A New Distance-Regular Graph Associated to the Mathieu Group M_{10}

A.E. BROUWER
aeb@cwi.nl
Department of Mathematics, Eindhoven University of Technology, P.O. box 513, 5600 MB Eindhoven, The Netherlands
J.H. KOOLEN
jack@math.kyushu-u.ac.jp
Graduate School of Mathematics, Kyushu University, 6-10-1 Hakozaki Higashi-ku Fukuoka 812 Japan
R.J. RIEBEEK
remkor@win.tue.nl
Department of Mathematics, Eindhoven University of Technology, P.O. box 513, 5600 MB Eindhoven, The Netherlands

Received February 7, 1996; Revised April 9, 1997

Abstract

We construct a bipartite distance-regular graph with intersection array $\{45,44,36,5 ; 1,9,40,45\}$ and automorphism group $3^{5}:\left(2 \times M_{10}\right)$ (acting edge-transitively) and discuss its relation to previously known combinatorial structures.

Keywords: distance-regular graph, Mathieu group, spectra of graph

1. Introduction

Let G be the perfect ternary Golay code generated by the rows of the circulant $(-+-+$ $++---+-)_{11}$. Then G is a ternary $[11,6,5]$ code. Let Γ be the coset graph of G, that is, the graph with as vertices the 3^{5} cosets of G in \mathbf{F}_{3}^{11}, where two cosets are adjacent when their difference contains a vector of weight one. Then Γ is a strongly regular graph with parameters $(v, k, \lambda, \mu)=(243,22,1,2)$, known as the Berlekamp-van Lint-Seidel graph. (See Berlekamp, van Lint and Seidel [1], and Brouwer, Cohen and Neumaier [2], Section 11.3B.)

In [2], p. 360, the question was raised whether the complementary graph of the graph Γ is the halved graph of a bipartite distance-regular graph Δ of diameter 4 . In this paper this question is answered affirmatively: the last two authors constructed such a graph Δ. (This also settles the last open case in Riebeek [6], Chapter 7.)

2. Construction

Put $Q:=\{1,3,4,5,9\}$, the set of (nonzero) squares $\bmod 11$, and $N:=\{2,6,7,8,10\}$, the nonsquares. Consider in the graph Γ the set D consisting of the following 45 cosets of G (we write u instead of $u+G$):

$$
e_{j}, \quad-e_{0}-e_{j}(j \in N)
$$

$$
e_{0}-e_{i}, \quad e_{i}+e_{3 i}, \quad \pm\left(e_{i}-e_{9 i}\right), e_{i}-e_{7 i},-e_{i}-e_{6 i}, \quad-e_{i}-e_{10 i}(i \in Q)
$$

Then D, as well as each translate of D, is a 45-coclique, and the point-coclique incidence graph Δ on cosets of G and translates of D is distance-regular with intersection array $\{45,44,36,5 ; 1,9,40,45\}$ and distance distribution diagram

All of these properties can be checked easily using GAP [4] and GRAPE [7]. Using these packages and builtin Nauty [5] we find that the automorphism group of Δ has shape $3^{5}:\left(2 \times M_{10}\right)$, and acts edge-transitively with point stabilizer isomorphic to M_{10}. The orbit diagram of the point stabilizer is

3. Structure of the group; related graphs

In order to describe the group of automorphisms more precisely, we have to specify the representation of $2 \times M_{10}$ inside $G L(5,3)$. The direct factor 2 may be represented by $\pm I$, and then it remains to look at the group $H:=3^{5}: M_{10}$, the stabilizer of the bipartition of Δ. This group has a centre of order 3 , acting fixed point freely on Δ. The quotient graph is a bipartite graph E of valency 45 on 162 vertices that can be found inside the McLaughlin graph Λ as follows.

Let x, y be two adjacent vertices of Λ. Let X and Y be the sets of vertices of Λ adjacent to x but not to y, and to y but not to x, respectively (see also the figure below). Then $|X|=|Y|=81$ and E is isomorphic to the graph with vertex set $X \cup Y$, where X and Y are cocliques, and the edges between X and Y are precisely those present in Λ. (Thus, E is not the graph induced by $X \cup Y$; in Λ the sets X and Y induce subgraphs of valency 20. See also Brouwer and Haemers [3], Construction D.)

A larger graph. Let Z be the set of 81 vertices in Λ nonadjacent to both x and y. The graph induced by Λ on $X \cup Y \cup Z$, after switching with respect to Z, is isomorphic to the Delsarte graph, a strongly regular graph with parameters $(v, k, \lambda, \mu)=(243,110,37,60)$. If we remove from this graph the edges inside X, Y and Z, we obtain a tripartite graph F of valency 90 on 243 vertices such that the subgraph induced on the union of any two of its parts is isomorphic to E. We have $\operatorname{Aut}(F) \simeq 3^{5}:\left(2 \times M_{10}\right)$.

This latter graph has a triple cover Σ, of course again tripartite, such that the subgraph induced on the union of any two of its parts is isomorphic to Δ. We have $\operatorname{Aut}(\Sigma) \simeq 3^{6}$: $\left(2 \times M_{10}\right)$.

Using [7] this graph Σ can be constructed as follows:
Let $A:=\left(\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 & 0 \\ 2 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 2 & 0 \\ 1 & 1 & 2 & 0 & 0 & 1\end{array}\right)$ and $B:=\left(\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 2 & 0 \\ 0 & 2 & 0 & 2 & 2 & 0 \\ 2 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 2\end{array}\right)$.
Let $M:=\langle A, B\rangle$ be the matrix group generated by A and B. Then $M \simeq M_{10}$, and M has orbits of sizes $1,1,1,20,20,20,72,72,72,90,90,90,180$ on \mathbf{F}_{3}^{6}. Let $N:=\langle A, B,-I\rangle$. Then $N \simeq 2 \times M_{10}$, and N has orbits of sizes $1,2,20,40,72,144,90,180,180$. The vector (000001) is a representative of the N-orbit O of size 90 . The graph Σ is the graph with vertex set \mathbf{F}_{3}^{6}, where two vertices are adjacent when their difference lies in O. Now the graph Δ is the subgraph of Σ induced on the set of vectors with nonzero last coordinate.

Acknowledgments

Hans Cuypers suggested that $\operatorname{Aut}(\Delta)$ might be related to the edge stabilizer of the McLaughlin graph Λ. The availability of the computer algebra systems GAP [4], GRAPE [7] and Nauty [5] has been very useful. Support of the Dutch Organisation for Scientific Research (NWO) is gratefully acknowledged.

References

1. E.R. Berlekamp, J.H. van Lint and J.J. Seidel, "A strongly regular graph derived from the perfect ternary Golay code," A survey of combinatorial theory, Symp. Colorado State Univ., 1971 J.N. Srivastava et al., eds., North Holland, 1973.
2. A.E. Brouwer, A.M. Cohen and A. Neumaier, Distance-regular graphs, Springer, Heidelberg, 1989.
3. A.E. Brouwer and W.H. Haemers, "Structure and uniqueness of the $(81,20,1,6)$ strongly regular graph," Discrete Math. 106/107 1992, 77-82.
4. M. Schönert et al., GAP: Groups, Algorithms and Programming, Aachen, April 1992.
5. B.D. McKay, "Nauty users guide (version 1.5)", Technical Report TR-CS-90-02, Computer Science Department, Australian National University, 1990.
6. R.J. Riebeek, "Halved graphs of distance-regular graphs," Master's thesis, Eindhoven Univ. of Techn., June 1992.
7. L.H. Soicher, "GRAPE: a system for computing with graphs and groups. Groups and computation," DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 11 Amer. Math. Soc., Providence, 1993, 287-291
