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Abstract. Let Γ be a distance-regular graph of diameterd and valencyk > 2. Suppose there exists an integers
with d ≤ 2s such thatci = bd−i for all 1 ≤ i ≤ s. ThenΓ is an antipodal double cover.
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1. Introduction

Throughout this paper, we assumeΓ is a connected finite undirected graph without loops or
multiple edges. We identifyΓ with the set of vertices. For verticesu andx in Γ, let∂(u, x)
denote thedistancebetweenu andx in Γ, i.e., the length of a shortest path connectingu
andx. Let d = d(Γ) denote thediameterof Γ, i.e., the maximal distance between any two
vertices inΓ. Let

Γi(u) = { y ∈ Γ | ∂(u, y) = i }.
For verticesu andx in Γ at distancei, let

Ci(u, x) = Γi−1(u) ∩ Γ1(x),
Ai(u, x) = Γi(u) ∩ Γ1(x) and
Bi(u, x) = Γi+1(u) ∩ Γ1(x).

A graphΓ is called adistance-regular graphif for any two verticesu andx in Γ at distance
i, the numbers

ci = | Ci(u, x) |, ai = | Ai(u, x) | and bi = | Bi(u, x) |

depend only on the distance∂(u, x) = i rather than on individual vertices. When this is
the case we call numbersci, ai andbi the intersection numbersof Γ, in particulark = b0
is calledvalencyof Γ.

Let h be an integer with1 ≤ h ≤ d, v andx vertices inΓ at distanceh. Take any
u ∈ Ch(x, v). The following are well known basic properties which we use implicitly in
this paper.
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(1) Γ1(x) = Ch(v, x) ∪Ah(v, x) ∪Bh(v, x),
(2) Bh−1(u, x) ⊇ Bh(v, x),
(3) Ch−1(u, x) ⊆ Ch(v, x),
(4) Ch(α, γ) ⊆ Bd−h(β, γ) for anyγ ∈ Γh(α) ∩ Γd−h(β) with ∂(α, β) = d,
(5) The numberski := | Γi(x) | depend only oni,
(6) The numbersp hi,j := | Γi(v) ∩ Γj(x) | depend only oni, j andh = ∂(v, x).

In particular, we have

(1′) k = ci + ai + bi for i = 0, . . . , d,
(2′) k = b0 > b1 ≥ · · · ≥ bd−1 ≥ 1,
(3′) 1 = c1 ≤ c2 ≤ · · · ≤ cd ≤ k,
(4′) ch ≤ bd−h for 1 ≤ h ≤ d.

The reader is referred to [3] or [4] for the general theory of distance-regular graphs.

A distance-regular graphΓ of diameterd is called anantipodal double cover(of its folded
graph), if and only ifci = bd−i, for i = 1, . . . , d.

For more details on antipodal graphs see [5], and§ 4.2 of [4].

The main result of this paper is the following:

Theorem 1 LetΓ be a distance-regular graph of diameterd and valencyk > 2. Suppose
there exists an integers with d ≤ 2s such thatci = bd−i for all 1 ≤ i ≤ s. ThenΓ is an
antipodal double cover.

In [1], we have already obtained the special case of the main theorem of this paper, i.e.,
a distance-regular graph ofbt = 1, d ≥ 2t and valencyk > 2 is an antipodal double cover,
which is one of important facts to prove our theorem.

In general, it is well known that

p i
d,d−i =

bi · · · bd−1

cd−i · · · c1
=

bi
cd−i

· p i+1
d,d−i−1 ≥ p i+1

d,d−i−1

and thus
kd = p 0

d,d ≥ p 1
d,d−1 ≥ · · · ≥ p d

d,0 = 1.

Hence we obtain the following corollary immediately from our theorem.

Corollary 1 If there exists an integert with 2t ≤ d such thatp t
d,d−t = 1, thenΓ is an

antipodal double cover.

By the definition,Γ is an antipodal double cover if and only ifp i
d,d−i = 1 for all 0 ≤ i ≤ d.
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We use the following terminology in this paper.

Definition Let u, v, x andy be vertices inΓ.
(1) We write the“ triangle inequalities on(u, v, x, y)” for the triangle inequalities of
(u, v, y) and of(u, x, y).
(2) The quadruple(u, v, x, y) is called an(h, j)-box if

∂(u, v) = 1, ∂(u, x) = h− 1, ∂(x, y) = j,
∂(v, x) = h, ∂(v, y) = h− j, ∂(u, y) = h− j + 1.

(3) The quadruple(u, v, x, y) is called aj-brox if
∂(u, v) = 2, ∂(u, x) = d− 1, ∂(x, y) = j,
∂(v, x) = d, ∂(v, y) = d− j, ∂(u, y) = d− j + 2.

A (d, 1)-box is called aboxthat was a key to prove the theorem in [1]. Notice that there are
many boxes in an antipodal distance-regular graphΓ of diameterd ≥ 3; namely, givenu, y
with ∂(u, y) = d, there is a one to one correspondence betweenv ∈ Γ1(u) andx ∈ Γ1(y)
such that(u, v, x, y) is a box. Moreover, ifΓ has a box, then alsoΓ has a(d, j)-box, i.e., for
y′ ∈ Γd−j(v) ∩ Γj−1(y) the quadruple(u, v, x, y′) is a (d, j)-box. Whence an antipodal
distance-regular graph has a(d, j)-box for anyj.

On the other hand, a distance-regular graph which is an antipodal double cover never
contains aj-brox (u, v, x, y) by observing the(u, v, x).
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an(h, j)-box: aj-brox:

••

••
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xu
h− 1

h− j

h− j + 1

h
j1

••

••

yv

xu
d− 1

d− j

d− j + 2

d
j2

When we characterize graphs, it is important to consider their substructures. One of
the characterization of antipodal distance-regular graphs is that they have a box. These
configurations are useful tools when we investigate if a graph is antipodal or not as we see
§ 2, [1] or [2]. Readers who are familiar with distance distribution diagrams may read some
of proofs easily, however, we can do without diagrams.
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2. Proof of the Theorem

Throughout this section, we assumeΓ is not an antipodal double cover to derive a con-
tradiction. ThenΓ cannot have any boxes, and must have some broxes in Lemma3 and
Lemma5. The existence and nonexistence of these configurations lead to the inequality in
Lemma6 that causes a contradiction.

For the cases = 1, the theorem is trivial and well-known. We may assumes ≥ 2.
SupposeΓ is not an antipodal double cover. Then we have

cj = bd−j for all 1 ≤ j ≤ s, cs+1 6= bd−(s+1)

for somes with d
2 ≤ s < d and lett := d− s.

If bt = 1, thenΓ is an antipodal double cover from [1]. So we may assumebt ≥ 2.

Lemma 1 (1) pd−jd, j = 1 for all 0 ≤ j ≤ s and p t−1
d,s+1 ≥ 2,

(2) at−1 < at.

Proof: Using the well known formula ofpli,j

pd−jd,j =
bd−j · · · bd−1

cj · · · c1
=
{

= 1 if 0 ≤ j ≤ s
≥ 2 if j = s+ 1

from our assumption. This impliesbt−1 = cs+1 p
t−1
d,s−1 ≥ 2cs+1. Thus we obtain

at−1 ≤ k − bt−1 ≤ k − 2cs+1

≤ k − ct − cs = at + bt − cs = at.

If the equality holds, thent = 1 andbt = cs = cs+1 = ct = 1. This contradictsbt ≥ 2.

Lemma 2 Letu, v, α andβ be vertices inΓ with ∂(u, v) = 1 and∂(α, β) = d.
(1) If cj = cj+1, then we have

Aj(v, x) ⊆ Aj+1(u, x) for any x ∈ Γj+1(u) ∩ Γj(v).

(2) For all integerj with 1 ≤ j ≤ s. We have

Cj(α, x) = Bd−j(β, x) for any x ∈ Γj(α) ∩ Γd−j(β).

In particular, if t ≤ j ≤ s, thenAj(α, x) = Ad−j(β, x).
(3) We haveΓs+1(β) ∩ Γt(α) 6= φ and

Cs+1(β, y) = Bt(α, y) for any y ∈ Γs+1(β) ∩ Γt(α).

In particular, cs+1 = bt = cs.
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Proof: (1)(2) The assertions follow from basic properties and our assumptions.
(3) Take anyx ∈ Γs+1(β) ∩ Γt−1(α). Sincecs+1 < bt−1, we have

y ∈ Bt−1(α, x)− Cs+1(β, x).

Sincey 6∈ Cs+1(β, x) andy 6∈ Ct−1(α, x) = Bs+1(β, x),we obtainy ∈ As+1(β, x). This
meansy ∈ Γs+1(β) ∩ Γt(α), i.e.,Γs+1(β) ∩ Γt(α) 6= φ.

Next we show thatCs+1(β, y) = Bt(α, y). Take anyz ∈ Cs+1(β, y). From the triangle
inequalities on(α, β, y, z), we have

t = d− s = ∂(β, α)− ∂(β, z) ≤ ∂(α, z) ≤ ∂(α, y) + ∂(y, z) = t+ 1.

PPPPPPPPPPPPP

α

β

y

z

t

d 1

s

•

•

•

•

This implies∂(α, z) ∈ { t, t+ 1 }. Suppose∂(α, z) = t. Then we have

y ∈ At(α, z) = As(β, z)

from (2). This contradictsy ∈ Γs+1(β). Hence we obtain∂(α, z) = t+ 1 and

Cs+1(β, y) ⊆ Bt(α, y).

The assertion follows from

cs ≤ cs+1 = | Cs+1(β, y) | ≤ | Bt(α, y) | = bt = cs.

Lemma 3 (1) There exists no(d, j)-box for any1 ≤ j ≤ s.
(2) There exists no(d− i+ 1, 2)-box for any1 ≤ i ≤ s− 1.

Proof: (1) We prove by induction onj.
SupposeΓ has a box(u, v, x, y). Take anyp ∈ Γs(v) ∩ Γt−1(y). Then we havep ∈

Γs+1(u) ∩ Γt(x) by the triangle inequalities on(u, v, y, p) and on(x, v, y, p).
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s t− 1

From Lemma 1 (2), there existsq ∈ At(x, p)−At−1(y, p). Then by Lemma 2

q ∈ At(x, p) = As(v, p) ⊆ As+1(u, p).
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Let { y∗ } = Γd(u) ∩ Γt−1(q) as p s+1
d,t−1 = 1. Then we obtain∂(v, y∗) = d − 1 by

the triangle inequalities on(v, q, u, y∗). And let {x∗ } = Bd−1(v, y∗). Also we obtain
∂(q, x∗) = t by the triangle inequalities on(q, v, y∗, x∗).
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q

1 1s+ 1 t

s t− 1

This impliesx = x∗ as{x, x∗ } ⊆ Γd(v) ∩ Γt(q) andp sd,t = 1.
Then{ y, y∗ } ⊆ Bd−1(u, x) andy 6= y∗ as∂(y∗, q) = t−1 6= ∂(y, q).This contradicts

bd−1 = 1. HenceΓ does not have a box.
Now we assume2 ≤ j ≤ s and there exists a(d, j)-box (u′, v′, x′, y′) in Γ. Take

z ∈ Bd−j+1(u′, y′) as2 ≤ j. Then we have

z ∈ Bd−j+1(u′, y′) ⊆ Bd−j(v′, y′) = Cj(x′, y′)

by Lemma 2 (2).
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v′•

x′•

z•��
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d− j + 1

d− 1

d

d− j + 2

1 j − 1

This implies(u′, v′, x′, z) is a(d, j − 1)-box, contradicting our inductive assumption.
(2) Suppose that there exists a(d− i+ 1, 2)-box (u, v, x, y) for some1 ≤ i ≤ s− 1.
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v •

x•
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d− i− 1

d− i

d− i+ 1

d− i

1 2

Let { v∗ } = Γd(v) ∩ Γi−1(x) aspd−i+1
d, i−1 = 1. Then we have∂(u, v∗) = d − 1 and

∂(y, v∗) = i + 1 from the triangle inequalities on(u, v, x, v∗) and on(y, v, x, v∗). This
implies(u, v, v∗, y) is a(d, i+ 1)-box, contradicting (1).
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Lemma 4 Letα andβ be vertices inΓ with ∂(α, β) = d andx ∈ Γt(α) ∩ Γs(β).
(1)

Ad(α, β) = Bs(x, β) and Ad(β, α) = Bt(x, α).

In particular, we havebs = ad = bt ≥ 2.
(2) a1 = 0,
(3) bs+1 = bs = ct.

Proof: (1) Suppose there existsz ∈ Ad(α, β) − Bs(x, β). Then we have∂(x, z) = s,
by the triangle inequalities on(x, α, β, z) andz 6∈ Bs(x, β). This means that{β, z } ∈
Γd(α)∩Γs(x).However, this contradictsp td,s = 1.Thus we obtainAd(α, β) ⊆ Bs(x, β).

On the other hand, if there existsy ∈ Bs(x, β)−Ad(α, β), then(y, β, α, x) is a(d, t)-box,
contradicting Lemma 3 (1). Hence we haveAd(α, β) = Bs(x, β).

In the same way, we obtainAd(β, α) = Bt(x, α).
(2) Supposea1 > 0.Take anyγ ∈ Ad(α, β) andδ ∈ A1(β, γ).Then we haveδ ∈ Ad(α, β)
asbd−1 = 1. This meansBs(x, β) contains an edge{ γ, δ } from (1). Let

m = max{ j = ∂(u, v) | Bj(u, v) contains an edge}.

By our observation,
s ≤ m < d− 1.

Let u andv be vertices inΓ with ∂(u, v) = m andBm(u, v) contains an edge{w, z }.
We can take

u′ ∈ Bm+1(w, u) ⊆ Bm(v, u).

From the triangle inequalities on(u′, v, w, z) and the maximality ofm, we have∂(u′, z) =
m+ 1. Since

1 = | { v } | ≤ | Cm+1(u, z)− Cm+1(u′, z) | = | Cm+1(u′, z)− Cm+1(u, z) |,

there existsy ∈ Cm+1(u′, z)−Cm+1(u, z).Then we have∂(y, u) = m+1 and∂(w, y) = 2
by the triangle inequalities on(y, u′, z, u) and observing(u′, y, w). Thus(u, u′, w, y) is an
(m+ 2, 2)-box.

u •

u′•

w•

y•��
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m

m+ 1

m+ 2

m+ 1

1 2

Since t ≤ s ≤ m, this contradicts Lemma 3 (2). Thereforea1 must be zero.
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(3) Fix γ ∈ Cd(β, α) andδ ∈ Bd−1(γ, β). Then∂(α, δ) = d as otherwise(α, γ, δ, β) is a
box.

α •

γ •

δ•

β•��
��
��
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��
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d− 1

d

d

1 1

Sincead > 1 = bd−1, we havey ∈ Ad(α, β) − Bd−1(γ, β). By the triangle inequality
of (γ, α, y), we obtainy ∈ Ad−1(γ, β) asy 6∈ Bd−1(γ, β). Sincea1 = 0 and considering
(γ, δ, y), we have∂(δ, y) = 2.

Let ξ ∈ Γt(γ) ∩ Γs−1(y). We claim that∂(α, ξ) = t+ 1 and∂(δ, ξ) = s+ 1.
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We have∂(α, ξ) = t+ 1 by the triangle inequalities on(α, γ, y, ξ).
From the triangle inequalities on(δ, γ, y, ξ), we have∂(δ, ξ) ∈ { s, s+ 1 }. Let { γ∗ } =

Bd−1(γ, y). Then∂(ξ, γ∗) = s andδ 6= γ∗ by the triangle inequalities on(γ∗, γ, y, ξ) and
considering(y, δ, γ∗).
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If ∂(δ, ξ) = s, then{ δ, γ∗ } ⊆ Γd(γ)∩Γs(ξ) with ∂(γ, ξ) = t. This contradictsp td,s = 1.
Hence we obtain∂(δ, ξ) = s+ 1 as claimed.
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Next we show thatCt(γ, ξ) = Bs+1(δ, ξ). Take anyw ∈ Ct(γ, ξ). Then we obtain
∂(α,w) = t and∂(δ, w) ∈ { s + 1, s + 2 } from the triangle inequalities on(α, γ, ξ, w)
and on(δ, γ, ξ, w).
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••

wγ

ξα
t+ 1

t− 1

11

••

••

wγ

ξδ
s+ 1

t− 1

1d

If ∂(δ, w) = s+ 1, thenw ∈ Γt(α) ∩ Γs+1(δ) with ∂(α, δ) = d. Hence we have

ξ ∈ Bt(α,w) = Cs+1(δ, w)

from Lemma 2 (3). This contradicts∂(δ, ξ) = s+ 1. Thus we have∂(δ, w) = s+ 2, i.e.,
Ct(γ, ξ) ⊆ Bs+1(δ, ξ). The assertion follows from

ct = | Ct(γ, ξ) | ≤ | Bs+1(δ, ξ) | = bs+1 ≤ bs = ct.

Lemma 5 There exists ani-brox for all 2 ≤ i ≤ s.
Proof: We prove by induction ons− i.

Suppose there exists nos-brox inΓ. Letx andv be vertices inΓ with ∂(x, v) = d. Take
y ∈ Γs(x) ∩ Γt(v) andw ∈ Ad(x, v). Then from Lemma 4 (1), we have∂(y, w) = t+ 1.
Take anyu ∈ Bt+1(y, w).
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Then∂(x, u) = d as otherwise(u, v, x, y) is ans-brox. Thus we obtain

Bt+1(y, w) ⊆ Ad(x,w)− { v }, i.e., bt+1 ≤ ad − 1.

On the other hand, we have

bt+1 ≥ bs+1 = bs = ad

from Lemma 4 (1)(3). This is a contradiction. Hence there exists-broxes.



136 ARAYA AND HIRAKI

For the cases = 2, the lemma is already proved. We may assumes ≥ 3. Suppose
2 ≤ i ≤ s − 1 and there exists noi-brox to derive a contradiction. From the inductive
assumption, we have an(i+ 1)-brox (u′, v′, x′, y′). Fix anyw′ ∈ C2(u′, v′).
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u′

w′

v′

x′

y′

d− 1

d− i+ 1

d

d− i− 1

i+ 1

It is clear that∂(w′, y′) = d − i by the triangle inequalities on(w′, u′, v′, y′) and that
∂(x′, w′) = d as otherwise(w′, v′, x′, y′) is a(d, i+ 1)-box.
Claim: Ci+1(x′, y′) ⊆ Bd−i(w′, y′)−Bd−i+1(u′, y′).

Take anyz′ ∈ Ci+1(x′, y′). From Lemma 2 (2), we obtain

z′ ∈ Ci+1(x′, y′) = Bd−(i+1)(v′, y′), i.e., ∂(v′, z′) = d− i.

It is clear that∂(u′, z′) ∈ { d − i, d − i + 1, d − i + 2 } by the triangle inequality of
(u′, y′, z′). If ∂(u′, z′) = d− i, then(z′, y′, u′, v′) is a(d− i+ 1, 2)-box. This contradicts
Lemma 3 (2). If∂(u′, z′) = d + 2 − i, then(u′, v′, x′, z′) is ani-brox. This contradicts
our assumption. Thus∂(u′, z′) = d− i+ 1, i.e.,z′ 6∈ Bd−i+1(u′, y′).

u′•

w′•

x′•

z′•��
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d− 1

d

d− i+ 1
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We have∂(w′, z′) ∈ { d− i, d− i+ 1 } by the triangle inequalities on(w′, u′, v′, z′). If
∂(w′, z′) = d − i, then(u′, w′, x′, z′) is a (d, i)-box, contradicting Lemma 3 (1). Hence
we obtain∂(w′, z′) = d− i+ 1, i.e.,z′ ∈ Bd−i(w′, y′). Whence the claim is proved.

This implies
ci+1 ≤ bd−i − bd−i+1.

However we have
ci+1 ≥ ci = bd−i.

This is a contradiction asi ≥ 2.
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Lemma 6 We have

bj − cd−j+1 ≤ bj+1 − cd−j for all 1 ≤ j ≤ s− 1.

Proof: There exists a2-brox (u, v, x, y) from Lemma 5. Fix anyw ∈ C2(u, v) and
z ∈ C2(x, y). Then we have∂(w, y) = d− 1 from the triangle inequalities on(w, u, v, y),
and∂(x,w) = d as otherwise(w, v, x, y) is a(d, 2)-box. Similarly,∂(z, v) = d − 1 and
∂(u, z) = d. We obtain∂(w, z) = d as otherwise(u,w, x, z) is a box.
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Fix anyp ∈ Γj−1(y)∩Γd−j−1(v) for 1 ≤ j ≤ s−1.Then from the triangle inequalities on
(p, y, v, u), (p, y, v, w), (p, y, v, z) and (p, v, y, x), we obtain that
p ∈ Γd−j+1(u) ∩ Γd−j(w) ∩ Γj(z) ∩ Γj+1(x).
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In order to prove the statement, we will show that

Bj(z, p)−Bj+1(x, p) ⊆ Cd−j+1(u, p)− Cd−j(w, p).

Take anyq ∈ Bj(z, p)−Bj+1(x, p). It is clear that∂(y, q) = j by the triangle inequalities
on (y, z, p, q).

First, we will proveq 6∈ Cd−j(w, p) and∂(w, q) = d− j.
Supposeq ∈ Cd−j(w, p). We have∂(x, q) = j + 1 by the triangle inequalities on

(x,w, p, q) andq 6∈ Bj+1(x, p).SinceCd−j(w, p) ⊆ Cd−j+1(u, p),we obtain(u,w, x, q)
is a (d, j + 1)-box. This contradicts Lemma 3 (1). Henceq 6∈ Cd−j(w, p). Sinceq 6∈
Cj(z, p) = Bd−j(w, p), we obtain∂(w, q) = d− j.

Then we obtain∂(v, q) = d − j − 1 by the triangle inequalities on(v, w, p, q) and
q 6∈ Cj(z, p) ⊆ Cj+1(x, p) = Bd−j−1(v, p). Also we have∂(x, q) = j + 1 from the
triangle inequalities on(x, v, p, q) andq 6∈ Bj+1(x, p).



138 ARAYA AND HIRAKI

�
�
�
�
�
�
�
��

��
��

��
���

HHHHHHHHHHHH

XXXXXXXXXXXX

•

•

•

u

w

v

d− j
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Next we will proveq ∈ Cd−j+1(u, p).
From the triangle inequalities on(u,w, y, q), we have∂(u, q) ∈ { d − j, d − j + 1 }.

Supposeq 6∈ Cd−j+1(u, p) to derive a contradiction. Then∂(u, q) = d − j + 1. Let
{ y∗ } = Γd(u) ∩ Γj−1(q) aspd−j+1

d, j−1 = 1. By the triangle inequalities on(w, u, q, y∗),
we get∂(w, y∗) = d − 1 and thus let{ z∗ } = Bd−1(w, y∗). We obtain∂(q, z∗) = j and
∂(v, z∗) = d − 1 by the triangle inequalities on(q, w, y∗, z∗) and on(v, w, q, z∗). Then
∂(u, z∗) = d as otherwise(u,w, z∗, y∗) is a box.

Let {x∗ } = Bd−1(v, z∗). Also we get∂(q, x∗) = j + 1, by the triangle inequalities on
(q, v, z∗, x∗). Since{x, x∗ } ⊆ Γd(v) ∩ Γj+1(q) andpd−j−1

d, j+1 = 1, we havex = x∗. As
∂(q, z) = j + 1 6= j = ∂(q, z∗), we havez 6= z∗. However{ z, z∗ } ⊆ Bd−1(u, x). This
contradictsbd−1 = 1.Hence we obtainq ∈ Cd−j+1(u, p).Therefore the lemma is proved.

Proof of Theorem 1.From Lemma 6 and Lemma 4 (3), we have

b1 − cd ≤ b2 − cd−1 ≤ · · · ≤ bs − ct+1 ≤ 0.

On the other hand, from Lemma 4 (1)(2)

b1 − cd = (k − 1)− (k − ad) = −1 + ad ≥ 1.

We have a contradiction. This completes the proof of Theorem 1.
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2. M. Araya, A. Hiraki and A. Juriˇsić, “Distance-regular graphs withb2 = 1 and antipodal covers,”Europ. J.
Combinatorics18 (1997), 243–248.

3. E. Bannai and T. Ito,Algebraic Combinatorics I,Benjamin-Cummings, California, 1984.
4. A. E. Brouwer, A. M. Cohen, and A. Neumaier,Distance-Regular Graphs,Springer-Verlag, Berlin, Heidel-

berg, 1989.
5. A. Gardiner, “Antipodal covering graphs,”J. Combin. Th. (B)16 (1974), 255–273.


