(x) andG{x, y} into Sym).
Let K be the kernel of . Itis clear thatk containsT and so, by part (i)K is transitive
on the vertex set of'. On the other hand the restrlctlon pfto G(x) is an isomorphism.
HenceK acts regularly on the vertex set PfsoK =T and part (i) follows.

SinceT acts regularly on a tree, it is easy to see that part (jii) holds. m|
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It follows from the above lemma that the trEenay be considered as a Cayley graph for
T with respect to the generating 4ét| 1 < i < 114}

By the definition ofG there is a group homomorphisgp: G — G, corresponding to
the graph covering’ — T'andy(f) =t for1 <i <[7]s. LetN = (f |1 <i <5). By
Lemma 6.6 (iii),N is freely generated by these five involutions and there is a subgroup of
the automorphism group o which is isomorphic to $and which permutes naturally the
generatordy, ... fs. Let X3 and X; be the cosets of &in Ss. For j = 1,2, letK; be the
smallest normal subgroup &f such thatk; contains the products )t ) .. . fx(s) for all
m € Xj. By Lemma 6.2 we have the following.

Lemma 6.7 Let N be as in Lemm@.4 andv be a homomorphism df onto N which
maps{fi | 1 <i <5} onto{t; | 1 <i < 5}. Then the kernel of is either K; or K.

Forj =1, 2, letR; be the smallest normal subgrou@tontaininng. By Lemma6.7
we have the following.

Lemma 6.8 The kernel of the homomorphism: G — G contains Rforj=1or2

Thus, forj = 1 or 2,K; is contained irl and the latter is normal its, and henceR;
is also contained iff . We may conside6 as a semidirect product df by G(x) = G(R).
The latter acts as a permutation group on theldet {f |1 <i < [1]4} of generators
of T preserving orD a projective space structure isomorphiclig. Let B be the full
automorphism group ofly, that isB = PI'L,(4). Then the semidirect produ& of T
by B containsG as a normal subgroup. Since the setwise stabilizeriofB induces §
on the points oft, the normal subgroupR; and R, are conjugate ifB. In particular the
groupsT /R, andT /R, are isomorphic.

Next we shall determine the structure'f)f R, whereR ;= RiR,. Firstof all if K :=
K1Ky then, by Lemma 6.2, := N/K is an elementary abelian group of ordér SinceL
is abelian, itis a quotient dfl := N/N’ = 25. In turn N may be considered as t&(2)-
vector space of all subsets bf(considered as a set of size five) with addition defined by
the symmetric difference operation. Theris the quotient oN over the one-dimensional
subspace consisting of the improper subsets(tiiat is, the empty set and the gatself).
Since any two points ofl, are collinear, every pair of the generatorsirare contained
in a conjugate oN and hence their images ih/R commute. This means that/R is
abelian and so it is a quotient &f := T/T® whereT® = [T, T]. We may identifyT
with the GF(2)-vector space of all subsets of the point seflgf The image oK in T is
one-dimensional and containgconsidered as a subset of pointdbf). ThusT /R is the
quotientT /M, whereM is the subspace generated by all line$Igf It is well known and
easy to see (cf. [14]) that this quotient is always non trivial. Léte the Cayley graph of
T /R with respect to the imagB R/R of D. Thenr is a quotient of thef]] -dimensional
cube. LetW(n) be the Cayley graph of /R; with respect to the imag® R;/R; of the
generating seb. Then obviously there is a graph coveriag W(n) — T. In particular
W(n) is locally projective of type(n, 4) with respect to the semidirect product fif/ R:
by G(x). Moreover,p is a proper covering unled®; = R, = R. If ¢ is proper then
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N N Ry = Ky, Ky is of index 2 inK and the images ifi /R, of thef, for 1 < i < 5,
generate the extraspecial grou2 This means that the geometrical subgraphMn)
defined with respect ta is isomorphic to the Wells graph. It is easy to see that in this
caseW(n) does not have cycles of length less than 5, that is, the girth of the graph is
5. We summarise the above discussion in the following proposition which also implies
Theorem 1.4 (ii) (a).

Proposition 6.9 Forn > 3, let T be the group freely generated by the involutions from the
setD={f |1<i < (14} Supposethatastructuﬁeofan(n 1)-dimensional projective
GF(4)-space is defined oB, so thati = {fy, ..., fs} is a line. Let A be a subgroup of
the automorphism group @ isomorphic to PGL(4) and letG be the semidirect product
of T by A with respect to the natural action of A. Let IBe the normal closure i of

the elemenfyfafsfafs. Let W(n) be the Cayley graph of /R, with respect to the image
DRy/R; of the generating séb. Then Wn) is a locally projective graph of typen, 4),

and its girth is5 if and only if T /Ry is not abelian. If the girth of Wh) is 5 then any graph
satisfying Propositiors.8 (ii) for this value of n is a quotient of ).

Notice that if in the above proposition we consitSL, (4) instead ofPGL,(4) thenR;
and hence the resulting grajgti(n) will be the same.

7. The girth of W(3) is 5

In this section we show that the graj(3) has girth 5 and that it has at leag? ertices.

Let T be a group freely generated by 21 involutions from thelet {fj | 1 <i < 21}.
Suppose that a structui@ of projective plane of order 4 is defined @ so thati =
{fi,....fs}isaline, and seN := (f | 1 < i < 5). We will use the same lettét to denote
the point set of 1. Let B = PI'L3(4) be the full automorphism group &f and letA be a
normal subgroup oB isomorphic tdPGLz(4). ThenAandB are permutation groups d
and hence they may be identified with the corresponding subgroups in the automorphism
group of T. Let G and B be the semidirect products af by A and B respectively, so
that B containsé as a normal subgroup L& and R, be the normal closures iG of
R, are contamed if. Since the setwise stablllzer afin B induces % on the pomts of
A, it follows thatR, and R; are conjugate iB. Let W(3) be the Cayley graph of /R,
defined with respect to the ima@eR; /R, of the generating séd. ThenW(3) is a locally
projective graph with respect to the actior®fR; and by Proposition 6.9 the girth ¥ (3)
is 5 if and only |ff/R1 is non abelian, or equivalently, if and onlyf# # R,.

As above leff® = [T, T], T = T/T® and putT® = [T, T, T]. For an element
h e T leth denote its image iff. ThenT is an elementary abelian 2-group of rank 21
with basis{fi | 1 <i < 21} and the elements of this basis are indexed by the poinis. of
This enables us to identify with the GF(2)-vector space of all subsets Gfwith addition
defined by the symmetric difference operation. We will use the following well-known result
(cf. [14]) on the structure of as a module foB.
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Lemma 7.1 With the above notation the following assertions hold:

() T =Te¢® T., whereT® consists of the even subsetdband T, consists of the empty
set and the whole séf;

(i) Teisuniseriat 0 < T¢ < T < T©, whereT?® has dimension i for = 9 and11;

(i) T’; is generated by the complements of linegliand it is dual toT€/TZ;

(iv) Binduces $onTg/TE, so that G(TS/TE) = PSls(4);

(v) TS andTe/T¢ are indecomposableeven as modules for PSU);

(vi) B hasthree orbits on the non-zero elemenfég‘bfwith length21, 210and280, which
consist respectively of the complements of lines, the symmetric differences of pairs
of lines, and the complements of the symmetric differences of triples of lines in general
position.

Let S be theGF(2)-permutation module of acting on the line set of. ThenS is
the image ofT under the contragredient automorphismAo$o the structure of can be
deduced from Lemma 7.1. Namel= S @ S whereS®is uniserial 0< § < §, < &
MoreoverT¢/ T8 = § andT¢ = $/S;, asA-modules.

The element, (which is equal td,) can be identified with. (considered as a 5-element
subset offT). By Lemma 7.1 this means the following:

Lemma 7.2 The imageR; of Ry in T coincides withT¢ @ Ty, in particular it is 10-
dimensional and hence/R; T® is 11-dimensional.

Next we study the quotierit := T®/(R, N TM)TP. Let§; be the image ifl of
the elementf], f;] from T® for 1 < i, j < 21,i # j. Since the generatofsof T are
involutions and the image ifi of [f;, {;, fi] is trivial, it is easy to see that ttig are pairwise
commuting involutions which generafe In particularT is an elementary abelian 2-group.
Furthermore, if 1< i, j, k,1 < 5withi # j, k # | then both{;, fj] and [, f] are equal to
the unique non-trivial element if[, N]. Hence the image ofi[, ;] in T depends only on
the line ofIT containingi andj. Thus we have the following:

Lemma 7.3 The groupT is generated b1 pairwise commuting elements indexed
by the lines offT such that i=1. If | is the line containing the points i and j then
my = §; is the image inl of the elemerft, f;]. ThusT is isomorphic to a quotient of the
GF(2)-permutation modul& of A acting on the line set of.

Forf e T let S(f) be the subset ofl, 2, ..., n} such that ifd is the product (in some
order) of thef;, fori € S(f), thenld = . Note thatS(f) is well-defined sincd is abelian.

Lemma 7.4 If e T thenf2 e T®. Theimagd?off2in T is equal to the product of
the element§; taken for all ordered pairsi, j) withi, j € S(f) andi < j.

Proof:  SinceT = T/T® is of exponent 2, itis clear théf € T, SinceT®/T? is
inthe center off /T® andT is of exponent 2, the imadé of {2in T depends only on the
image oft in T, thatis onS(f ). To see that the assertion made in the second sentence is true,
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we argue as follows. Without loss of generality we may assumeStfat= {1,2,...,r}
for somer < n. By the definition ofS(f), f = f;...f x for somex € T@. Then since
T®/T®@ s central inT/T®@, we havef2 = (f;...f)2 moduloT@. We “collect” {2 as
follows. Working modulof @, foreachi =1,...,r,andeachj =r,r —1,...,i +1,in
turn replacd; fi by fi fj[f;. fi] and movef{;, fi] to the right hand end of the expression fér
(Note that we may do this sinc& [{] is central moduldl @). Then, since eacff = 1,
we have moduld @, £2 = [T,_; _; [f}. f], and the result follows. O

Forf € T Lemma 7.4 gives us a method for expressing the infégef f2 in T in
terms of the generatorg, as in Lemma 7.3. Namely the generatgris involved in the
decomposition of ? if and only if S(f) NI contains an odd number of pairs of distinct
points, thatis, if S(f) Nl| = 2 or 3. Now iff € Ry, then clearlyf? € R; and hencé? is the
identity. In this way we will obtain further relations on the generatorsBy Lemma 7.2,
f e Ryifand only iff € T¢ @ T;. By Lemma 7.1 (vi) there are 6 types of non empty
subsets ofge @ T, and the collection of these subsets is closed under taking complements.
Now if a linel intersects a subs&in 2 or 3 points then it intersects the complemengof
in 3 or 2 points, respectively. Hence it is sufficient to consider just one subset from each
complementary pair. We do this below.

(1) LetShe aline. Then there are no lines intersectsig 2 or 3 points.

(2) Let Sbe the symmetric difference of two linésandl, and setp :=1; Nl,. Then a
linel intersectsSin 2 or 3 points if and only if does not contaimp (clearly in this case
| intersectsSin 2 points).

(3) LetSbe the symmetric difference of three lirlgsl,, I3 in general position, that is, the
pi; :=li Nl are pairwise different for ki < j < 3. Then alind intersectsSin 3
points if and only if it intersect§pi2, P13, P23} in an even number of elements (that is,
in zero or 2 elements). This means thattersectsSin 3 points if and only ifl is in the
symmetric difference of the sek(p) for p = p12, p13 and p,3, whereM (p) denotes
the set of lines missing.

One can see that the relations implied by (3) are consequences of the relations implied
by (2). This can be summarised as follows.

Lemma7.5 Let pbeapointofl and M(p) be the set of lines missing p. Then in terms of
Lemma7.3the product of the irfor all| € M (p) is the identity inT . In other wordsT is a
quotient of the moduleée/_g) and the only faithful B-section involved ihis isomorphic

to /S, = T¢ (in terms introduced in and after Lemrizal).

The groupT @ /T @ is generated by 210 linearly independent pairwise commuting in-
volutions§; which are images of the commutatots fj] forl <i,j <2land # j. Let
v be the homomorphism &f @ /T @ onto ¢/ S which commutes with the natural action
of A. This means that maps the generatdy; onto the involutiorm; wherel is the line
containing andj and the involutionsn, satisfy the relations described in Lemma 7.5. Let
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U be the full preimage iff @ of the kernel ofv, so thatT @ /U = $¢/S. Let W be the
full preimage ofR; = T¢ @ T with respect to the homomorphisih— T = T/T® and
setV :=W/U.

Lemma 7.6 With the above notation V is an elementary abeRagroup of rank22 and
as a module for A it involves exactly two non-trivial irreducible sectidiegh isomorphic
toTg.

Proof: By the arguments given before Lemma 7.5pife W, thenw? € U. Hence the
image ofw in V is of order at most 2. Thus all non trivial element3/rare involutions and
V is elementary abelian. The proof that the ordeva 222 is straightforward. Finally the
non trivial irreducible sections of /(T® /U) = W/T® = T¢ @ T,, andT®/U are both

isomorphic toTg. O

By the above lemma we may considéras aGF(2)-module forA = PGLg(4). Letve
andv, be the images iV of the element$. andf,, respectively. Notice that if is the
product of the five elemenfsfor 1 < i < 5, in any order, then the imagefih V coincides
either withve or with v, and thatvev, = m,. Since the stabilizer of in A induces A on
the points ofy, it stabilizesve. So there are 21 images af underA indexed by the lines
of I1. SinceV is abelian, these 21 images genergt&) /U. This means thaR,U /U is
a quotient of theGF(2)-permutation modulé of A acting on the line set ofl. By the
remark after Lemma 7.1S involves only one section isomorphic fg"‘. By Lemma 7.6,
V involves two such copies ai§. We know thatR, T®/T® involves a copy off¢, and
hence the second copy is involved(W N T®)/(R, N T®). In particular the latter has
order at least2 Thus we have proved the following:

Proposition 7.7 The graph W3) has girth5 and the order off /R, T @ is at least2?.

Moreover

(i) T/RTD = T/(T¢ @ Ty is of order2™;

@iy TO/(RyNTD)T? involves a section isomorphic & = /Sy, in particular it
has order at leasg®.

L. H. Soicher has shown, by running a coset enumeration on a presentation exploiting the
description from Proposition 6.9, that the indexAR; /R, in G/R; is 22° (cf. Section 8
for an explicit presentation). This means thitRy| = 22°, and hence the bound in Propo-
sition 7.7 is exact, anW/(3) has exactly 2 vertices. This, together with Proposition 7.7
imply Theorem 1.4 (i) (b) and also the following result:

Lemma7.8 Letn=3andT beasin Propositio.9. Then R containsT @,

Now suppose that > 4. Then for every 21-point subplagzin I the image iffl /R, of
the subgroup generated by thefori € €, is a quotient of the group /R, corresponding
to the cas@ = 3. Since any triplé, j, k of points inIT are in a subplanef[ {;, f] € Ry by
Lemma 7.8 and hencE®? is contained iR, for all n > 3. This and the obvious analogue
of Lemma 7.3 imply Theorem 1.4 (i) (c). Thus the proof of Theorem 1.4 is complete.
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8. Generators and relations

In this final section we present generators and relations for a 2-arc transitive sut®obdup
automorphisms of the graph(3). Itis included for the convenience of readers who may
wish to construct the graphv(3) by computer.

We start with a presentation f@B(x) = PSlg(4) which is similar to the Steinberg
presentation. Suppose that the fi@&(4) = {0, 1, «, B}. We treat the elements &(x)
as 3x 3 matrices oveGF(4). Lete; denote the elementary matrix all of whose entries
are equal to zero except for the-entry which is equal to 1, and létdenote the identity
matrix. ThenG(x) = (a, b, c,d, e, f, g, h,i), where

a=1I|+ep b=1+4cep c=1+e, d=1+aesz, e=1 +ep,
f=1+aepn g==e1+aen+ 33, h==6e11+ 3+ 63, | =€+ &1+ €3

The relations definin@ (x) are the following:

azs b25 CZ’ d27 e29 f29 [a’ b]’ [a7 C]1 [a7 d]’ [a7 e]C7 [a’ f]d7 [b1 C]’ [b7 d]7
[b, €]d, [b, f]cd, [c,d], [c, €], [c, f], [d, €], [d, f],[e f], g3, a'b, b'ba,
cled, dic, € f, flef h? i2, tht, t't, (eh)?, (ai)?, a'c, b"d, €c, f'd, (ih)%.

We assumeth&(x,y) = (a,b,c,d, e f,g,hyandG(x) NG{A} = (a,b,c,d, e, f, g,i).
ThenG{x, y} = G(X, y) x (t), wheret? =1 and |, x] = 1forx € {a, b, c,d, e, f, g, h}.
Let A be the geometrical subgraph corresponding.tdhenG(A) = (c, d, e, f).

The additional relation which guarantees thais the Wells graph is of the form

where p is an element fronG(A) = (c,d, e, f). Let G be the group with generators
a,b,c,d, e f, g, h,i,t subject to the above relations. [ifis one of the 15 non trivial
elements of5(A) then it turns out tha® is the trivial group. However ip is the identity
element then the grou@ has order 2. A verification of these assertions was done by a
coset enumeration performed by L. H. Soicher.

References

1. C. Armanios, “Symmetric graphs and their automorphism groups,” Ph.D. Thesis, University of Western
Australia, 1981.

. C. Armanios, “A new 5-valent distance transitive gragkr§ Combin19A (1985), 77-85.

. G. Bell, “On the cohomology of the finite special linear groupg.lAlgebra54 (1978), 216—-238.

. A. Brouwer, A. Cohen, and A. Neumai@istance Regular Graph$pringer, Berlin, 1989.

. P.J. Cameron and C.E. Praeger, “Graphs and permutation groups with projective subconstltuenmtdgn
Math. Soc25 (1982), 62—74.

. K. Ching, “Graphs of small girth which are locally projective spaces,” Ph.D. Thesis, Tufts University, Medford,
MA, 1992.

7. J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, and R.A. Wilgdlas of Finite GroupsClarendon

Press, Oxford, 1985.

ab~wN

]



LOCALLY PROJECTIVE GRAPHS OF GIRTH 5 283

10.
11.

12.

13.

14.
15.

16.
17.
18.
19.
20.

21.

. L.E. DicksonLinear Groups with an Exposition of the Galois Field Theddpver Edition, Dover, New York,

1958.

. D.R. Hughes, “Extensions of designs and groups: projective, symplectic and certain affine dviatpsZ.

89(1965), 199-205.

A.A. lvanov, “On 2-transitive graphs of girth Furop. J. Combin8 (1987), 393-420.

A.A. lvanov, “Graphs of girth 5 and diagram geometries related to the Petersen @apief’ Math. DokI36
(1988), 83-87.

A.A. lvanov, “Graphs with projective subconstituents which contain short cycleSutineys in Combina-
torics, K.Walker (Ed.), London Math. Soc. Lect. Notes, Vol. 187, pp. 173-190, Cambridge Univ. Press,
Cambridge 1993.

A.A. Ivanov and S.V. Shpectorov, “THe&geometry forMz3 has no non-trivial coveringsurop. J. Combin.
11(1990), 373-390.

A.A.lvanov and C.E. Praeger, “On finite affine 2-arc transitive grafghsdp. J. Combinl4(1993), 421-444.
A.A. lvanov and S.V. Shpectorov, “Flag-transitive tilde and Petersen type geometries are all KBollvn,”
Amer. Math. Soc31(1994), 173-184.

Ch. Jansen, K. Lux, R. Parker, and R. Wilsan Atlas of Brauer Character€larendon Press, Oxford, 1995.
A. PasiniGeometries and Diagram€larendon Press, Oxford, 1994.

M. Perkel, “Bounding the valency of polygonal graphs with small gifiahad. J. Math31(1979), 1307-
1321.

V.1. Trofimov, “Stabilizers of vertices of graphs with projective suborbiBgViet Math. Dokl42 (1991),
825-828.

R. Weiss, §-Transitive graphs,Algebraic Methods in Graph Thegriorth-Holland, Amsterdam, 1981, pp.
827-847.

A.L. Wells, “Regular generalized switching classes and related topics,” D. Phil. Thesis, University of Oxford,
1983.



