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Abstract. Let G be a finite Abelian group and Cay(G, S) the Cayley (di)-graph ofG with respect toS, and let
A = Aut Cay(G, S) andA1 the stabilizer of 1 inA. In this paper, we first prove that ifA1 is unfaithful onS thenS
contains a coset of some nontrivial subgroup ofG, and then characterize Cay(G, S) if AS

1 contains the alternating
group onS. Finally, we precisely determine allm-DCI p-groups for 2≤ m≤ p+ 1, wherep is a prime.
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1. Introduction

Let G be a finite group andSa Cayley subsetof G, that is,Sdoes not contain the identity
of G. The Cayley(di)-graph Cay(G, S) of G with respect toS has the elements ofG
as vertices and the pairs(g, sg), g ∈ G, s ∈ S, as edges. Given a Cayley subsetS of
G, if, for any Cayley subsetT of G, Cay(G, S) ∼= Cay(G, T) implies T = Sσ for some
σ ∈ Aut(G), thenS is called aCI-subset(CI stands forCayley Isomorphism). A finite
groupG is called anm-DCI groupif all of its Cayley subsets ofG of size at mostm are
CI-subsets;G is called aDCI-group if it is a |G|-DCI group. Similarly,G is called an
m-CI groupif all Cayley subsetsSof G of size at mostm with S= S−1 are CI-subsets,G
is called aCI-group if G is an|G|-CI group. The problem of determining which groups
arem-DCI groups andm-CI groups has been investigated for a long time, see [6, 10, 12]
for references. Recently, allm-DCI groups and allm-CI groups form ≥ 2 have been
classified in [10] and [9], respectively, in the sense that all the possibilities for such groups
are explicitly listed. However, it is still a difficult question to determine which of them are
really m-DCI (m-CI) groups. Babai and Frankl [2] asked whether the elementary abelian
group Zd

p for any p andd was anm-CI group for allm ≤ |G| (in other words,Zd
p is a

CI-group). Godsil [6] and Dobson [4] proved this to be true ford = 2, 3, respectively.
However, recently Nowitz [11] gave a negative answer to the question by proving that
Z6

2 is not a 31-CI group. It is not known if this the answer of the question is positive
for odd prime p and d ≥ 4. The main aims of this paper are to characterize Cayley
graphs Cay(G, S) of abelian groups by the action ofA1 on S, whereA1 is the stabilizer
of 1 in Aut Cay(G, S), and to determine preciselym-DCI p-groups for 2≤ m ≤ p+ 1,
which implies that the answer of Babai and Frankl’s question is positive for anyp, d and
m≤ p+ 1.

Notation In this paper,Zn denotes a cyclic group of ordern, Q8 is the quaternion group
of order 8. Recall that a group is calledhomocylicif it is a direct product of some cyclic
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groups of the same order. For groupsG and H , H ≤ G denotes thatH is a subgroup
of G, andGo H denotes a semidirect product ofG by H . For a positive integern, Cn

denotes the directed cycle of lengthn, Kn denotes the complete graph onn vertices and
Kn,n denotes the complete-bipartite graph on 2n vertices. For a directed graph0 = (V, E),
its complement̄0 = (V, Ē) is the directed graph with vertex setV such that(a, b) ∈ Ē if
and only if(a, b) 6∈ E. Thedirect product01 × 02 of two directed graphs01 = (V1, E1)

and02 = (V2, E2) is the directed graph with vertex setV1×V2 such that((a1,a2), (b1, b2))

is an edge if and only if either(a1, b1) ∈ E1 anda2 = b2, or (a2, b2) ∈ E2 anda1 = b1.
Thelexicographic product01[02] of two directed graphs01 = (V1, E1) and02 = (V2, E2)

is the graph with vertex setV1 × V2 such that((a1,a2), (b1, b2)) is an edge if and only if
either(a1, b1) ∈ E1 or a1 = b1 and(a2, b2) ∈ E2. For any vertexx of graph Cay(G, S),
the neighborhood0(x) of x in Cay(G, S) equalsx S= {xai | 1 ≤ i ≤ m}. Let 0i (x) =
{y ∈ G | d(x, y) = i }, whered(x, y) denotes the distance fromx to y in Cay(G, S). Note
that0(x) = 01(x).

In Section 2, we quote some results which are used in the following sections. Section 3
characterizes some Cayley graphs on Abelian groups, and Section 4 precisely determines
m-DCI p-groups for certain values ofm.

2. Preliminaries

In this section, we quote some results which we need in the following sections. LetG be a
finite group,Sa Cayley subset ofG and letA = Aut Cay(G, S). Babai [1] gave a criterion
for a subset ofG to be a CI-subset.

Theorem 2.1 ([1]) For a given group G and a Cayley subset S of G, S is a CI-subset if
and only if for anyτ ∈Sym(G) with τGτ−1 ≤ A, there existsα ∈ A such thatαGα−1 =
τGτ−1, where Sym(G) is the symmetric group on G.

The normalizer ofG in A is often useful for characterizing Cay(G, S).

Lemma 2.2 ([5]) Let A=Aut Cay(G, S) and Aut(G, S)={α ∈Aut(G) | Sα = S}. Then
NA(G) equals a semidirect product of G by Aut(G, S), that is, NA(G) = GoAut(G, S).

All finite m-DCI groups form ≥ 2 have been explicitly listed in [10], in particular, we
have

Lemma 2.3 ([10, Proposition 3.1]) Let G be a finite m-DCI p-group, where m≥ 2 and
p is a prime.
(1) If p is odd and2≤ m≤ p− 1, then G is homocyclic.
(2) If m = p, then either G is elementary Abelian, cyclic, or G = Q8.
(3) If m = p+ 1, then either G is elementary Abelian, or G = Z4 or Q8.

Lemma 2.4 ([16]) The quaternion group Q8 is a DCI-group.
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3. Cayley graphs of Abelian groups

In this section, we characterize some properties of Cayley graphs of Abelian groups. Let
G be a finite group,S = {a1,a2, . . . ,am} be a Cayley subset ofG and0 = Cay(G, S).
Let A be the full automorphism group of0 and A1 the stabilizer of 1 inA. Forh distinct
elementsai1,ai2, . . . ,aih ∈ Sandy ∈ G, let{

0
(
yai1, . . . , yaih

) = 0
(
yai1

) ∩ · · · ∩ 0(yaih

)
,

0∗
(
yai1, . . . , yaih

) = 0
(
yai1, . . . , yaih

)∖⋃
x∈R0(yx),

whereR= S\{ai1, . . . ,aih}, that is,0∗(yai1, . . . , yaih) is the set of all vertices of0 which
are joined to every element of{yai1, . . . , yaih} and to no element ofyR. Let

0∗i = max{|0∗(u1, . . . ,ui )| | u1, . . . ,ui ∈ S}.

If R= {u1, . . . ,ui ) ⊆ S, then denote0∗(u1, . . . ,ui ) by 0∗(R) sometimes.

Lemma 3.1 Suppose that G is an Abelian group. Then
(i) 1 ∈ 0∗(W) for W ⊆ S if and only if W= W−1 and(S\W) ∩ (S\W)−1 = ∅;

(ii) 0∗(xx1, . . . , xxk) = x0∗(x1, . . . , xk) for any x∈ G and any x1, . . . , xk ∈ S;
(iii) 0∗k ≤ k for every k≥ 1;
(iv) every element of02(1) lies in0∗(x1, . . . , xk) for some x1, . . . , xk ∈ S.

Proof: By the definition of0∗(x1, . . . , xk), part (i) is clear. Again by definition, we have

y ∈ 0∗(xx1, . . . , xxk) ⇔ y ∈ 0∗(xx1) ∩ · · · ∩ 0∗(xxk)
∖⋃

z∈R

0(xz)

⇔ x−1y ∈ 0(x1) ∩ · · · ∩ 0(xk)
∖⋃

z∈R

0(z)

⇔ y ∈ x
(
0(x1) ∩ · · · ∩ 0(xk)

∖⋃
z∈R

0(z)
)

= x0∗(x1, . . . , xk),

whereR= S\{x1, . . . , xk}. Thus part (ii) is true. Now suppose that0∗k = |0∗(x1, . . . , xk)|
for somex1, . . . , xk ∈ S. By definition,x1x 6∈ 0∗(x1, . . . , xk) for anyx ∈ S\{x1, . . . , xk),
so 0∗(x1, . . . , xk) ⊆ {x1x1, . . . , x1xk}. Hence0∗k = |0∗(x1, . . . , xk)| ≤ k as in (iii).
Finally, for anyy ∈ 02(1), let{x1, . . . , xk} = {x ∈ S | y ∈ 0(x)}. Theny ∈ 0∗(x1, . . . , xk)

is as in (iv). 2

It is clear that if Cay(G, S) ∼= Cl [ K̄m] for m> 1 thenA1 is not faithful onS. Conversely,
the following theorem shows that ifA1 is not faithful onS then Cay(G, S) contains such a
subgraph.
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Theorem 3.2 Let G be an Abelian group and0 = Cay(G, S) for some S⊂ G such that
G = 〈S〉. Let A= Aut0 and A1 the stabilizer of1 in A. Then either A1 is faithful on S,
or S contains a coset of some nontrivial subgroup of G and0 has a subgraph isomorphic
to Cl [ K̄n] for some integers l and n.

Proof: Let S = {a1,a2, . . . ,am}. Assume first that for any integerh ≥ 1 and anyh
elementsx1, . . . , xh ∈ S, |0∗(x1, . . . , xh)| ≤ 1. We claim thatA1 is faithful on S. For
any y ∈ 02(1), let {ai1, . . . ,aih} = {x ∈ S | y ∈ 0(x)}. Theny is the unique element of
0∗(ai1, . . . ,aih). If α ∈ A1 such thatxα = x for all x ∈ S, thenα fixesai1, . . . ,aih . Thus
α fixes0∗(ai1, . . . ,aih), and soα fixesy. Hencexα = x for all x ∈ 02(1). Since〈S〉 = G,
Cay(G, S) is connected, and it follows thatxα = x for all x ∈ V0. Henceα = 1 andA1

is faithful onS.
Assume now that there are someh verticesai1, . . . ,aih such that|0∗(ai1, . . . ,aih)| ≥ 2.

Letw, y ∈ 0∗(ai1, . . . ,aih). Without loss of generality, we may assume that{i1, . . . , i h} =
{1, . . . , h}. By the definition of0∗(a1, . . . ,ah), there existu1, . . . ,uh, v1, . . . , vh ∈
{a1, . . . ,ah} such that{

a1u1 = a2u2 = · · · = ahuh = w,
a1v1 = a2v2 = · · · = ahvh = y,

whereui 6= vi and {u1, . . . ,uh} = {v1, . . . , vh} = {a1, . . . ,ah}. Since{u1, . . . ,uh} =
{v1, . . . , vh}, there existi1 6= 1, i2 6= i1, . . . , i k 6= i k−1 for somek ≤ h such that
v1= ui1, vi1 = ui2, . . . , vi k−1 = uik andvi k = u1. Thus{

a1u1 = ai1ui1 = · · · = aikuik ,

a1ui1 = ai1ui2 = · · · = aiku1.

For convenience, without loss of generality, we may assume thati1 = 2, i2 = 3, . . . , i k =
k+ 1. Then we have{

a1u1 = a2u2 = · · · = ak+1uk+1,

a1u2 = a2u3 = · · · = ak+1u1.

Thus a1u1ai ui+1 = a1u2ai ui for i ≤ k and a1u1ak+1u1 = a1u2ak+1uk+1. Therefore,
u1ui+1 = u2ui for i ≤ k andu2

1 = u2uk+1. Let U = {u1, . . . ,uk+1}. Thenu1U = u2U .
Similarly, we haveu1U = · · · = uk+1U . We claim thata−1

1 U is a subgroup ofG. In fact,
for any i, j with 1 ≤ i, j ≤ k + 1, there exists an integerl such thatu1ui = u j ul because
u1U = u j U . Thusui u

−1
j = u−1

1 ul and so

u−1
1 ui ·

(
u−1

1 u j
)−1 = ui u

−1
j = u−1

1 ul ∈ u−1
1 U.

Therefore,u−1
1 U is a subgroup ofG and U is a coset of the subgroupu−1

1 U . Now
Cay(〈U 〉,U ) ∼= Cl [ K̄|U |] is a subgraph of Cay(G, S) as in the theorem. This completes the
proof of the theorem. 2
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Next we are going to characterize Cayley graphs Cay(G, S) for which AS
1 is the alter-

nating group or the symmetric group of degree|S|. To do this, we first prove the following
lemma.

Lemma 3.3 Let G be an Abelian group, and let S, T be two Cayley subsets of G such
that G = 〈S〉 and Cay(G, S) ∼= Cay(G, T). If 0∗(x, y) = {xy} for all x, y ∈ S and
0∗(u, v) = {uv} for all u, v ∈ T, then every isomorphism preserving1 between Cay(G, S)
and Cay(G, T) induces an automorphism of G.

Proof: Let S= {a1,a2, . . . ,am} andT = {b1, b2, . . . ,bm}. Without loss of generality,
assume thatρ is an isomorphism from Cay(G, S) to Cay(G, T) such that 1→ 1, ai → bi

for i = 1, 2, . . . ,m. Then for anyi 6= j ,

ρ : {ai aj } = 0∗(ai ,aj ) 7→ 0∗(bi , bj ) = {bi bj }.
We claim thatρ is an automorphism ofG. To prove this, we need only verify that for all
integersn1, n2, . . . ,nm ≥ 0,(

an1
1 an2

2 · · ·anm
m

)ρ = bn1
1 bn2

2 · · ·bnm
m , (1)

by induction onn1+ n2+ · · · + nm. Since

ρ :

{
ai → bi , for 1≤ i ≤ m,
ai aj → bi bj , for i 6= j,

we haveρ:{
a2

i

} = 0(ai )\{ai aj | j 6= i } 7→ 0(bi )\{bi bj | j 6= i } = {b2
i

}
for all i = 1, 2, . . . ,m. In other words, (1) holds forn1+ n2+ · · · + nm ≤ 2. Now assume
inductively that the equality (1) holds forn1+ n2+ · · · + nm ≤ N, whereN ≥ 2. Let

a =
m∏

j=1

a
n′j
j , where

m∑
j=1

n′j = N − 1.

By the induction assumption, we have

ρ :

{
a→ b =∏m

j=1 b
n′j
j ,

aai → bbi , for 1≤ i ≤ m.

SinceG is Abelian, for anyx ∈ 〈S〉, y ∈ 〈T〉 and anyi 6= j , we have0∗(xai , xaj ) =
{xai aj } and0∗(ybi , ybj ) = {ybi bj }. Henceρ:{

{aai aj } = 0∗(aai ,aaj ) 7→ 0∗(bbi , bbj ) = {bbi bj }, for 1≤ i 6= j ≤ m,{
aa2

i

} = 0(aai )\{aai aj | j 6= i } 7→ 0(bbi )\{bbi bj | j 6= i } = {bb2
i

}
.
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Therefore, the equality (1) holds forn1+ n2+ · · · + nm = N + 1. By induction, the
equality (1) holds for alln1, n2, . . . ,nm ≥ 0. Henceρ is an automorphism ofG sendingS
to T . 2

To prove our next theorem, we need some notation. Ifa, b ∈ S andb 6= a−1, then the
productab(in G) is said to be awordof length 2 onS. Letw(ab) be the number of all words
of length 2 onS which are equal toab, that is,w(ab) = |{uv | uv = ab andu, v ∈ S}|.
ForY ⊆ 02(1), letw(Y) be the number of all words of length 2 onSwhich are equal to an
element ofY, that is,w(Y) =∑y∈Yw(y).

Lemma 3.4 Using the notation defined above, we have
(i) if 1 6= ab∈ 0∗(u1, u2, . . . ,ui ), thenw(ab) = i for any u1, u2, . . . ,ui ∈ S;

(ii) if |0∗(u1, . . . ,ui )| = j then

w(0∗(u1, . . . ,ui )) =
{

i j if 1 6∈ 0∗(u1, . . . ,ui ),

i ( j − 1) if 1 ∈ 0∗(u1, . . . ,ui );
(iii) |02(1)| ≤ w(02(1)) and if1 ∈ 0∗(R) thenw(02(1)) = m2− |R| for any R⊆ S;
(iv) if AS

1 ≥ Alt(|S|), then1 ∈ 0∗(R) for R⊆ S implies R= S.

Proof: By definition, part (i) is clear. It follows that part (ii) holds. Now letS =
{a1, . . . ,am}. Then02(1) = {ai aj | 1 ≤ i, j ≤ m}\{1}. It follows that part (iii) is true.
Noting thatAS

1 is (m− 2)-transitive onS, in particular, transitive and 2-set-transitive onS,
part (iv) is clearly true. 2

Now we can prove our next result.

Theorem 3.5 Let G be an Abelian group, and let S be a generating subset of G of size
m. Let0 = Cay(G, S), and let A= Aut0 and A1 the stabilizer of1 in A. If AS

1 ≥ Alt(m),
the alternating group of degree m, then one of the following holds:
(i) S= G\{1} and0 ∼= Km+1;
(ii) S= aH for some H≤ G, and0 ∼= Km,m or C|G|/m[ K̄m];

(iii) S= bH\{b} for some H≤ G, 0 ∼= C|G|/(m+1)[ K̄m+1] − |G|
o(b)Co(b);

(iv) S= aL for some a∈ S and some L≤ Aut(G, S), and GCA;
(v) either G is cyclic, or G = Zn × B, where n is odd and B is a2-group of exponent4,

and02(1) =
⋃

u,v∈S0
∗(u, v) ∪ 0∗(S)\{1}.

Proof: First assume thatm= 2 andS= {a, b}. If b = a−1 thenG = 〈a〉 is cyclic and0
is a cycle of lengthn := o(a). ThusA ∼= D2n, and so part (iv) holds in this case. Suppose
that b 6= a−1. If |0∗(a, b)| = 1, thena2 6= b2 and so0∗(a, b) = {ab}. It follows from
Lemma 3.3 that part (iv) holds. If|0∗(a, b)| = 2 then0∗(a, b) = {ab = ba,a2 = b2}.
Thus{1,a−1b} is a subgroup ofG of order 2, andS = a{1,a−1b} as in part (ii). Hence
0i (1) = ai {1,a−1b} for all i ≥ 1. Hence|0i (1)| = 2, and it follows that Cay(G, S) ∼=
C|G|/2[ K̄2].

In the following, assume thatm ≥ 3 andS= {a1,a2, . . . ,am}. SinceAS
1 ≥ Alt(m), AS

1
is (m− 2)-transitive onS, in particular,AS

1 is 2-set-transitive onS. By Lemma 3.1(iv),
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any element of02(1) belongs to0∗(R) for someR ⊆ S. Since either0∗(ai ) = ∅ or
0∗(ai ) = {a2

i } anda2
i 6= aj ak for any j, k 6= i , there is at least onen ∈ {2, . . . ,m} such

that0∗n ≥ 1.
(1) Assume that there exists an integern with 3≤ n ≤ m−2 such that0∗n = r ≥ 1. Then

there aren verticesc1, . . . , cn ∈ Ssuch that|0∗(c1, . . . , cn)| = r . Thus0∗(c1, . . . , cn) con-
tains exactlyr elements of02(1). By Lemma 3.4(ii) and (iv),w(0∗(c1, c2, . . . , cn)) = rn.
SinceA1 is(m−2)-transitive onS, for anyn elementsx1, . . . , xn of S,w(0∗(x1, . . . , xn)) =
rn. Hence

m2 ≥ w(02(1)) ≥
∑

x1,...,xn∈S

w(0∗(x1, . . . , xn)) = rn

(
m

n

)
.

However, it is easy to see thatrn(m
n ) > m2 since 3≤ n ≤ m− 2, a contradiction. Thus

0∗n = 0 for 3≤ n ≤ m− 2.
(2) Assume that0∗2 = 0∗m−1 = 0. Then02(1) = (0∗(S)\{1})∪0∗(a1) ∪ · · · ∪

0∗(am) ⊆ (0∗(S)\{1})∪ {a2
1, . . . ,a

2
m}. Thusai aj ∈0∗(S) for anyai 6=aj . Since no two of

a1a2, . . . ,a1am are equal,|0∗(S)| ≥ m− 1 ≥ 2. Thus for anyi, j 6= 1, there are integers
h, k such thata1ai = aj ah anda1aj = ai ak. It follows thata2

1 = ahak and so0∗(a1) = ∅.
Thus0∗(S)\{1} = 02(1). Hence every vertex in02(1) is joined to all vertices in0(1) = S.
Thus if 1 ∈ 0∗(S) then Cay(G, S) ∼= Km,m; if 1 6∈ 0∗(S) then Cay(G, S) ∼= C |G|

m
[ K̄m]

where|G|> 2m. It follows thatai S=aj S for anyai ,aj ∈ S. ThusH =a−1
1 S is a subgroup

of G andS= a1H . This case is as in part (ii).
(3) Suppose that0∗2 = r ≥ 1. By Lemma 3.1(iii),r ≤ 2. If r = 2, then sinceA1 is 2-set-

transitive onS, for anyu, v ∈ S, |0∗(u, v)| = 2 and so0∗(u, v) = {uv = vu, u2 = v2}. It
follows thata2

1 = a2
2 anda2

2 = a2
3, a contradiction. Thusr = 1. SinceA1 is 2-set-transitive

on S, |0∗(u, v)| = 1 for anyu, v ∈ S. Hence0∗(u, v) = {uv = vu} or {u2 = v2}. By
Lemma 3.4(iv), 16∈ 0∗(u, v) and sow(0∗(u, v)) = 2.

First assume that there are two elementsa, b ∈ S such that0∗(a, b) = {a2 = b2}.
Then0∗(a) = ∅ and ab 6∈ 0∗(a, b), so ab = cd for somec, d ∈ S\{a, b}. Thus
ab∈ 0∗(x1, . . . , xi ) for somex1, . . . , xi ∈ Swherei > 2. Since0∗n = 0 for 3≤ n ≤ m−2
shown in (1),i ≥ m− 1 and sow(ab) ≥ m− 1. Thus0∗m−1 6= 0 or 0∗m 6= 0. Since
w(0∗(u, v)) = 2 for all u, v ∈ Swhereu 6= v,

∑
u,v∈Sw(0

∗(u, v)) = 2(m
2 ) = m(m− 1).

If 0∗m−1 = s 6= 0 then sinceAS
1 is transitive onS, |0∗(S\{u})| = s for all u ∈ S. Thus

w(0∗(S\{u})) = s(m−1)and so
∑

u∈Sw(0
∗(S\{u})) = ms(m−1). Since 16∈ 0∗(S\{u}),

we have

w(02(1)) ≥
∑

u,v∈S

w(0∗(u, v))+
∑
u∈S

w(0∗(S\{u}))

= (s+ 1)m(m− 1) > m2 ≥ w(02(1)),

a contradiction. Thus0∗m−1 = 0, so0∗m = s 6= 0 and02(1) =
⋃

u,v∈S0
∗(u, v)∪0∗(S)\ {1}.

Without loss of generality, suppose thata = a1 andb = a2, and letai = oi ei such that
oi ∈G2′ andei ∈G2, whereG2 is a Sylow 2-subgroup andG2′ is a Hall 2′-subgroup ofG.
Sincea2

1 = a2
2, o1 = o2 =: oande2

1 = e2
2. For anyai ∈ Swith i 6= 1, 2, sincea1a2 ∈ 0∗(S),
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there is anaj such thata1a2 = ai aj . If j = i theno2
i = o1o2 = o2 ande2

i = e1e2, so
oi = o. If j 6= i then sinceai aj = a1a2, ai aj 6∈0∗(ai ,aj ). Since0∗(ai ,aj ) 6= ∅, we have
0∗(ai ,aj ) = {a2

i = a2
j }. It follows thatoi = oj ande2

i = e2
j . Sinceai aj =a1a2= o2e1e2,

we haveoi = o and ei ej = e1e2. Thus, whetherj = i or not, we haveoi = o and
e4

i = (ei ej )
2 = (e1e2)

2 = e4
1. Henceo1 = o2 = · · · = om ande4

1= e4
2 = · · · =e4

m. Note
that G = 〈S〉, so G2′ = 〈o〉 andG2 = 〈e1, e2, . . . ,em〉. If e4

1 6= 1 thenG2 has only one
subgroup of order 2. By [14, p. 59],G2 is cyclic; if e4

1 = 1 thenG2 is of exponent 4. This
case is as in part (v).

Now assume that0∗(u, v) = {uv} for any u, v ∈ S and thatG is not as in part (v).
For anyT ⊆ S\{1}, by the previous paragraph, Cay(G, S) ∼= Cay(G, T) implies that
0∗(u′, v′) = {u′v′} for any u′, v′ ∈ T with u′ 6= v′. By Lemma 3.3,S is conjugate in
Aut(G) to T and soS is a CI-subset. For anyρ ∈ A1, let bi = aρi andT = {b1, . . . ,bm}.
Then Cay(G, S) = Cay(G, T). By Lemma 3.3,ρ induces an automorphism ofG. Thus
A1 ≤ Aut(G), soA1 = Aut(G, S) andA = G A1 = GoAut(G, S), which is as in part (iv).

(4) Assume that0∗2 = 0 and0∗m−1 = r ≥ 1. Thenm≥ 4. SinceA1 is transitive onS, we
have|0∗(S\{x})| = r for everyx ∈ S. If r ≥ 2, then since 16∈ 0∗(S\{x}) for anyx ∈ S,

w(02(1)) ≥
∑
x∈S

w(0∗(S\{x})) = rm(m− 1) > m2 ≥ w(02(1)),

a contradiction. Thusr = 1. Letv(x) be the unique element of0∗(S\{x}). If v(a1) = a1,
then for anyai , we havev(ai ) = ai becauseA1 is transitive onS. Thus Cay(G, S) ∼= Km+1

as in part (i). Now suppose thatv(a1) 6= a1. Thenv(a1) ∈ 0(x) for all x ∈ S\{a1}. Let
b = a−1

1 v(a1) andS∗ = S∪ {b}. We shall prove thatb−1S∗ is a subgroup ofG. To do
this, we need to prove thatb−1ai · (b−1aj )

−1 ∈ b−1S∗ for any i 6= j . Sincei 6= j , we may
assume thatj 6= 1. Thenv(a1) ∈ 0(aj ) and sov(a1) = aj ak for someak ∈ S. Thus

b−1ai · (b−1aj )
−1 = b−1 · b · ai a

−1
j

= b−1 · a−1
1 v(a1) · ai a

−1
j

= b−1 · a−1
1 aj ak · ai a

−1
j

= b−1a−1
1 ai ak·

If ai ak ∈ 0(a1), that is,ai ak = a1ak′ for someak′ ∈ S, thenb−1ai (b−1aj )
−1 = b−1a−1

1 ai ak

= b−1ak′ ∈ b−1S∗. HenceH := b−1S∗ is a subgroup ofG andS∗ is a coset ofH . ThusS=
S∗\{b} = bH\{b}, and Cay(G, S) = Cay(G, S∗) − Cay(G, {b}) ∼= C |G|

m+1
[ K̄m+1] − |G|k Ck

wherek = o(b), which are as in part (iii) of the theorem. Thus, in the following, we
only need to prove thatai ak ∈ 0(a1). Sincei 6= j , ai ak 6= aj ak = v(a1). If i 6= k,
then since0∗n = 0 for 2 ≤ n ≤ m− 2, ai ak ∈ 0∗(S) ∪ 0∗(S\{x}) for somex ∈ S\{a1}
and soai ak ∈ 0(a1). Thus we may assume thati = k, soai ak = a2

k . If a2
k = a2

1 then
a2

k ∈ 0(a1). Hence suppose thata2
k 6= a2

1. Sinceaj ak = v(a1) ∈ 0∗(S\{a1}), there exist
ah,al ∈ S\{aj ,ak} such thataj ak = ahal . If l = h thena2

h = aj ak and so0∗(ah) = ∅.
SinceA1 is transitive onS, 0∗(ak) = ∅ and soa2

k ∈ 0∗(S) ∪ 0∗(S\{x}) for somex ∈ S.
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Sincea2
k 6= v(a1), we havea2

k ∈ 0(a1). If l 6= h, then at least one ofakah andakal does not
belong to0∗(S\{aj }), say,akah 6∈ 0∗(S\{aj }). Thusakah ∈ 0∗(S) ∪ 0∗(S\{x}) for some
x ∈ S\{aj }, and soakah = aj al ′ for somel ′, which, together withaj ak = ahal , implies
a2

k = al al ′ . Thus0∗(ak) = ∅ and soa2
k ∈ 0∗(S) ∪ 0∗(S\{x}) for somex ∈ S. Since

a2
k 6= v(a1), a2

k 6∈ 0∗(S\{a1}) and soa2
k ∈ 0(a1). This completes the proof of the theorem.

2

Theorem 3.5 gives an application to Babai and Frankl’s question.

Corollary 3.6 Let G be an elementary Abelian p-group, p a prime, and S a Cayley
subset. Let A= Aut Cay(G, S). If AS

1 ≥ Alt(S), then S is a CI-subset of G.

Proof: Since any subgroup ofG is still elementary Abelian group and each isomorphism
between any two subgroups can be extended as an automorphism ofG, we may assume
that〈S〉 = G. By Theorem 3.5, Cay(G, S) satisfies parts (i)–(iv). It is easy to check thatS
is a CI-subset ofG. 2

Remark By Theorem 3.5, the graphs in parts (i)–(iii) have been completely character-
ized. The graphs Cay(G, S) in part (iv) satisfies a very strong condition Aut Cay(G, S) ≤
GoAut(G)’s.

4. Finite m-DCI p-groups,p a prime

By definition, a finite groupG is a 1-DCI group if and only if all elements ofG of the same
order are conjugate in Aut(G). Suppose thatG is a 1-DCI p-group. If p is an odd prime
thenG is homocyclic by the result of Shult [13]; ifp = 2 then by [7],G is a homocyclic
group or the quaternion groupQ8, or G satisfies the following conditions:

(i) G′ = 8(G) is homocyclic of rankn;
(ii) G/G′ is of order 2n or 22n;

(iii) the centreZ(G) of G consists of the identity and all the involutions ofG;
(iv) eitherZ(G) = G′, or CG(G′) = G′ with Z(G) = 8(G′).

It is easy to see that homocyclic groups andQ8 are 1-DCI groups, however, it is still difficult
to characterize precisely 1-DCI 2-groups, see [7]. Form ≥ 2, the problem of determining
m-DCI groups is very different from the casem= 1. By Lemma 2.4, we need to consider
mainly Abelianp-groups. We first prove a property of Cayley graphs of arbitrary Abelian
p-groups.

Proposition 4.1 Let G be an Abelian p-group, S a Cayley subset of G such that〈S〉 = G
and A= Aut Cay(G, S). If p2 6 | |A1| then either S is a CI-subset,or p‖ |A1|and S contains
a coset of some subgroup of G, where A1 is the stabilizer of1 in A.

Proof: Suppose that|G| = pd. If p 6 | |A1|, thenG is a Sylow p-subgroup ofA. By
Sylow Theorem and Theorem 2.1,S is a CI-subset. Thus assume thatp‖ |A1|. Let P be
a Sylow p-subgroup ofA containingG. Then|P : G| = p andP1

∼= Zp whereP1 is the
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stabilizer of 1 inP, and soP is non-Abelian, see [15, 4.4]. Assume thatS is not a CI-subset
of G. By Theorem 2.1, there is aτ ∈ Sym(G) such thatGτ < A andGτ is not conjugate
to G. Let g ∈ A such that(Gτ )g < P. ThenGτg 6= G and P ≥ 〈Gτg,G〉 > G. Hence
P = 〈Gτg,G〉 = GτgG as|P : G| = p. Since any element inGτg ∩G commutes with all
elements ofGτg andG, we haveGτg ∩ G ≤ Z(〈Gτg,G〉) = Z(P). Further

|Gτg ∩ G| = |G
τg||G|
|GτgG| =

pd · pd

pd+1
= pd−1.

SinceP is non-Abelian,Gτg∩G = Z(P). For anya ∈ Z(P), Pa = P1a = Pa
1 = P1, soP1

fixes all vertices inZ(P). Now 〈Z(P), P1〉 is an Abelian subgroup of indexp in P. Hence
〈Z(P), P1〉C P and〈Z(P), P1〉 has orbits{xZ(P) | x ∈ G} on V0 = G. ThusP1 fixes
everyxZ(P) setwise. Moreover,P1 = 〈α〉 has an orbitO on Sof lengthp. If a ∈ O ⊆ S,
then sinceP1 fixes xZ(P) setwise for eachx ∈ G, aα ∈ aZ(P), soaα = az for some
z ∈ Z(P). ThusO = a〈α〉 = {a,az,az2, . . . ,azp−1} = a〈z〉. Thus the proposition holds.

2

This result has been generalized in [8] to general abelian groups under certain conditions.
The following lemma enables us to focus our attention on connected graphs.

Lemma 4.2 Assume that G is a homocyclic p-group and that S is a Cayley subset of G.
If S is a CI-subset of〈S〉 and for any subset T of G, Cay(〈T〉, T) ∼= Cay(〈S〉, S) implies
〈T〉 ∼= 〈S〉, then S is a CI-subset of G.

Proof: Assume thatS is a CI-subset of〈S〉 and thatT is a Cayley subset ofG such that
Cay(〈T〉, T) ∼= Cay(〈S〉, S). Then〈T〉 ∼=σ 〈S〉 for some isomorphismσ from 〈T〉 to 〈S〉.
Let T ′ = Tσ . Then Cay(〈S〉, T ′) ∼= Cay(〈T〉, T) ∼= Cay(〈S〉, S). SinceS is a CI-subset of
〈S〉, there isα ∈ Aut(〈S〉) such thatT ′σ = S. Thusβ = σα is an isomorphism from〈T〉 to
〈S〉 such thatTβ = (Tσ )α = T ′α = S. SinceG is a homocyclicp-group, it is easy to show
that every isomorphism between any two isomorphic subgroups ofG can be extended as
an automorphism ofG. Let ρ ∈ Aut(G) be an extension ofβ. ThenTρ = Tβ = S, soS
is a CI-subset ofG. 2

Now we can determinem-DCI p-groups for 2≤ m≤ p+ 1.

Theorem 4.3 Let G be a finite p-group, where p is prime. Then
(1) G is an m-DCI group for2≤ m≤ p− 1 if and only if p≥ 3 and G is homocyclic;
(2) G is a p-DCI group if and only if G is elementary Abelian, cyclic, or G = Q8;
(3) G is a(p+ 1)-DCI group if and only if G is elementary Abelian, or G = Z4, Q8.

Proof:

(1) By Lemmas 2.3 and 2.4, we only need to prove that homocyclicp-groups arem-DCI
groups. LetSbe a Cayley subset ofG of sizem. By [8, Theorem 1.1],S is a CI-subset
of 〈S〉. Thus by Lemma 4.2,S is a CI-subset ofG andG is anm-DCI group.
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(2) By Lemmas 2.4 and 4.2, we only need to prove that elementary Abelianp-groups and
cyclic p-groups arep-DCI groups. By [8, Theorem 1.1],S is a CI-subset of〈S〉. Thus
by Lemma 4.2,S is a CI-subset ofG andG is a p-DCI group.

(3) By Lemmas 2.4 and 4.2, we only need to prove that elementary Abelianp-groups are
(p+ 1)-DCI groups. LetG = Zd

p and letS be a Cayley subset ofG such that|S| ≤
p+ 1. By parts (1) and (2), we only need to consider the case where|S| = p+1. Since
G is elementary Abelian, any two subgroups ofG of the same order are isomorphic.
Thus, by Lemma 4.2, we may assume that〈S〉 = G.

If p = 2, then by [3, Theorem 1],G is a 3-DCI group. Thus assumep ≥ 3 in the
following. Suppose first thatS contains a cosetaH of some subgroupH of G for some
a ∈ S. Since|S| = p + 1, we have|H | = p and S = aH ∪ {b} for someb∈ S. If
b ∈ 〈aH〉 thenG = 〈a, H〉 is of orderp2, and thus by [6],S is a CI-subset. Ifb 6∈ 〈aH〉
thenG = 〈aH〉 × 〈b〉 ∼= Z3

p, and thus by [4], againS is a CI-subset. Suppose now thatS
does not contain any coset of subgroups ofG. By Theorem 3.2,A1 is faithful onS. Since
|S| = p+ 1, it follows that p2 6 | |A1|. By Proposition 4.1,S is a CI-subset and soG is a
(p+ 1)-DCI group. This completes the proof of the theorem. 2
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