Distance-Regular Graphs with $c_{i}=b_{d-i}$ and Antipodal Double Covers

MAKOTO ARAYA
araya@cs.inf.shizuoka.ac.jp
Department of Computer Science, Shizuoka University, Hamamatsu Shizuoka, 432-8011 Japan
AKIRA HIRAKI
hiraki@cc.osaka-kyoiku.ac.jp
Division of Mathematical Sciences, Osaka Kyoiku University, Kashiwara Osaka 582-8582, Japan

Received March 24, 1995; Revised May 1, 1997

Abstract

Let Γ be a distance-regular graph of diameter d and valency $k>2$. Suppose there exists an integer s with $d \leq 2 s$ such that $c_{i}=b_{d-i}$ for all $1 \leq i \leq s$. Then Γ is an antipodal double cover.

Keywords: distance-regular graph, antipodal double cover, box, brox.

1. Introduction

Throughout this paper, we assume Γ is a connected finite undirected graph without loops or multiple edges. We identify Γ with the set of vertices. For vertices u and x in Γ, let $\partial(u, x)$ denote the distance between u and x in Γ, i.e., the length of a shortest path connecting u and x. Let $d=d(\Gamma)$ denote the diameter of Γ, i.e., the maximal distance between any two vertices in Γ. Let

$$
\Gamma_{i}(u)=\{y \in \Gamma \mid \partial(u, y)=i\}
$$

For vertices u and x in Γ at distance i, let

$$
\begin{array}{rlr}
C_{i}(u, x) & =\Gamma_{i-1}(u) \cap \Gamma_{1}(x), & \\
A_{i}(u, x) & =\Gamma_{i}(u) \cap \Gamma_{1}(x) & \text { and } \\
B_{i}(u, x) & =\Gamma_{i+1}(u) \cap \Gamma_{1}(x) .
\end{array}
$$

A graph Γ is called a distance-regular graph if for any two vertices u and x in Γ at distance i, the numbers

$$
c_{i}=\left|C_{i}(u, x)\right|, \quad a_{i}=\left|A_{i}(u, x)\right| \quad \text { and } \quad b_{i}=\left|B_{i}(u, x)\right|
$$

depend only on the distance $\partial(u, x)=i$ rather than on individual vertices. When this is the case we call numbers c_{i}, a_{i} and b_{i} the intersection numbers of Γ, in particular $k=b_{0}$ is called valency of Γ.

Let h be an integer with $1 \leq h \leq d, v$ and x vertices in Γ at distance h. Take any $u \in C_{h}(x, v)$. The following are well known basic properties which we use implicitly in this paper.

$$
\begin{align*}
& \Gamma_{1}(x)=C_{h}(v, x) \cup A_{h}(v, x) \cup B_{h}(v, x) \tag{1}\\
& B_{h-1}(u, x) \supseteq B_{h}(v, x) \\
& C_{h-1}(u, x) \subseteq C_{h}(v, x), \\
& C_{h}(\alpha, \gamma) \subseteq B_{d-h}(\beta, \gamma) \text { for any } \gamma \in \Gamma_{h}(\alpha) \cap \Gamma_{d-h}(\beta) \text { with } \partial(\alpha, \beta)=d,
\end{align*}
$$

(5) The numbers $k_{i}:=\left|\Gamma_{i}(x)\right|$ depend only on i,
(6) The numbers $p_{i, j}^{h}:=\left|\Gamma_{i}(v) \cap \Gamma_{j}(x)\right|$ depend only on i, j and $h=\partial(v, x)$.

In particular, we have
(1') $k=c_{i}+a_{i}+b_{i}$ for $i=0, \ldots, d$,
(2') $k=b_{0}>b_{1} \geq \cdots \geq b_{d-1} \geq 1$,
(3') $1=c_{1} \leq c_{2} \leq \cdots \leq c_{d} \leq k$,
(4') $\quad c_{h} \leq b_{d-h}$ for $1 \leq h \leq d$.
The reader is referred to [3] or [4] for the general theory of distance-regular graphs.
A distance-regular graph Γ of diameter d is called an antipodal double cover (of its folded graph), if and only if $c_{i}=b_{d-i}$, for $i=1, \ldots, d$.
For more details on antipodal graphs see [5], and $\S 4.2$ of [4].
The main result of this paper is the following:
Theorem 1 Let Γ be a distance-regular graph of diameter d and valency $k>2$. Suppose there exists an integer s with $d \leq 2 s$ such that $c_{i}=b_{d-i}$ for all $1 \leq i \leq s$. Then Γ is an antipodal double cover.

In [1], we have already obtained the special case of the main theorem of this paper, i.e., a distance-regular graph of $b_{t}=1, d \geq 2 t$ and valency $k>2$ is an antipodal double cover, which is one of important facts to prove our theorem.

In general, it is well known that

$$
p_{d, d-i}^{i}=\frac{b_{i} \cdots b_{d-1}}{c_{d-i} \cdots c_{1}}=\frac{b_{i}}{c_{d-i}} \cdot p_{d, d-i-1}^{i+1} \geq p_{d, d-i-1}^{i+1}
$$

and thus

$$
k_{d}=p_{d, d}^{0} \geq p_{d, d-1}^{1} \geq \cdots \geq p_{d, 0}^{d}=1
$$

Hence we obtain the following corollary immediately from our theorem.
Corollary 1 If there exists an integer t with $2 t \leq d$ such that $p_{d, d-t}^{t}=1$, then Γ is an antipodal double cover.

By the definition, Γ is an antipodal double cover if and only if $p_{d, d-i}^{i}=1$ for all $0 \leq i \leq d$.

We use the following terminology in this paper.
Definition Let u, v, x and y be vertices in Γ.
(1) We write the "triangle inequalities on (u, v, x, y) " for the triangle inequalities of (u, v, y) and of (u, x, y).
(2) The quadruple (u, v, x, y) is called an (h, j)-box if

$$
\begin{aligned}
& \partial(u, v)=1, \partial(u, x)=h-1, \partial(x, y)=j \\
& \partial(v, x)=h, \partial(v, y)=h-j, \partial(u, y)=h-j+1 .
\end{aligned}
$$

(3) The quadruple (u, v, x, y) is called a j-brox if

$$
\begin{aligned}
& \partial(u, v)=2, \partial(u, x)=d-1, \partial(x, y)=j \\
& \partial(v, x)=d, \partial(v, y)=d-j, \partial(u, y)=d-j+2
\end{aligned}
$$

A $(d, 1)$-box is called a box that was a key to prove the theorem in [1]. Notice that there are many boxes in an antipodal distance-regular graph Γ of diameter $d \geq 3$; namely, given u, y with $\partial(u, y)=d$, there is a one to one correspondence between $v \in \Gamma_{1}(u)$ and $x \in \Gamma_{1}(y)$ such that (u, v, x, y) is a box. Moreover, if Γ has a box, then also Γ has a (d, j)-box, i.e., for $y^{\prime} \in \Gamma_{d-j}(v) \cap \Gamma_{j-1}(y)$ the quadruple $\left(u, v, x, y^{\prime}\right)$ is a (d, j)-box. Whence an antipodal distance-regular graph has a (d, j)-box for any j.
On the other hand, a distance-regular graph which is an antipodal double cover never contains a j-brox (u, v, x, y) by observing the (u, v, x).

When we characterize graphs, it is important to consider their substructures. One of the characterization of antipodal distance-regular graphs is that they have a box. These configurations are useful tools when we investigate if a graph is antipodal or not as we see § 2, [1] or [2]. Readers who are familiar with distance distribution diagrams may read some of proofs easily, however, we can do without diagrams.

2. Proof of the Theorem

Throughout this section, we assume Γ is not an antipodal double cover to derive a contradiction. Then Γ cannot have any boxes, and must have some broxes in Lemma 3 and Lemma 5. The existence and nonexistence of these configurations lead to the inequality in Lemma 6 that causes a contradiction.

For the case $s=1$, the theorem is trivial and well-known. We may assume $s \geq 2$.
Suppose Γ is not an antipodal double cover. Then we have

$$
c_{j}=b_{d-j} \quad \text { for all } \quad 1 \leq j \leq s, \quad c_{s+1} \neq b_{d-(s+1)}
$$

for some s with $\frac{d}{2} \leq s<d$ and let $t:=d-s$.
If $b_{t}=1$, then Γ is an antipodal double cover from [1]. So we may assume $b_{t} \geq 2$.
Lemma 1 (1) $p_{d, j}^{d-j}=1$ for all $0 \leq j \leq s \quad$ and $\quad p_{d, s+1}^{t-1} \geq 2$,
(2) $a_{t-1}<a_{t}$.

Proof: Using the well known formula of $p_{i, j}^{l}$

$$
p_{d, j}^{d-j}=\frac{b_{d-j} \cdots b_{d-1}}{c_{j} \cdots c_{1}}=\left\{\begin{array}{lll}
=1 & \text { if } & 0 \leq j \leq s \\
\geq 2 & \text { if } & j=s+1
\end{array}\right.
$$

from our assumption. This implies $b_{t-1}=c_{s+1} p_{d, s-1}^{t-1} \geq 2 c_{s+1}$. Thus we obtain

$$
\begin{aligned}
a_{t-1} \leq k-b_{t-1} & \leq k-2 c_{s+1} \\
& \leq k-c_{t}-c_{s}=a_{t}+b_{t}-c_{s}=a_{t}
\end{aligned}
$$

If the equality holds, then $t=1$ and $b_{t}=c_{s}=c_{s+1}=c_{t}=1$. This contradicts $b_{t} \geq 2$.

Lemma 2 Let u, v, α and β be vertices in Γ with $\partial(u, v)=1$ and $\partial(\alpha, \beta)=d$.
(1) If $c_{j}=c_{j+1}$, then we have

$$
A_{j}(v, x) \subseteq A_{j+1}(u, x) \quad \text { for any } \quad x \in \Gamma_{j+1}(u) \cap \Gamma_{j}(v)
$$

(2) For all integer j with $1 \leq j \leq s$. We have

$$
C_{j}(\alpha, x)=B_{d-j}(\beta, x) \quad \text { for any } \quad x \in \Gamma_{j}(\alpha) \cap \Gamma_{d-j}(\beta) .
$$

In particular, if $t \leq j \leq s$, then $A_{j}(\alpha, x)=A_{d-j}(\beta, x)$.
(3) We have $\Gamma_{s+1}(\beta) \cap \Gamma_{t}(\alpha) \neq \phi$ and

$$
C_{s+1}(\beta, y)=B_{t}(\alpha, y) \quad \text { for any } \quad y \in \Gamma_{s+1}(\beta) \cap \Gamma_{t}(\alpha) .
$$

In particular, $c_{s+1}=b_{t}=c_{s}$.

Proof: (1)(2) The assertions follow from basic properties and our assumptions.
(3) Take any $x \in \Gamma_{s+1}(\beta) \cap \Gamma_{t-1}(\alpha)$. Since $c_{s+1}<b_{t-1}$, we have

$$
y \in B_{t-1}(\alpha, x)-C_{s+1}(\beta, x)
$$

Since $y \notin C_{s+1}(\beta, x)$ and $y \notin C_{t-1}(\alpha, x)=B_{s+1}(\beta, x)$, we obtain $y \in A_{s+1}(\beta, x)$. This means $y \in \Gamma_{s+1}(\beta) \cap \Gamma_{t}(\alpha)$, i.e., $\Gamma_{s+1}(\beta) \cap \Gamma_{t}(\alpha) \neq \phi$.

Next we show that $C_{s+1}(\beta, y)=B_{t}(\alpha, y)$. Take any $z \in C_{s+1}(\beta, y)$. From the triangle inequalities on (α, β, y, z), we have

$$
t=d-s=\partial(\beta, \alpha)-\partial(\beta, z) \leq \partial(\alpha, z) \leq \partial(\alpha, y)+\partial(y, z)=t+1
$$

This implies $\partial(\alpha, z) \in\{t, t+1\}$. Suppose $\partial(\alpha, z)=t$. Then we have

$$
y \in A_{t}(\alpha, z)=A_{s}(\beta, z)
$$

from (2). This contradicts $y \in \Gamma_{s+1}(\beta)$. Hence we obtain $\partial(\alpha, z)=t+1$ and

$$
C_{s+1}(\beta, y) \subseteq B_{t}(\alpha, y)
$$

The assertion follows from

$$
c_{s} \leq c_{s+1}=\left|C_{s+1}(\beta, y)\right| \leq\left|B_{t}(\alpha, y)\right|=b_{t}=c_{s}
$$

Lemma 3 (1) There exists no (d, j)-box for any $1 \leq j \leq s$.
(2) There exists no $(d-i+1,2)$-box for any $1 \leq i \leq s-1$.

Proof: (1) We prove by induction on j.
Suppose Γ has a box (u, v, x, y). Take any $p \in \Gamma_{s}(v) \cap \Gamma_{t-1}(y)$. Then we have $p \in$ $\Gamma_{s+1}(u) \cap \Gamma_{t}(x)$ by the triangle inequalities on (u, v, y, p) and on (x, v, y, p).

From Lemma 1 (2), there exists $q \in A_{t}(x, p)-A_{t-1}(y, p)$. Then by Lemma 2

$$
q \in A_{t}(x, p)=A_{s}(v, p) \subseteq A_{s+1}(u, p)
$$

Let $\left\{y^{*}\right\}=\Gamma_{d}(u) \cap \Gamma_{t-1}(q)$ as $p_{d, t-1}^{s+1}=1$. Then we obtain $\partial\left(v, y^{*}\right)=d-1$ by the triangle inequalities on $\left(v, q, u, y^{*}\right)$. And let $\left\{x^{*}\right\}=B_{d-1}\left(v, y^{*}\right)$. Also we obtain $\partial\left(q, x^{*}\right)=t$ by the triangle inequalities on $\left(q, v, y^{*}, x^{*}\right)$.

This implies $x=x^{*}$ as $\left\{x, x^{*}\right\} \subseteq \Gamma_{d}(v) \cap \Gamma_{t}(q)$ and $p_{d, t}^{s}=1$.
Then $\left\{y, y^{*}\right\} \subseteq B_{d-1}(u, x)$ and $y \neq y^{*}$ as $\partial\left(y^{*}, q\right)=t-1 \neq \partial(y, q)$. This contradicts $b_{d-1}=1$. Hence Γ does not have a box.

Now we assume $2 \leq j \leq s$ and there exists a (d, j)-box $\left(u^{\prime}, v^{\prime}, x^{\prime}, y^{\prime}\right)$ in Γ. Take $z \in B_{d-j+1}\left(u^{\prime}, y^{\prime}\right)$ as $2 \leq j$. Then we have

$$
z \in B_{d-j+1}\left(u^{\prime}, y^{\prime}\right) \subseteq B_{d-j}\left(v^{\prime}, y^{\prime}\right)=C_{j}\left(x^{\prime}, y^{\prime}\right)
$$

by Lemma 2 (2).

This implies $\left(u^{\prime}, v^{\prime}, x^{\prime}, z\right)$ is a $(d, j-1)$-box, contradicting our inductive assumption. (2) Suppose that there exists a $(d-i+1,2)$-box (u, v, x, y) for some $1 \leq i \leq s-1$.

Let $\left\{v^{*}\right\}=\Gamma_{d}(v) \cap \Gamma_{i-1}(x)$ as $p_{d, i-1}^{d-i+1}=1$. Then we have $\partial\left(u, v^{*}\right)=d-1$ and $\partial\left(y, v^{*}\right)=i+1$ from the triangle inequalities on $\left(u, v, x, v^{*}\right)$ and on $\left(y, v, x, v^{*}\right)$. This implies $\left(u, v, v^{*}, y\right)$ is a $(d, i+1)$-box, contradicting (1).

Lemma 4 Let α and β be vertices in Γ with $\partial(\alpha, \beta)=d$ and $x \in \Gamma_{t}(\alpha) \cap \Gamma_{s}(\beta)$.

$$
\begin{equation*}
A_{d}(\alpha, \beta)=B_{s}(x, \beta) \quad \text { and } \quad A_{d}(\beta, \alpha)=B_{t}(x, \alpha) \tag{1}
\end{equation*}
$$

In particular, we have $b_{s}=a_{d}=b_{t} \geq 2$.
(2) $a_{1}=0$,
(3) $b_{s+1}=b_{s}=c_{t}$.

Proof: (1) Suppose there exists $z \in A_{d}(\alpha, \beta)-B_{s}(x, \beta)$. Then we have $\partial(x, z)=s$, by the triangle inequalities on (x, α, β, z) and $z \notin B_{s}(x, \beta)$. This means that $\{\beta, z\} \in$ $\Gamma_{d}(\alpha) \cap \Gamma_{s}(x)$. However, this contradicts $p_{d, s}^{t}=1$. Thus we obtain $A_{d}(\alpha, \beta) \subseteq B_{s}(x, \beta)$.

On the other hand, if there exists $y \in B_{s}(x, \beta)-A_{d}(\alpha, \beta)$, then (y, β, α, x) is a (d, t)-box, contradicting Lemma 3 (1). Hence we have $A_{d}(\alpha, \beta)=B_{s}(x, \beta)$.

In the same way, we obtain $A_{d}(\beta, \alpha)=B_{t}(x, \alpha)$.
(2) Suppose $a_{1}>0$. Take any $\gamma \in A_{d}(\alpha, \beta)$ and $\delta \in A_{1}(\beta, \gamma)$. Then we have $\delta \in A_{d}(\alpha, \beta)$ as $b_{d-1}=1$. This means $B_{s}(x, \beta)$ contains an edge $\{\gamma, \delta\}$ from (1). Let

$$
m=\max \left\{j=\partial(u, v) \mid B_{j}(u, v) \text { contains an edge }\right\}
$$

By our observation,

$$
s \leq m<d-1
$$

Let u and v be vertices in Γ with $\partial(u, v)=m$ and $B_{m}(u, v)$ contains an edge $\{w, z\}$. We can take

$$
u^{\prime} \in B_{m+1}(w, u) \subseteq B_{m}(v, u)
$$

From the triangle inequalities on $\left(u^{\prime}, v, w, z\right)$ and the maximality of m, we have $\partial\left(u^{\prime}, z\right)=$ $m+1$. Since

$$
1=|\{v\}| \leq\left|C_{m+1}(u, z)-C_{m+1}\left(u^{\prime}, z\right)\right|=\left|C_{m+1}\left(u^{\prime}, z\right)-C_{m+1}(u, z)\right|
$$

there exists $y \in C_{m+1}\left(u^{\prime}, z\right)-C_{m+1}(u, z)$. Then we have $\partial(y, u)=m+1$ and $\partial(w, y)=2$ by the triangle inequalities on $\left(y, u^{\prime}, z, u\right)$ and observing $\left(u^{\prime}, y, w\right)$. Thus $\left(u, u^{\prime}, w, y\right)$ is an ($m+2,2$)-box.

Since $t \leq s \leq m$, this contradicts Lemma 3 (2). Therefore a_{1} must be zero.
(3) Fix $\gamma \in C_{d}(\beta, \alpha)$ and $\delta \in B_{d-1}(\gamma, \beta)$. Then $\partial(\alpha, \delta)=d$ as otherwise $(\alpha, \gamma, \delta, \beta)$ is a box.

Since $a_{d}>1=b_{d-1}$, we have $y \in A_{d}(\alpha, \beta)-B_{d-1}(\gamma, \beta)$. By the triangle inequality of (γ, α, y), we obtain $y \in A_{d-1}(\gamma, \beta)$ as $y \notin B_{d-1}(\gamma, \beta)$. Since $a_{1}=0$ and considering (γ, δ, y), we have $\partial(\delta, y)=2$.
Let $\xi \in \Gamma_{t}(\gamma) \cap \Gamma_{s-1}(y)$. We claim that $\partial(\alpha, \xi)=t+1$ and $\partial(\delta, \xi)=s+1$.

We have $\partial(\alpha, \xi)=t+1$ by the triangle inequalities on (α, γ, y, ξ).
From the triangle inequalities on (δ, γ, y, ξ), we have $\partial(\delta, \xi) \in\{s, s+1\}$. Let $\left\{\gamma^{*}\right\}=$ $B_{d-1}(\gamma, y)$. Then $\partial\left(\xi, \gamma^{*}\right)=s$ and $\delta \neq \gamma^{*}$ by the triangle inequalities on $\left(\gamma^{*}, \gamma, y, \xi\right)$ and considering $\left(y, \delta, \gamma^{*}\right)$.

If $\partial(\delta, \xi)=s$, then $\left\{\delta, \gamma^{*}\right\} \subseteq \Gamma_{d}(\gamma) \cap \Gamma_{s}(\xi)$ with $\partial(\gamma, \xi)=t$. This contradicts $p_{d, s}^{t}=1$. Hence we obtain $\partial(\delta, \xi)=s+1$ as claimed.

Next we show that $C_{t}(\gamma, \xi)=B_{s+1}(\delta, \xi)$. Take any $w \in C_{t}(\gamma, \xi)$. Then we obtain $\partial(\alpha, w)=t$ and $\partial(\delta, w) \in\{s+1, s+2\}$ from the triangle inequalities on (α, γ, ξ, w) and on (δ, γ, ξ, w).

If $\partial(\delta, w)=s+1$, then $w \in \Gamma_{t}(\alpha) \cap \Gamma_{s+1}(\delta)$ with $\partial(\alpha, \delta)=d$. Hence we have

$$
\xi \in B_{t}(\alpha, w)=C_{s+1}(\delta, w)
$$

from Lemma 2 (3). This contradicts $\partial(\delta, \xi)=s+1$. Thus we have $\partial(\delta, w)=s+2$, i.e., $C_{t}(\gamma, \xi) \subseteq B_{s+1}(\delta, \xi)$. The assertion follows from

$$
c_{t}=\left|C_{t}(\gamma, \xi)\right| \leq\left|B_{s+1}(\delta, \xi)\right|=b_{s+1} \leq b_{s}=c_{t}
$$

Lemma 5 There exists an i-brox for all $2 \leq i \leq s$.
Proof: We prove by induction on $s-i$.
Suppose there exists no s-brox in Γ. Let x and v be vertices in Γ with $\partial(x, v)=d$. Take $y \in \Gamma_{s}(x) \cap \Gamma_{t}(v)$ and $w \in A_{d}(x, v)$. Then from Lemma 4 (1), we have $\partial(y, w)=t+1$. Take any $u \in B_{t+1}(y, w)$.

Then $\partial(x, u)=d$ as otherwise (u, v, x, y) is an s-brox. Thus we obtain

$$
B_{t+1}(y, w) \subseteq A_{d}(x, w)-\{v\}, \quad \text { i.e., } \quad b_{t+1} \leq a_{d}-1
$$

On the other hand, we have

$$
b_{t+1} \geq b_{s+1}=b_{s}=a_{d}
$$

from Lemma 4 (1)(3). This is a contradiction. Hence there exist s-broxes.

For the case $s=2$, the lemma is already proved. We may assume $s \geq 3$. Suppose $2 \leq i \leq s-1$ and there exists no i-brox to derive a contradiction. From the inductive assumption, we have an $(i+1)$-brox $\left(u^{\prime}, v^{\prime}, x^{\prime}, y^{\prime}\right)$. Fix any $w^{\prime} \in C_{2}\left(u^{\prime}, v^{\prime}\right)$.

It is clear that $\partial\left(w^{\prime}, y^{\prime}\right)=d-i$ by the triangle inequalities on $\left(w^{\prime}, u^{\prime}, v^{\prime}, y^{\prime}\right)$ and that $\partial\left(x^{\prime}, w^{\prime}\right)=d$ as otherwise $\left(w^{\prime}, v^{\prime}, x^{\prime}, y^{\prime}\right)$ is a $(d, i+1)$-box.
Claim: $\quad C_{i+1}\left(x^{\prime}, y^{\prime}\right) \subseteq B_{d-i}\left(w^{\prime}, y^{\prime}\right)-B_{d-i+1}\left(u^{\prime}, y^{\prime}\right)$.
Take any $z^{\prime} \in C_{i+1}\left(x^{\prime}, y^{\prime}\right)$. From Lemma 2 (2), we obtain

$$
z^{\prime} \in C_{i+1}\left(x^{\prime}, y^{\prime}\right)=B_{d-(i+1)}\left(v^{\prime}, y^{\prime}\right), \quad \text { i.e., } \quad \partial\left(v^{\prime}, z^{\prime}\right)=d-i
$$

It is clear that $\partial\left(u^{\prime}, z^{\prime}\right) \in\{d-i, d-i+1, d-i+2\}$ by the triangle inequality of $\left(u^{\prime}, y^{\prime}, z^{\prime}\right)$. If $\partial\left(u^{\prime}, z^{\prime}\right)=d-i$, then $\left(z^{\prime}, y^{\prime}, u^{\prime}, v^{\prime}\right)$ is a $(d-i+1,2)$-box. This contradicts Lemma 3 (2). If $\partial\left(u^{\prime}, z^{\prime}\right)=d+2-i$, then $\left(u^{\prime}, v^{\prime}, x^{\prime}, z^{\prime}\right)$ is an i-brox. This contradicts our assumption. Thus $\partial\left(u^{\prime}, z^{\prime}\right)=d-i+1$, i.e., $z^{\prime} \notin B_{d-i+1}\left(u^{\prime}, y^{\prime}\right)$.

We have $\partial\left(w^{\prime}, z^{\prime}\right) \in\{d-i, d-i+1\}$ by the triangle inequalities on $\left(w^{\prime}, u^{\prime}, v^{\prime}, z^{\prime}\right)$. If $\partial\left(w^{\prime}, z^{\prime}\right)=d-i$, then $\left(u^{\prime}, w^{\prime}, x^{\prime}, z^{\prime}\right)$ is a (d, i)-box, contradicting Lemma 3 (1). Hence we obtain $\partial\left(w^{\prime}, z^{\prime}\right)=d-i+1$, i.e., $z^{\prime} \in B_{d-i}\left(w^{\prime}, y^{\prime}\right)$. Whence the claim is proved.

This implies

$$
c_{i+1} \leq b_{d-i}-b_{d-i+1}
$$

However we have

$$
c_{i+1} \geq c_{i}=b_{d-i}
$$

This is a contradiction as $i \geq 2$.

Lemma 6 We have

$$
b_{j}-c_{d-j+1} \leq b_{j+1}-c_{d-j} \quad \text { for all } \quad 1 \leq j \leq s-1
$$

Proof: There exists a 2-brox (u, v, x, y) from Lemma 5. Fix any $w \in C_{2}(u, v)$ and $z \in C_{2}(x, y)$. Then we have $\partial(w, y)=d-1$ from the triangle inequalities on (w, u, v, y), and $\partial(x, w)=d$ as otherwise (w, v, x, y) is a $(d, 2)$-box. Similarly, $\partial(z, v)=d-1$ and $\partial(u, z)=d$. We obtain $\partial(w, z)=d$ as otherwise (u, w, x, z) is a box.

Fix any $p \in \Gamma_{j-1}(y) \cap \Gamma_{d-j-1}(v)$ for $1 \leq j \leq s-1$. Then from the triangle inequalities on $(p, y, v, u), \quad(p, y, v, w), \quad(p, y, v, z) \quad$ and $\quad(p, v, y, x), \quad$ we obtain that $p \in \Gamma_{d-j+1}(u) \cap \Gamma_{d-j}(w) \cap \Gamma_{j}(z) \cap \Gamma_{j+1}(x)$.

In order to prove the statement, we will show that

$$
B_{j}(z, p)-B_{j+1}(x, p) \subseteq C_{d-j+1}(u, p)-C_{d-j}(w, p)
$$

Take any $q \in B_{j}(z, p)-B_{j+1}(x, p)$. It is clear that $\partial(y, q)=j$ by the triangle inequalities on (y, z, p, q).

First, we will prove $q \notin C_{d-j}(w, p)$ and $\partial(w, q)=d-j$.
Suppose $q \in C_{d-j}(w, p)$. We have $\partial(x, q)=j+1$ by the triangle inequalities on (x, w, p, q) and $q \notin B_{j+1}(x, p)$. Since $C_{d-j}(w, p) \subseteq C_{d-j+1}(u, p)$, we obtain (u, w, x, q) is a $(d, j+1)$-box. This contradicts Lemma 3 (1). Hence $q \notin C_{d-j}(w, p)$. Since $q \notin$ $C_{j}(z, p)=B_{d-j}(w, p)$, we obtain $\partial(w, q)=d-j$.
Then we obtain $\partial(v, q)=d-j-1$ by the triangle inequalities on (v, w, p, q) and $q \notin C_{j}(z, p) \subseteq C_{j+1}(x, p)=B_{d-j-1}(v, p)$. Also we have $\partial(x, q)=j+1$ from the triangle inequalities on (x, v, p, q) and $q \notin B_{j+1}(x, p)$.

Next we will prove $q \in C_{d-j+1}(u, p)$.
From the triangle inequalities on (u, w, y, q), we have $\partial(u, q) \in\{d-j, d-j+1\}$. Suppose $q \notin C_{d-j+1}(u, p)$ to derive a contradiction. Then $\partial(u, q)=d-j+1$. Let $\left\{y^{*}\right\}=\Gamma_{d}(u) \cap \Gamma_{j-1}(q)$ as $p_{d, j-1}^{d-j+1}=1$. By the triangle inequalities on $\left(w, u, q, y^{*}\right)$, we get $\partial\left(w, y^{*}\right)=d-1$ and thus let $\left\{z^{*}\right\}=B_{d-1}\left(w, y^{*}\right)$. We obtain $\partial\left(q, z^{*}\right)=j$ and $\partial\left(v, z^{*}\right)=d-1$ by the triangle inequalities on $\left(q, w, y^{*}, z^{*}\right)$ and on $\left(v, w, q, z^{*}\right)$. Then $\partial\left(u, z^{*}\right)=d$ as otherwise $\left(u, w, z^{*}, y^{*}\right)$ is a box.

Let $\left\{x^{*}\right\}=B_{d-1}\left(v, z^{*}\right)$. Also we get $\partial\left(q, x^{*}\right)=j+1$, by the triangle inequalities on $\left(q, v, z^{*}, x^{*}\right)$. Since $\left\{x, x^{*}\right\} \subseteq \Gamma_{d}(v) \cap \Gamma_{j+1}(q)$ and $p_{d, j+1}^{d-j-1}=1$, we have $x=x^{*}$. As $\partial(q, z)=j+1 \neq j=\partial\left(q, z^{*}\right)$, we have $z \neq z^{*}$. However $\left\{z, z^{*}\right\} \subseteq B_{d-1}(u, x)$. This contradicts $b_{d-1}=1$. Hence we obtain $q \in C_{d-j+1}(u, p)$. Therefore the lemma is proved.

Proof of Theorem 1. From Lemma 6 and Lemma 4 (3), we have

$$
b_{1}-c_{d} \leq b_{2}-c_{d-1} \leq \cdots \leq b_{s}-c_{t+1} \leq 0
$$

On the other hand, from Lemma 4 (1)(2)

$$
b_{1}-c_{d}=(k-1)-\left(k-a_{d}\right)=-1+a_{d} \geq 1
$$

We have a contradiction. This completes the proof of Theorem 1.

Acknowledgments

The authors would like to thank S. Iwamoto, T. Koishi, H. Nakano and S. Sugitani for their valuable comments.

References

1. M. Araya, A. Hiraki and A. Jurišić, "Distance-regular graphs with $b_{t}=1$ and antipodal double-covers," J. Combin. Th. (B) 67 (1996), 278-283.
2. M. Araya, A. Hiraki and A. Jurišić, "Distance-regular graphs with $b_{2}=1$ and antipodal covers," Europ. J. Combinatorics 18 (1997), 243-248.
3. E. Bannai and T. Ito, Algebraic Combinatorics I, Benjamin-Cummings, California, 1984.
4. A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, Heidelberg, 1989.
5. A. Gardiner, "Antipodal covering graphs," J. Combin. Th. (B) $\mathbf{1 6}$ (1974), 255-273.
