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Abstract. A construction is given for an infinite family{0n} of finite vertex-transitive non-Cayley graphs of
fixed valency with the property that the order of the vertex-stabilizer in the smallest vertex-transitive group of
automorphisms of0n is a strictly increasing function ofn. For eachn the graph is 4-valent and arc-transitive,
with automorphism group a symmetric group of large prime degreep> 22n+2. The construction uses Sierpinski’s
gasket to produce generating permutations for the vertex-stabilizer (a large 2-group).
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1. Introduction

In this paper we provide a positive answer to the following question:
Does there exist an infinite family{0n} of finite vertex-transitive graphs of fixed valency
such that if Gn is a vertex-transitive group of automorphisms of0n of smallest possible
order then the order of the stabilizer in Gn of a vertex of0n increases as n→∞?

This question was brought to our attention by JosefŠiráň, and attributed to Chris Godsil.
We are grateful to Chris Godsil, Robert Jajcay, Cheryl Praeger, JosefŠiráň and Spyros
Magliveras for communications on the topic.

Without the condition on thesmallestvertex-transitive group of automorphisms, the
construction of vertex-transitive graphs with automorphism group having an arbitrarily
large vertex-stabilizer is relatively easy. For example, take the 4-valent graph with vertices
0, 1, 2, . . . ,2n− 1, and edges joining each of 2i and 2i + 1 to each of 2i + 2 and 2i + 3
modulo 2n (for 0≤ i < n). This is just a simple cycle of lengthn, with each vertex replaced
by two vertices and each edge replaced by aK2,2. Its automorphism group is the wreath
productC2 wr Dn of order 2n× 2n. In particular, this group is transitive on the 2n vertices,
with vertex-stabilizer of order 2n. The automorphism group, however, contains a subgroup
which acts regularly on vertices, and so the graph is a Cayley graph—in fact a Cayley graph
for the dihedral groupDn = 〈 x, y | x2 = yn = (xy)2 = 1 〉 with edges corresponding to
multiplication byx, y, y−1 andxy2.

However, adding the condition that the vertex-stabilizer should act primitively on the
set of neighbours of the fixed vertex makes a more difficult question, conjectured by Richard
Weiss to have a negative answer for arc-transitive graphs (see [6, 8]).
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We will construct for each positive integern a finite arc-transitive 4-valent graph0n,
with full automorphism groupSN (the symmetric group of degreeN), whereN= p(n)
is a prime greater than 22n+2 and congruent to 1 modulo 4. The stabilizer inSN of any
vertexv of 0n will be a 2-group of order 22

n+2, acting transitively but imprimitively as the
dihedral groupD4 on0n(v), the set of neighbours of the vertexv. By choice ofN and the
construction of0n, the smallest group of automorphisms of0n which acts transitively on
vertices of0n will be the alternating groupAN (sinceSN has no other proper subgroup of
index less thanN), with vertex-stabilizer of order 22

n+1.
Before doing this in Section 3, we describe background material on arc-transitive graphs

in Section 2, together with preliminaries on Sierpinski’s gasket, which is used to define
generating permutations for the vertex-stabilizer in the automorphism groupSN . Properties
of 0n are verified in Section 4, and some concluding remarks are made in Section 5.

2. Preliminaries

Let 0 be an undirected simple graph. Anautomorphismof 0 is any permutation of the
vertices of0 preserving adjacency, and under composition the set of all such permutations
of V0 forms a group known as the (full) automorphism group of0 and denoted by Aut0.

If Aut 0 acts transitively onV0, then0 is said to bevertex-transitive. More generally,
if G is any group of automorphisms of0 which acts transitively onV0, thenG is said to
be vertex-transitive on0. Similarly, if G acts transitively on the set of arcs (ordered edges)
of 0, thenG is said to bearc-transitiveon 0, and also0 is said to be arc-transitive, or
symmetric.

In the latter case, the stabilizerGv ={g ∈ G : vg= v} in G of a vertexv ∈ V0 acts
transitively on the set0(v) of vertices adjacent tov in 0, or equivalently, on the set of
arcs in0 emanating from the vertexv. Further, if(v,w) is any one such arc, then by arc-
transitivity there exists an automorphisma ∈ G reversing(v,w), and then the structure
of 0 may be defined completely in terms ofa andGv: vertices may be labelled with right
cosets ofGv in G, and edges are the images under the action ofG (by right multiplication)
of the single edge{v,w} labelled{Gv, Gv a} in the natural order.

Conversely, given any groupG containing a subgroupH and an elementa such that
a2 ∈ H , we may construct a graph0=0(G, H,a) on whichG acts as an arc-transitive
group of automorphisms, as follows: take as vertices of0 the right cosets ofH in G, and
join two cosetsHx and Hy by an edge in0 wheneverxy−1 ∈ HaH. Defined in this
way, 0 is an undirected graph on which the groupG acts as a group of automorphisms
under the actiong : Hx → Hxg for eachg ∈ G and each cosetHx in G. The stabilizer
in G of the vertexH is the subgroupH itself, and as this acts transitively on the set
of neighbours ofH (which are all of the formHah for h ∈ H ), it follows that 0 is
symmetric.

The above construction is explained in more detail in [4] (and was used to answer similar
questions in [1, 2]). The graph0=0(G, H,a) is connected if and only ifG is generated by
HaH (or equivalently, byH ∪{a}), and is regular of degreed whered= |H : H ∩a−1Ha|
is the number of right cosets ofH contained in the double cosetHaH. Similarly, other
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properties of0 (such as its girth and diameter) depend on the choice ofG, H anda, and in
particular on relations satisfied inG by a and elements ofH .

In what follows in this paper the groupH will be a 2-group, generated by an element of
order 4 and an increasing number of additional involutions. To define these involutions we
use a modification ofSierpinski’s gasket, or Pascal’s triangle modulo 2, see [5; Section 2.2].

First let nCk be the standard binomial coefficient, defined as the number ofk-element
subsets of ann-element set, and equal to the coefficient ofxk in the binomial expan-
sion of (1 + x)n, for 0 ≤ k ≤ n. Recall that these coefficients satisfy the additive
identity nCk−1+ nCk = n+1Ck for 1 ≤ k ≤ n, which is a fundamental property of
Pascal’s triangle. The triangle’s symmetry comes from the identitynCk = nCn−k, and
from this it follows thatnCn/2 is always even whenn is even. However, whenn + 1 is
a power of 2, every coefficientnCk is odd; to see this, note thatnCk may be written as
a product of rationals of the form(n+ 1− j )/j for 1 ≤ j ≤ k, and in each case the
highest power of 2 dividing the numerator is equal to the highest power of 2 dividing the
denominator.

Definition 2.1 For integersr ands satisfying 0≤ r ≤ 2s+1, definedrs = sC[r/2] (where
[r/2] is the greatest integer not exceedingr/2).

Clearly,d0s = d1s = d2s,s = d2s+1,s = 1 for all s ≥ 0, anddrs = dr+1,s wheneverr
is even. Also the properties of binomial coefficients mentioned above imply the following
Lemma.

Lemma 2.2 dr−1,s + dr,s ≡ dr,s+1 mod 2and drr ≡ 0 mod 2 whenever r is even.

The proof is straightforward. A picture of the corresponding triangle of residues of these
coefficients modulo 2 is given below fors ≤ 31, with x’s for 1’s and blanks for 0’s:

Figure 1. Modified Sierpinski gasket.
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3. Construction of the graphs

Supposen is any positive integer. Definem= 2n, and letN = p(n) be any prime such that
N ≡ 1 mod 4 andN> 2m+2. Note that since there are infinitely many primes congruent to
1 modulo 4, such a primeN can always be found.

Definition 3.1 Let G be the symmetric groupSN , in its natural action on the set
{1, 2, . . . , N}, and in this group define three elementsa, b andc as follows:

a = (1, 3)(2, 4)(5, 7)(6, 8) · · · (2m− 7, 2m− 5)(2m− 6, 2m− 4)

(2m− 3, 2m− 1)(2m− 2, 2m)(2m+ 1, N)(2m+ 2, 2m+ 3)

(2m+ 4, 2m+ 5) · · · (N − 5, N − 4)(N − 3, N − 2),

b = (1, 2m+ 1, 2, 2m+ 2)(3, 5)(4, 6)(7, 9)(8, 10) · · · (2m− 5, 2m− 3)

(2m− 4, 2m− 2)(2m+ 3, 2m+ 4)(2m+ 5, 2m+ 6) · · · (N − 4, N − 3)

(N − 2, N − 1),

and

c = (1, 2)(3, 4)(5, 6)(7, 8) · · · (2m− 7, 2m− 6)(2m− 5, 2m− 4)

(2m− 3, 2m− 2)(2m− 1, 2m).

Note thata, bandcare even permutations of orders 2, 4 and 2, respectively, withbhaving
a single 4-cycle,(N−7)/2 transpositions, and three fixed points (viz. 2m−1, 2m andN).
This is perhaps best seen with the help of the diagram below, in which tranpositions ofa
are represented by thin lines, while cycles ofb are represented by heavy polygons and dots,
and the effect ofc corresponds to reflection in the vertical axis of symmetry:

Figure 2. Generating permutations.
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Within the alternating groupAN the permutationsa andb generate a subgroup which is
transitive (since the diagram is connected) and indeed primitive (sinceN is prime). Also it
may be seen from the diagram thatc−1ac= a while c−1bc= b−1.

Next, note thatc is the product of transpositionst j = (2 j−1, 2 j ) for 1≤ j ≤ m. Letting
this product correspond to the firstm entries of themth row of the modified Sierpinski
gasket (as illustrated in figure 1), we work backwards to define a sequence of additional
permutationsc1, c2, . . . , cm as follows:

Definition 3.2 For 1 ≤ i ≤ m defineci =
∏m

j=i t
dj−i,m−i

j , wheret j is the transposition
(2 j −1, 2 j ) in SN , anddj−i,m−i = m−i C[( j−i )/2] (as given in Definition 2.1) fori ≤ j ≤ m.

For example,c1 = t1t2 · · · tm = c, while c2 = t2 t3 t6 t7 · · · tm−6 tm−5 tm−2 tm−1, and
finally, cm−1 = tm−1tm while cm = tm = (2m− 1, 2m). Note that each of theci other than
cm is even, sincedrs = dr+1,s anddrr ≡ 0 mod 2 wheneverr is even. Also note that the
exponentsdj−i,m−i may be taken modulo 2, and the only such exponents required for the
definition ofci are the ones which appear in the first half of the(m− i + 1)st row of our
modified Sierpinski gasket. The choice of these exponents is the key to our construction of
the graph0n, as will be seen later with the help of the two observations below.

Lemma 3.3 For 1≤ j ≤ m we have

(a) a−1t j a =
{

t j+1 if j is odd
t j−1 if j is even

(b) b−1t j b =


b2t1 if j = 1
t j+1 if j ∈ {2, 4, . . . ,m− 2}
t j−1 if j ∈ {3, 5, . . . ,m− 1}
tm if j = m.

Proof: This is a simple consequence of the definitions of the permutationsa andb and
the transpositionst j . 2

Lemma 3.4 For 1≤ i ≤ m we have

(a) a−1ci a=
{

ci if i is odd
ci−1ci if i is even

(b) b−1ci b=
b2c1 if i = 1

ci if i ∈ {2, 4, . . . ,m}
ci−1ci if i ∈ {3, 5, . . . ,m−1}.

Proof: First asc1 = c the cases wherei = 1 for parts (a) and (b) are consequences of our
earlier observation thatc−1ac= a andc−1bc= b−1. Next if i is odd then we have

a−1ci a = a−1

(
m∏

j=i

t
dj−i,m−i

j

)
a =

m∏
j=i

(a−1t j a)
dj−i,m−i by the definition ofci

=
m−1∏

oddj=i

t
dj−i,m−i

j+1

m∏
evenj=i+1

t
dj−i,m−i

j−1 by Lemma 3.3 and since thet j commute

=
m−1∏

oddj=i

t
dj+1−i,m−i

j+1

m∏
evenj=i+1

t
dj−1−i,m−i

j−1 asdrs= dr+1,s whenr is even
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=
m∏

evenk=i+1

tdk−i,m−i

k

m−1∏
oddk=i

tdk−i,m−i

k after relabelling subscripts

=
m∏

k=i

tdk−i,m−i

k = ci .

A very similar argument showsb−1ci b = ci wheni is even, noting that sincem− i is
even we havedm−i,m−i = m−i C(m−i )/2 ≡ 0 mod 2 in this case.

On the other hand, ifi is even then also

ci−1ci =
m∏

j=i−1

t
dj−i+1,m−i+1

j

m∏
j=i

t
dj−i,m−i

j = td0,m−i+1

i−1

m∏
j=i

t
dj−i+1,m−i+1+dj−i,m−i

j

= ti−1

m∏
evenj=i

t
dj−i,m−i+1+dj−i,m−i

j

m−1∏
oddj=i+1

t
dj−i+1,m−i+1+dj−i,m−i

j

= ti−1

m∏
evenj=i+2

t
dj−i−1,m−i

j

m−1∏
oddj=i+1

t
dj−i+1,m−i

j by Lemma 2.2

= ti−1

m−1∏
oddk=i+1

tdk−i,m−i

k+1

m∏
evenk=i+2

tdk−i,m−i

k−1 after relabelling subscripts

=
m∏

evenk=i

tdk−i,m−i

k−1

m−1∏
oddk=i+1

tdk−i,m−i

k+1 sinced0,m−i = 1

=
m∏

k=i

(a−1tka)dk−i,m−i = a−1ci a.

Finally, the same procedure shows that ifi is odd andi > 1 thenci−1ci = b−1ci b, noting
that dm−i+1,m−i+1 ≡ 0 mod 2 in this case and recalling thatb−1tmb = tm. 2

We are now in a position to define the graph0n.

Definition 3.5 Let0n be the graph0(G, H,a), whereG = SN anda ∈ G are as defined
earlier, andH is the subgroup ofSN generated byb and them involutionsc1, c2, . . . , cm.

Recall that the vertices of0(G, H,a) may be taken as the right cosets ofH in G, with
two cosetsHx andHy joined by an edge wheneverxy−1 ∈ HaH, and the groupG acts
as a group of automorphisms of this graph by right multiplication on cosets.

Before investigating its properties in the next Section, we make some observations about
G, H anda.

Lemma 3.6 The group G= SN is generated by the subgroup H and the element a.

Proof: The subgroup generated byH anda containsb anda and is therefore transitive,
of prime degree and therefore primitive, and contains the single 2-cyclecm = (2m−1, 2m)
and is therefore equal toSN (by Jordan’s theorem [9; Section 13]). 2



P1: MBT

Journal of Algebraic Combinatorics KL583-03-CON May 16, 1998 14:42

VERTEX-TRANSITIVE NON-CAYLEY GRAPHS 35

Lemma 3.7 The subgroup generated by c1, c2, . . . , cm is elementary abelian of order2m.

Proof: First theci are products of commuting transpositionst j , and therefore generate
an elementary abelian 2-group. Also by definition of theci (and the properties of the
Sierpinski gasket), for 1≤ k ≤ m the subgroup generated byck, . . . , cm moves only
the points 2k − 1, 2k, . . . ,2m− 1, 2m, and it follows that each such subgroup has order
2m−k+1. 2

Lemma 3.8 The subgroup H is a2-group of order2m+2.

Proof: From part (b) of Lemma 3.4 we see thatb2 centralizes〈c1, c2, . . . , cm〉, and fur-
ther, thatb normalizes〈b2, c1, c2, . . . , cm〉, thereforeH = 〈b, c1, c2, . . . , cm〉 has order
2m+2. 2

Lemma 3.9 H ∩ a−1Ha has index4 in H.

Proof: From part (a) of Lemma 3.4 we see thata normalizes〈c1, c2, . . . , cm〉, which is a
subgroup of index 4 inH with transversal{1, b, b2, b3}. Since each ofa−1ba,a−1b2a and
a−1b3a moves the pointN, none of these three elements can lie inH and it follows that
H ∩ a−1Ha = 〈c1, c2, . . . , cm〉. 2

4. Properties of the graphs

We begin with some of the basic properties which follow from the construction described
in the previous Section:

Proposition 4.1 The graph0n defined in Section3 has N!/2m+2 vertices, and is
connected, 4-valent and arc-transitive, with SN as an arc-transitive group of automor-
phisms. The girth of0n is 4.

Proof: Most of this follows from Lemmas 3.6, 3.8 and 3.9, and the fact thatG = SN acts
on0n = 0(G, H,a) by right multiplication, with trivial kernel sinceAN is simple. Finally,
(ab2)2 = (1, 2)(3, 4)(2m+ 1, 2m+ 2)(2m+ 3, N) has order 2, so0n has a circuit of
length 4 with verticesH, Hab2, H(ab2)2 and Ha (in that order); and as no two of the
four neighbours ofH are adjacent, there is no circuit of length 3, and therefore0n has
girth 4. 2

The stabilizer inG = SN of the vertexH is the subgroupH itself, of order 2m+2. This
group acts transitively on the neighbour-set0n(H) = {Ha, Hab, Hab2, Hab3}, and the
stabilizer of the arc(H, Ha) is the subgroupH ∩ a−1Ha = 〈c1, c2, . . . , cm〉. As the latter
subgroup is centralized byb2, it is also the stabilizer of the arc(H, Hab2), while the element
c1 interchanges the other two arcs(H, Hab) and(H, Hab3). It follows thatH acts as the
dihedral groupD4 of order 8 on the neighbour-set0n(H).

From Lemma 3.4 it is easy to see that every elementg ∈ G may be written in the form
g = hw whereh ∈ 〈c1, c2, . . . , cm〉 andw is a word in the elementsa andb. In particular,
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every vertex of0n is of the form Hw wherew ∈ 〈a, b〉, and it follows easily that the
subgroup〈a, b〉 is transitive on vertices of0n. (In fact we will see in Proposition 4.4 that
〈a, b〉 = AN and this is the smallest vertex-transitive group of automorphisms of0n.)

Next for any positive integers, an s-arc in a graph0 is an ordered(s + 1)-tuple of
vertices(v0, v1, v2, . . . , vs) of 0 such that any two consecutivevi are adjacent in0 and any
three consecutivevi are distinct. From what we have seen above, the groupSN does not act
transitively on 2-arcs (ordered paths of length 2) in0n, because of the existence of circuits
of length 4. More of the nature of the action ofSN on0n is revealed below in Lemma 4.2.

Lemma 4.2 For 1≤ k≤m, the subgroup of SN generated by ck, . . . , cm is the stabilizer
in SN of the k-arc(H(ab)[

k
2 ], H(ab)[

k
2 ]−1, . . . , Hab, H, Ha, Haba, . . . , H(ab)[

k−1
2 ]a) of

0n. Moreover, this subgroup fixes all vertices at distance up to[ k
2] from H but not all

vertices at distance[ k
2] + 1 from H in0n.

Proof: We use the following corollary of Lemma 3.4: ifh ∈ 〈ci , ci+1, . . . , cm〉 where
i ≥ 3, andeis any integer, thenabeh = h′abe for someh′ ∈ 〈ci−2, ci−1, . . . , cm〉. Now con-
sider anys-arc in0n of the form(H, Habe1, Habe2abe1, . . . , Habes . . .abe2abe1), where
1 ≤ s ≤ m/2 ande1 ∈ {0, 1, 2, 3} while ei ∈ {1, 2, 3} for 2 ≤ i ≤ s. The stabilizer inSN

of the initial 1-arc(H, Habe1) is either〈c1, c2, . . . , cm〉 or 〈b2c1, c2, . . . , cm〉, depending
on whethere1 ∈ {0, 2} or e1 ∈ {1, 3}. By induction ons (and using Lemma 3.4) it follows
that the stabilizer of the givens-arc contains〈c2s−1, c2s, . . . , cm〉 or 〈c2s, c2s+1, . . . , cm〉,
again depending on whethere1 ∈ {0, 2} or e1 ∈ {1, 3}. However, in the case where
ei = 1 for all i ≥ 2, Lemma 3.4 shows thatc2s−2 moves the final vertexH(ab)s−1a
of the s-arc (H, Ha, Haba, . . . , H(ab)s−2a, H(ab)s−1a), to Hab3(ab)s−2a, and simi-
larly c2s−1 moves the final vertex of thes-arc(H, Hab, H(ab)2, . . . , H(ab)s−1, Habs), to
Hab3(ab)s−1. The result follows by takings= [ k

2]. 2

Proposition 4.3 The symmetric group SN is the full automorphism group of0n.

Proof: Assume the contrary, and letJ be a subgroup of Aut0n which properly con-
tains G= SN, and let K be the stabilizer inJ of the vertex labelledH in 0n. Then K
containsH , and since0n contains circuits of length 4, the subgroupK acts asD4 on
0n(H) in the same way asH , and by induction on the length of a stabilizer sequence
it follows that K is also a 2-group. Now letθ ∈ K\H be an automorphism of0n, cho-
sen so thatH has index 2 in〈H, θ〉, in which caseθ normalizesH . By Lemma 4.2,
and multiplying by a suitable element ofH if necessary, we may suppose thatθ fixes
every vertex at distance up tom/2 from H in 0n, and further, thatθ fixes the(m+1)-
arc(H(ab)m/2, H(ab)m/2−1, . . . , Hab, H, Ha, Haba, . . . , H(ab)m/2a). In particular, we
may suppose that〈θ〉 is the stabilizer inJ of this(m+1)-arc, which will be denoted byM .

Now M is fixed byaθa, and soaθa ∈ 〈θ〉\H , which in turn impliesθ−1aθa ∈ H and
thereforeθ−1aθ = a (since the stabilizer inH of M is trivial). It follows thatθ normalizes
〈H,a〉 = G = SN , and then since AutSN = SN (see [3; Section II.5]) there must be a
permutationσ ∈ SN corresponding toθ which normalizesH and centralizesa. But further,
θ−1bθb−1 lies in H and also fixes every vertexHx at distance up tom/2 from H in 0n

(sinceθ fixes Hx and Hxb), so from Lemma 4.2 we deduce thatθ−1bθb−1 ∈ 〈cm〉, and
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thereforeσ−1bσ = θ−1bθ ∈ {b, cmb}. The caseσ−1bσ = cmb is impossible sinceb is
even whilecmb is odd, and thereforeσ centralizesb. Consequently,θ centralizes botha
andb, from which it follows thatθ fixes every vertex of0n, a contradiction. 2

Proposition 4.4 The smallest vertex-transitive group of automorphisms of0n is the al-
ternating group AN, and in this group the stabilizer of a vertex of0n has order2m+1.

Proof: First, AN contains the vertex-transitive subgroup〈a, b〉, sincea andb are even,
and henceAN itself is vertex-transitive on0n. On the other hand, in the groupSN the
stabilizer of a vertex of0n has order 2m+2, and therefore any vertex-transitive subgroup
has index at most 2m+2 in SN . But SN has no proper subgroup of index less thanN other
than AN (see [3; Section II.5]), however, so by choice ofN> 2m+2 the alternating group
AN is the smallest vertex-transitive subgroup of Aut0n. In particular, since each of the
permutationsci other thancm is even, we find〈a, b〉 = 〈a, b, c1, c2, . . . , cm−1〉 = AN, and
the stabilizer inAN of a vertex of0n is 〈b, c1, c2, . . . , cm−1〉, which has order 2m+1. 2

5. Final remarks

Thus, we have proved the following theorem.

Theorem 5.1 For every positive integer n there exists a finite arc-transitive4-valent
graph0n, with the property that in the smallest vertex-transitive group of automorphisms
of 0n, the stabilizer of a vertex has order22n+1.

In fact for eachn there are infinitely many such graphs, because in our construction there
are infinitely many possibilities for the prime degreeN. Moreover, the construction works
also whenN is not prime, as primitivity of the group generated byH anda may be proved
using conjugates of the 2-cyclecm or the quadruple transposition(ab2)2.

Since producing this family of graphs it has been pointed out to us by Brendan McKay
and a referee that a very different family of graphs also provides an answer to the ques-
tion raised by Chris Godsil. This family of graphs, namedC(p, r, s) wherep, r ands are
positive integers withp ≥ 2 andr ≥ 3, were constructed by Praeger and Xu [7]. The
graphC(p, r, s) has psr vertices and valency 2p, and except for small values of the pa-
rameters, the automorphism group ofC(p, r, s) is the wreath productSpwr Dr , of order
2r (p!)r (see Theorem 2.13 of [7]). In particular,C(p, r, s) is vertex-transitive whenever
r ≥ s.

Now if, for example,s= 2 while p and r are primes withr > p, then a very easy
group-theoretic argument shows that a minimal transitive subgroupG of the automorphism
group ofC(p, r, 2) is of the formG = P R whereP is an elementary Abelianp-group
and R= Zr . Moreover,G is contained in the subgroupQR where Q= Zr

p is a Sylow
p-subgroup ofSp wr Dr , and Q is the ZpR permutation module for the regular repre-
sentation ofR on r points. The irreducible constituents ofR in Q consist of one trivial
submodule, and(r − 1)/e of dimensione wheree is the order ofp modulor . SinceG is
transitive on thep2r vertices ofC(p, r, 2), it follows that|P| ≥ pe. Choosing an infinite
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sequence of primesr1< r2< · · · all greater thanp such that the order ofp modulori is
ei ande1 < e2 < · · ·, one finds a minimal vertex-transitive subgroup of automorphisms of
C(p, ri , 2) has order at leastpei r , and so the vertex-stabilizer in such a subgroup has order at
leastpei−2.

Unfortunately, in both our family and this family the action of the vertex-stabilizer is
imprimitive on the neighbour-set, so neither construction has much effect on progress
towards settling Weiss’s conjecture (see [6, 8]). We believe that this conjecture remains
open.
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