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Abstract. A construction is given for an infinite familyT",} of finite vertex-transitive non-Cayley graphs of
fixed valency with the property that the order of the vertex-stabilizer in the smallest vertex-transitive group of
automorphisms of'y, is a strictly increasing function ai. For eachn the graph is 4-valent and arc-transitive,
with automorphism group a symmetric group of large prime degree?'+2. The construction uses Sierpinski's
gasket to produce generating permutations for the vertex-stabilizer (a large 2-group).
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1. Introduction

In this paper we provide a positive answer to the following question:

Does there exist an infinite famify",} of finite vertex-transitive graphs of fixed valency
such that if G, is a vertex-transitive group of automorphismsIgf of smallest possible
order then the order of the stabilizer in®f a vertex of",, increases as p> co0?

This question was brought to our attention by J@&iedi, and attributed to Chris Godsil.

We are grateful to Chris Godsil, Robert Jajcay, Cheryl Praeger, $isef and Spyros
Magliveras for communications on the topic.

Without the condition on themallestvertex-transitive group of automorphisms, the
construction of vertex-transitive graphs with automorphism group having an arbitrarily
large vertex-stabilizer is relatively easy. For example, take the 4-valent graph with vertices
0,1,2,...,2n — 1, and edges joining each of and 2 + 1 to each of 2+ 2 and 2 + 3
modulo 2 (for 0 < i < n). Thisis just a simple cycle of length) with each vertex replaced
by two vertices and each edge replaced ¥»a. Its automorphism group is the wreath
productC, wr D,, of order 2' x 2n. In particular, this group is transitive on tha Zertices,
with vertex-stabilizer of order2 The automorphism group, however, contains a subgroup
which acts regularly on vertices, and so the graph is a Cayley graph—in fact a Cayley graph
for the dihedral grouD, = (X, y | X2 = y" = (xy)? = 1) with edges corresponding to
multiplication byx, y, y~* andxy?.

However, adding the condition that the vertex-stabilizer should act primitively on the
set of neighbours of the fixed vertex makes a more difficult question, conjectured by Richard
Weiss to have a negative answer for arc-transitive graphs (see [6, 8]).
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We will construct for each positive integara finite arc-transitive 4-valent gragh,,
with full automorphism grousy (the symmetric group of degred), whereN = p(n)
is a prime greater thar?2?2 and congruent to 1 modulo 4. The stabilizerSg of any
vertexv of I', will be a 2-group of order2+2, acting transitively but imprimitively as the
dihedral groupD4 on T (v), the set of neighbours of the vertex By choice ofN and the
construction ofl",,, the smallest group of automorphismsItf which acts transitively on
vertices ofl", will be the alternating groupg\y (sinceSy has no other proper subgroup of
index less thamN), with vertex-stabilizer of order2t1,

Before doing this in Section 3, we describe background material on arc-transitive graphs
in Section 2, together with preliminaries on Sierpinski’s gasket, which is used to define
generating permutations for the vertex-stabilizer in the automorphism @puproperties
of I',, are verified in Section 4, and some concluding remarks are made in Section 5.

2. Preliminaries

Let I be an undirected simple graph. Aoutomorphisnof I' is any permutation of the
vertices ofl" preserving adjacency, and under composition the set of all such permutations
of VI forms a group known as the (full) automorphism group’and denoted by AUE.

If Aut I" acts transitively oV T, thenI is said to bevertex-transitive More generally,
if G is any group of automorphisms bfwhich acts transitively oV T, thenG is said to
be vertex-transitive ofi. Similarly, if G acts transitively on the set of arcs (ordered edges)
of T', thenG is said to bearc-transitiveon I', and alsal” is said to be arc-transitive, or
symmetric

In the latter case, the stabiliz&, ={g € G:v9=v} in G of a vertexv € VI acts
transitively on the sef (v) of vertices adjacent to in I, or equivalently, on the set of
arcs inI" emanating from the vertex Further, if(v, w) is any one such arc, then by arc-
transitivity there exists an automorphisane G reversing(v, w), and then the structure
of I may be defined completely in termsatndG,: vertices may be labelled with right
cosets of5, in G, and edges are the images under the actida @y right multiplication)
of the single edgév, w} labelled{G,, G, a} in the natural order.

Conversely, given any groug containing a subgroupl and an elemena such that
a’® € H, we may construct a gragh=T'(G, H, a) on whichG acts as an arc-transitive
group of automorphisms, as follows: take as verticeE dfe right cosets oH in G, and
join two cosetsHx and Hy by an edge i wheneverxy ! ¢ HaH. Defined in this
way, I' is an undirected graph on which the groGpacts as a group of automorphisms
under the actiong: Hx — Hxg for eachg € G and each cosdti x in G. The stabilizer
in G of the vertexH is the subgroufH itself, and as this acts transitively on the set
of neighbours ofH (which are all of the formHah for h € H), it follows thatT" is
symmetric.

The above construction is explained in more detail in [4] (and was used to answer similar
questionsin [1, 2]). The gragh=T'(G, H, a) is connected if and only i& is generated by
HaH (or equivalently, byH U {a}), and is regular of degreewhered = |H : Hna1Ha|
is the number of right cosets ¢f contained in the double cosktaH. Similarly, other
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properties of” (such as its girth and diameter) depend on the choi¢& ¢f anda, and in
particular on relations satisfied & by a and elements ol .

In what follows in this paper the groug will be a 2-group, generated by an element of
order 4 and an increasing number of additional involutions. To define these involutions we
use a modification dbierpinski's gaskebr Pascal’s triangle modulo 2, see [5; Section 2.2].

First let "Cy be the standard binomial coefficient, defined as the numbleretément
subsets of am-element set, and equal to the coefficientxéfin the binomial expan-
sion of (1 + x)", for 0 < k < n. Recall that these coefficients satisfy the additive
identity "Cy_1+"Cx = "1C¢ for 1 < k < n, which is a fundamental property of
Pascal’s triangle. The triangle’s symmetry comes from the idefity = "C,_«, and
from this it follows that"C,, is always even when is even. However, when + 1 is
a power of 2, every coefficiefiCy is odd; to see this, note tha€x may be written as
a product of rationals of the forrm+1—j)/j for 1 < j < k, and in each case the
highest power of 2 dividing the numerator is equal to the highest power of 2 dividing the
denominator.

Definition 2.1 For integers ands satisfying 0<r < 2s+ 1, defined,s = 5Ci; /2 (Where
[r/2] is the greatest integer not exceeding).

Clearly,dps = ths = tpss = Uysy1s = 1 for all s > 0, andd;s = d; ;15 Wwhenever
is even. Also the properties of binomial coefficients mentioned above imply the following
Lemma.

Lemma2.2 d_1s+ ds=d 1 mod2andd, =0 mod 2 wheneverr is even.

The proof is straightforward. A picture of the corresponding triangle of residues of these
coefficients modulo 2 is given below fer< 31, with x’s for 1's and blanks for 0’s:

XX
XXXX

XX XX
XXXXXXXX
XX XX
XXXX XXXX
XX XX XX XX
XXXXXXXXXXXXXXXX
XX XX
XXXX XXXX
XX XX XX XX
XXXXXXXX XXXXXXXX
XX XX XX XX
XXXX XXXX XXXX XXXX

XX X XX XX XX XX X XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX XX
XXXX XXXX

XX XX XX XX
XXXXXXXX XXXXXXXX
XX XX XX XX
XXXX XXXX XXXX XXXX
XX XX XX XX XX XX X
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
XX XX XX XX
XXXX XXXX XXXX XXXX
XX XX XX XX XX XX XX XX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
XX XX XX XX XX XX XX XX

XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
XXXXXXXXX XXX XXX XXX XXX XXXX XX XX XX XXX XX XXX XXX XXX XXX XXX XXX XXX XXXXXXX

Figure 1 Modified Sierpinski gasket.



32 CONDER AND WALKER

3. Construction of the graphs

Suppose is any positive integer. Defima = 2", and letN = p(n) be any prime such that
N = 1 mod 4 andN > 2™2, Note that since there are infinitely many primes congruent to
1 modulo 4, such a primb can always be found.

Definition 3.1 Let G be the symmetric groufsy, in its natural action on the set
{1,2,..., N}, and in this group define three elemeat$ andc as follows:

a=(132405,76,8- --2m—7,2m—5)(2m—6,2m — 4)
2m—-3,2m—1)(2m—2,2m)(2m+ 1, N)(2m+ 2,2m+ 3)
@2m+4,2m+5)---(N—=5 N —-4(N -3, N — 2),

b= (@2m+1 2 2m+2)(3,5)(4,6)(7,9(8,10)---(2m—5,2m—3)
2m—-4,2m—-2)2m+3,2m+4H2m+52m+6)--- (N —4, N — 3)
(N—2,N-1),

and

c=(1,23,%H05,6)(7,8- ---2m—7,2m—6)(2m — 5,2m — 4)
2m—3,2m—2)(2m — 1, 2m).

Note that, b andc are even permutations of ordersgizand 2, respectively, withhaving
a single 4-cycle(N — 7) /2 transpositions, and three fixed points (vim 2 1, 2m andN).
This is perhaps best seen with the help of the diagram below, in which tranpositians of
are represented by thin lines, while cyclebaire represented by heavy polygons and dots,
and the effect o€ corresponds to reflection in the vertical axis of symmetry:

2m-1 2m-3 2m-5

Figure 2 Generating permutations.
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Within the alternating groug\y the permutationa andb generate a subgroup which is
transitive (since the diagram is connected) and indeed primitive (dirisgrime). Also it
may be seen from the diagram tltatac = a while c~'bc = b~

Next, note that is the product of transpositiotis= (2j —1, 2j) for1 < j < m. Letting
this product correspond to the finst entries of themth row of the modified Sierpinski
gasket (as illustrated in figure 1), we work backwards to define a sequence of additional
permutationgs, Cy, . . ., Cy, as follows:
Definition 3.2 For 1 < i < m definec; = [} tfi’i'm", wheret; is the transposition
(2 —1,2j))in Sy, anddj_j m-i = m-i Ci(j-iy/2 (as given in Definition 2.1) for < j <m.

For examplec; = titr-- -ty = ¢, while ¢; = totztgt7 - - - tm_gtm_stm_2tm_1, and
finally, cm_1 = tm_1tm While ¢y, = t, = (2m — 1, 2m). Note that each of thg other than
Cm IS even, sincals = d;,1s andd,; = 0 mod 2 whenever is even. Also note that the
exponentsl;_;j m—i may be taken modulo 2, and the only such exponents required for the
definition of ¢; are the ones which appear in the first half of the— i + 1)st row of our
modified Sierpinski gasket. The choice of these exponents is the key to our construction of
the graphl',,, as will be seen later with the help of the two observations below.

Lemma 3.3 Forl < j < mwe have

b2ty ifj =1
o [t ifjisodd vt fje@4. . m-2
@a tla—{tjl ifjiseven PP UP=1¢T itje@s . mo1
tn ifj=m

Proof: This is a simple consequence of the definitions of the permutati@mib and
the transpositiont . O

Lemma3.4 Forl<i < m we have
b%c; ifi=1

(b) b~icb={ ¢ ifi €{2,4,...,m}
c_1¢ ifi €{3,5,...,m-1}.

1. )G ifi is odd
@a C'a_{ci_lci ifi is even

Proof: Firstasc; = cthe cases wheiie= 1 for parts (a) and (b) are consequences of our
earlier observation that'ac = a andctbc = b~'. Nextifi is odd then we have

m m
alga= at (Ht?“‘mi>a = H(afltj a)%i-imi by the definition ofg,

=i =i

m—1 m
= ] '™ JI t"3™" byLemma3.3and since thecommute
oddj =i evenj=i+1

m—1 m
d. i d.7 Cimei .
= | | tj'jll b | | thll '™ asds = dr 115 Whenr is even
oddj =i evenj=i+1
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m m-—1

dhei i dhim : ,
| | t, | | t, ™" after relabelling subscripts
everk=i+1 oddk=i

m
Htlijkfw,mfi —c
k=i

A very similar argument shows™'c;b = ¢ wheni is even, noting that sinc@ —i is
even we haveln_i m—i = ™' Cm-i2 = 0 mod 2 in this case.
On the other hand, ifis even then also

m

d] i+ Lmitl djim-i d0m i+1 djitamei1+dj i moi
C_1C = t; = t:
e f:
m—1
=t 1_[ tjdj—i.m—i+1+dj—i,m—i 1_[ tjdj—i+l<m—i+1+dj—i.m—i
evenj =i oddj=i+1
m m—1
= ti_1 1_[ t?i’i’m" 1_[ t?j’i*l‘m" by Lemma 2.2
evenj =i+2 oddj=i+1
m—1 m
=t [] te™ J[ 4™ after relabelling subscripts
oddk=i+1 everk=i+2
m—1
- l_[ g m 1_[ tfﬁrl'”” ' sincedgm_i =1
everk=i oddk=i+1

m
[[@ @ = a~'ga.

Finally, the same procedure shows thatigf odd and > 1 thenc,_;1¢; = b~'c b, noting
that dy_i1m_i+1 = 0 mod 2 in this case and recalling thiatt,b = ty,. O

We are now in a position to define the gralph

Definition 3.5 LetI', be the graph’ (G, H, a), whereG = Sy anda € G are as defined
earlier, ancH is the subgroup o8y generated by and them involutionscy, c,, ..., Cy.

Recall that the vertices df (G, H, a) may be taken as the right cosetstbfin G, with
two cosetsH x andHy joined by an edge whenevey ! € HaH, and the grou acts
as a group of automorphisms of this graph by right multiplication on cosets.

Before investigating its properties in the next Section, we make some observations about
G, H anda.

Lemma 3.6 The group G= S is generated by the subgroup H and the element a.

Proof: The subgroup generated by anda containsb anda and is therefore transitive,
of prime degree and therefore primitive, and contains the single 2-gycle(2m— 1, 2m)
and is therefore equal 8y (by Jordan’s theorem [9; Section 13]). O
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Lemma 3.7 The subgroup generated by, c,, ..., cy, is elementary abelian of ordef™.

Proof: First thec are products of commuting transpositiadpsand therefore generate
an elementary abelian 2-group. Also by definition of thgand the properties of the

Sierpinski gasket), for 1< k < m the subgroup generated loy, ..., ¢, moves only
the points R — 1, 2k, ..., 2m — 1, 2m, and it follows that each such subgroup has order
2m—k+1. O

Lemma 3.8 The subgroup H is &group of order2™+2,

Proof: From part (b) of Lemma 3.4 we see thtcentralizes(ci, Cy, . . ., Cn), and fur-
ther, thatb normalizes(b?, 1, Cy, ..., Cy), thereforeH = (b, ci, Cy, ..., Cy) has order
2m+2. O

Lemma3.9 HnalHahasindexdin H.

Proof: From part (a) of Lemma 3.4 we see tlaatormalizescs, C;, . . ., Cn), Which is a
subgroup of index 4 ird with transversal1, b, b?, b%}. Since each o&ba, a-*b%a and
a'b%a moves the poiniN, none of these three elements can ligHrand it follows that
HnalHa= (¢, ¢y ..., Cn). O

4. Properties of the graphs

We begin with some of the basic properties which follow from the construction described
in the previous Section:

Proposition 4.1 The graphT', defined in Sectior8 has N /2™2 vertices and is
connected4-valent and arc-transitivewith Sy as an arc-transitive group of automor-
phisms. The girth off, is 4.

Proof: Most of this follows from Lemmas 3.6, 3.8 and 3.9, and the fact@at Sy acts
onl'y = I'(G, H, a) by right multiplication, with trivial kernel sincéy is simple. Finally,
@b®?2 = (1,2)(3, H2m+1,2m+2)(2m+3, N) has order 2, sd, has a circuit of
length 4 with verticesH, Hab?, H (ab?)? and Ha (in that order); and as no two of the
four neighbours ofH are adjacent, there is no circuit of length 3, and therefgydas
girth 4. O

The stabilizer inG = Sy of the vertexH is the subgroupH itself, of order 2't2. This
group acts transitively on the neighbour-§gtH) = {Ha, Hab, Hab?, Hab?}, and the
stabilizer of the ar¢H, Ha) is the subgroupd Na~*Ha = (c1, Gy, .. ., Cy). As the latter
subgroup is centralized b, it is also the stabilizer of the atél, Hab?), while the element
¢, interchanges the other two ardd, Hab) and(H, Hab?®). It follows thatH acts as the
dihedral groupD,4 of order 8 on the neighbour-sgt,(H).

From Lemma 3.4 it is easy to see that every elengeatG may be written in the form
g = hw whereh € (¢c;, ¢, ..., cm) andw is a word in the elementsandb. In particular,
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every vertex ofl'y is of the formHw wherew € (a, b), and it follows easily that the
subgroup{a, b) is transitive on vertices dfy,. (In fact we will see in Proposition 4.4 that
(a, b) = Ay and this is the smallest vertex-transitive group of automorphisnng.pf

Next for any positive integes, ans-arc in a graphl' is an ordereds + 1)-tuple of
vertices(vg, v1, v2, .. ., vs) Of I" such that any two consecutiveare adjacent i and any
three consecutive are distinct. From what we have seen above, the g&ugoes not act
transitively on 2-arcs (ordered paths of length 2)'jija because of the existence of circuits
of length 4. More of the nature of the action®§ on I, is revealed below in Lemma 4.2.

Lemma 4.2 For 1 <k <m, the subgroup of $generated by, ..., ¢y, is the stabilizer
in Sy of the k-arc(H (ab)l3!, H(ab)l31-1, ..., Hab, H, Ha, Haba, . .., H(ab)z'la) of
I'nh. Moreover this subgroup fixes all vertices at distance up[gc} from H but not all
vertices at distanc{a'g] + 1from H inTy.

Proof: We use the following corollary of Lemma 3.4: lif € (c, Ci41, - .., Cm) Where

i > 3,ancdeis any integer, theab®h = h’ab®forsomeh’ € (¢j_», ¢i_1, ..., Cm). Nowcon-
sider anys-arc inT", of the form(H, Hab®, Hab%ab®, ..., Hab% ... ab%ab%), where
l<s<m/2ande € {0,1,2 3} whileg € {1,2,3} for2 <i <s. The stabilizer inSy
of the initial 1-arc(H, Hab®) is either(ci, Cy, ..., Cm) or (b%cy, Gy, .. ., Cy), depending
on whether; € {0, 2} ore; € {1, 3}. By induction ons (and using Lemma 3.4) it follows
that the stabilizer of the givesrarc containsCys_1, Cos, - . ., Cm) OF {Cos, Cost1, -+ -, Cm),
again depending on whethetr € {0, 2} or e € {1, 3}. However, in the case where
g = 1foralli > 2, Lemma 3.4 shows thabs_, moves the final verte (ab)s—'a
of the s-arc (H, Ha, Haba, ..., H(ab)S2a, H(ab)S1a), to Hab3*(ab)s2a, and simi-
larly cos_1 moves the final vertex of trearc(H, Hab, H(ab)?, ..., H(ab)s!, Hab®), to
Hab®(ab)s~1. The result follows by taking = ['g]. O

Proposition 4.3 The symmetric groupSis the full automorphism group @f,.

Proof: Assume the contrary, and I8t be a subgroup of Adt, which properly con-
tains G = Sy, and letK be the stabilizer inJ of the vertex labelledd in I',. Then K
containsH, and sincel’,, contains circuits of length,4the subgroupK acts asD,4 on
I'h(H) in the same way as$l, and by induction on the length of a stabilizer sequence
it follows that K is also a 2-group. Now lei € K\H be an automorphism df,,, cho-
sen so thatH has index 2 in(H, 0), in which cased normalizesH. By Lemma 4.2,
and multiplying by a suitable element &f if necessary, we may suppose ti#afixes
every vertex at distance up /2 from H in 'y, and further, thad fixes the(m+ 1)-
arc(H(ab)™2, H(ab)™?1 ... Hab, H, Ha, Haba, ..., H(ab)™?a). In particular, we
may suppose thap) is the stabilizer inJ of this (m+ 1)-arc, which will be denoted biyl.
Now M is fixed byada, and scada € (9)\H, which in turn impliesp~*ada € H and
therefored —tad = a (since the stabilizer il of M is trivial). It follows thatd normalizes
(H,a) = G = S, and then since AUy = Sy (see [3; Section 11.5]) there must be a
permutatiors € Sy corresponding té which normalizedd and centralizea. But further,
6~-1bob~! lies in H and also fixes every verted x at distance up ton/2 from H in T,
(sinced fixes Hx and Hxb), so from Lemma 4.2 we deduce theat*bob~! € (cy,), and
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therefores ~be = 0-1bo € {b, cnb}. The caser~lbo = cyb is impossible sincd is
even whilecyb is odd, and therefore centralized. Consequentlyy centralizes botka
andb, from which it follows that fixes every vertex of,,, a contradiction. O

Proposition 4.4 The smallest vertex-transitive group of automorphismgofs the al-
ternating group Ay, and in this group the stabilizer of a vertexiof has order2™**,

Proof: First, Ay contains the vertex-transitive subgro(g b), sincea andb are even,
and henceAy itself is vertex-transitive oi,. On the other hand, in the grouf the
stabilizer of a vertex of', has order 2*+2, and therefore any vertex-transitive subgroup
has index at most™2 in Sy. But Sy has no proper subgroup of index less thamther
than Ay (see [3; Section 11.5]), however, so by choiceMf> 2™+2 the alternating group
Ay is the smallest vertex-transitive subgroup of Ayt In particular, since each of the
permutationg; other tharc, is even, we finda, b) = (a, b, c1, Cp, ..., Cno1) = An, and
the stabilizer inAy of a vertex ofl, is (b, ¢, ¢y, . . ., Cm_1), Which has order2t1. O

5. Final remarks
Thus, we have proved the following theorem.

Theorem 5.1 For every positive integer n there exists a finite arc-transiévealent
graphT'y, with the property that in the smallest vertex-transitive group of automorphisms
of I',, the stabilizer of a vertex has ordaf +1.

In fact for eacn there are infinitely many such graphs, because in our construction there
are infinitely many possibilities for the prime degide Moreover, the construction works
also whenN is not prime, as primitivity of the group generatedidyanda may be proved
using conjugates of the 2-cyabg, or the quadruple transpositigab?)?.

Since producing this family of graphs it has been pointed out to us by Brendan McKay
and a referee that a very different family of graphs also provides an answer to the ques-
tion raised by Chris Godsil. This family of graphs, nant, r, s) wherep, r ands are
positive integers withp > 2 andr > 3, were constructed by Praeger and Xu [7]. The
graphC(p,r, s) haspsr vertices and valency2, and except for small values of the pa-
rameters, the automorphism group®(p, r, s) is the wreath producg,wr D;, of order
2r(pH" (see Theorem 2.13 of [7]). In particuld(p,r, S) is vertex-transitive whenever
r>s.

Now if, for example,s=2 while p andr are primes withr > p, then a very easy
group-theoretic argument shows that a minimal transitive subggoofithe automorphism
group of C(p,r, 2) is of the formG = P RwhereP is an elementary Abeliap-group
and R=Z,. Moreover,G is contained in the subgroud R where Q = Z;) is a Sylow
p-subgroup ofS,wr Dy, and Q is the Z,R permutation module for the regular repre-
sentation ofR onr points. The irreducible constituents Bfin Q consist of one trivial
submodule, an¢r — 1)/e of dimensione wheree is the order ofp modulor. SinceG is
transitive on thep?r vertices ofC(p, r, 2), it follows that|P| > p®. Choosing an infinite
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sequence of primag <r; < - - - all greater tharp such that the order gb modulor; is

e ande; < & < ---, one finds a minimal vertex-transitive subgroup of automorphisms of
C(p,ri, 2) hasorder atleag®r, and so the vertex-stabilizer in such a subgroup has order at
leastp® 2.

Unfortunately, in both our family and this family the action of the vertex-stabilizer is
imprimitive on the neighbour-set, so neither construction has much effect on progress
towards settling Weiss’s conjecture (see [6, 8]). We believe that this conjecture remains
open.

Acknowledgments

The first author gratefully acknowledges support from the Marsden Fund (grant number 95-
UOA-MIS-0173), and the second author gratefully acknowledges support from a University
of Auckland Postgraduate Scholarship.

References

1. Marston Conder, “An infinite family of 5-arc-transitive cubic grapi#g$ Combinatoria25A (1988), 95-108.

2. Marston Conder and Peter Lorimer, “Automorphism groups of symmetric graphs of valedd@@ifibinatorial
Theory Ser. BI7 (1989), 60—72.

3. B. HuppertEndliche Gruppen,ISpringer-Verlag, 1983.

4. R.C. Miller, “The trivalent symmetric graphs of girth at most &,"Combinatorial Theory Ser. B0 (1971),
163-182.

5. H.-O. Peitgen, H.uFgens, and D. Saup&haos and Fractals: New Frontiers of Scien&pringer-Verlag,
1992.

6. C.E. Praeger, “Finite primitive permutation groups: A surv&tbups—Canberra 198@Springer Lecture
Notes in Mathematics},456(1990), 63—84.

7. C.E.PraegerandM.Y. Xu, “A characterisation of a class of symmetric graphs of twice prime velemopgan
J. Combinatoricdl0(1989), 91-102.

8. Richard Weiss,s-Transitive graphs,” ilAlgebraic Methods in Graph Theo(Zoll. Math. Soc. dhos Bolyai)
25(1984), 827-847.

9. Helmut WielandtFinite Permutation GroupsAcademic Press, New York, 1964.



