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Abstract. We consider two combinatorial statistics on permutations. One is the genus. Thedatheis
defined for alternating permutations, as the sum of the number of descents in the subwords formed by the peal
and the valleys. We investigate the distributiondes on genus zero permutations and Baxter permutationgy-Our
enumerative results relate thes statistic to lattice path enumeration, the rank generating function and characteristic
polynomial of noncrossing partition lattices, and polytopes obtained as face-figures of the associahedron.
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1. Introduction

We introduce a variationles, of the descent statistic for permutations, defined for alternating
permutations, which we apply to alternating permutations of genus zero and to alternating
Baxter permutations. While the original motivation for defint@s was to elucidate the
equinumerosity of genus zero alternating permutations ando8ehipaths, it turns out
thatdes enjoys further equidistribution properties related to noncrossing partition lattices
and face-figures of the associahedron. Our results invplaealogues of the Catalan and
Schidder numbers, and include extensions of previous work in [5, 9].

A permutationr € Sy is analternating permutatioff («(i — 1) —a(i))(x(i) —a(i + 1))
<Oforalli =2,3,...,N—1. The enumeration of all alternating permutationsSin
is a classical problem which can be viewed in the larger context of permutations with
prescribed descent set [7, 22]. koE Sy, thedescent setf ¢ isDeqo) :={i : 1 <i <
N, a(i) > a(i + 1)}, and thedescent statistits degw) := |Degqw)|. Thus, the alternating
permutations irSy are the permutations whose descent sgt,i8, 5, ...} or{2,4,6, ...},
the last descent depending on the parityNofIf « is an alternating permutation, we refer
the valuex (i) as apeak(local maximum) ifi e Deq«), and as aalley(local minimum) if
i ¢ Deqw).

In Section 3 we are concerned with alternating permutations of genus zero. The statistit
genuswhich we use here is based on the earlier notion of genus of a pair of permutations
appearing in the study of hypermaps (see [8, 10, 23, 24]) z{#tdenote the number of
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cycles of a permutatiop. Given(o, @) € Sy x Sy, the relation
Z2(0)+ z() + 2@ o) =N +2-2g

defines thegenus of the paiXo, @). This suggests considering the permutation statistic
0, : Sv — Z obtained by fixings and computing the genus of eagle Sy with respect
too.

For example, the simplest choice torthe identity permutation iy, leads tayg («) =
1 — z(a), essentially the number of cycles, a well studied permutation statistic (see, e.g.,
[7,22]).

In order to maintain the topological significancegf(«), we will restrict our attention
to choices o such that the subgroup, «) is transitive for alke. That is, we will consider
only N-cycleso, and in fact we will normalize our choice for the rest of this paper to
o =(1,2,...,N). Our notion of genus corresponds to the genus of a hypermap with a
single vertex.

Definition 1.1 The genug(«) of a permutationx € Sy is defined by
Z)+ 2zt (1,2,...,N) = N+1—2g9().

For example, itx = 2 3 15 4 (in gcle notationp = (12 3(45)), thena (12345 =
142 (3)(5), henceg(x) = 0.

The table in figure 1 shows the number of genus zero alternating permutations beginning
with an ascentyp-down and with a descentdpwn-up alternating permutatiohs

The numerical values in this table are the (big) $clernumbers: 12, 6, 22, ..., whose
generating function is

1—Xx—+/1-—6x+x2
Schix) := ) Schx" = > +
n>0 X
=14+2X+6x>+223+ .-, (1)

andthe “small Sclader numbers,('%Sch,)nzl. Itisthis observation, provenin Theorem 3.2,
that lies at the origin of this paper.

Schioder numbers have numerous combinatorial interpretations, for example, in terms
of incomplete parenthesis systems, certain lattice paths, plane trees with loops allowed, ¢
faces of the associahedron, see [5, 7, 20]. Using the (classical) lattice path interpretatio
described in the next section, it is natural to consider the number of diagonal steps as
combinatorial statistic and obtairgaanalogue of the Schder numbers. Is there a statistic

n 0 1 2
u® 111
d® o o0 1

5 6 7 8 9 10
6 6 22 22 90 9 ...
3 11 11 45 45 197 ...

w N b

Figure 1 The number of up-down and down-up permutations of genus zero.
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on genus zero alternating permutations which gives the spamalogue? In answer to this
guestion (Theorem 3.4), we introduced the statidés.

Definition 1.2 Given an alternating permutatienc Sy, we say that, 1 <i <N -2, is
an alternating descent of if a(i) > “(ii 2), and we definelegw) to be the number of
alternating descents af Equivalently degw) = degpeaksw)) + degvalleyq«)), where
peakswa) and valleysx) are the subwords af(1)«(2) ...« (N) formed by the peaks and
valleys respectively.

Although Theorem 3.2 is a special casge= 1) of Theorem 3.4, we prove the former
separately for ease of exposition.

It turns out that an alternating permutation of genus zero is necessarily a Baxter permu
tation (Proposition 4.1). This motivated our investigation of the statilfcon alternating
Baxter permutations. Baxter permutations (whose definition appears in the next section
were investigated in, among other references, [2, 6, 17, 18, 23]. In answer to a question ¢
Mallows, [9] offers a combinatorial proof of the identity

N, /2N
CnCryr=) o ) CCnte )
k=0
in which Cy = 25(%) is the Nth Catalan number. The proof in [9] relies on in-

terpreting both sides of (2) as counting alternating Baxter permutation4, @f ...,
2N + 1}. Similarly, (Cy)? is interpreted as the number of alternating Baxter permuta-
tions of{1, 2, ..., 2N}.

We show (Theorem 4.2) that this interpretation extends ¢eamalogue based on the
statisticdes for alternating Baxter permutations and number of cycles for genus zero per-
mutations (equivalently, number of blocks for noncrossing partitions). Our proof takes
advantage of the methods developed in [9].

Connections between the rank generating function of the lattice of noncrossing partitions
and the enumeration of Sauér lattice paths were described in [5]. Theorem 5.1 relates
Schioder path enumeration with the characteristic polynomial of the noncrossing partition
lattice. This leads to an alternative derivation (Corollary 5.2) of a certain reciprocity relation
[14] between the rank generating function and the characteristic polynomial of successive
noncrossing partition lattices. Our proofrelies on general facts abofit tredh-vectors of
a simplicial complex, exploiting the relation between the lattice of noncrossing partitions,
Schidder paths, and the associahedron ([5, 16]). Thus, the rather unusual relation (16
between the rank generating function and the characteristic polynomial for noncrossing
partition lattices is explained here as a manifestation of the fact that, for such posets, thes
two polynomials give thé- and f -vectors of a simplicial complex. e

In Section 6 we show that the distribution of the alternating descents statéstion
alternating Baxter permutations (i, 2, ..., N} gives theh-vector of a convex polytope.
This can be described as a vertex-figure of the associahedron (Theorem 6.1). The tot:
number of faces of this polytope is either the square of adtgrriiumber, or the product
of two consecutive Schder numbers, depending on the parity\of Corollary 6.2 extends
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this approach and establishes a unified combinatorial interpretation (in termsaoid
f -vectors of face-figures of the associahedron) for multiple producis@dtalan numbers
and ofg-Schioder numbers. This generalizes simultaneously results from [5] and [9].

2. Preliminaries and notation

In our discussion, we find it convenient to distinguish several classes of alternating permuta
tions. We denote by the class ofip-down alternating permutatiorfse., those beginning

with an ascent), and by the class oflown-up alternating permutatiorfse., those begin-

ning with a descent). In turiD will denote the subset df consisting of permutations
ending with a descent. The classes denbtgdDU, DD are similarly defined. We convene

to view the empty permutation arg in UU. The same notation in lowercase will indicate
generating functions, e.gid(x) = >, ud,x", whereud, = |[UD N S,|.

For a setX of permutations X© and X® will denote the intersection oX with the
class of genus zero permutations and with the class of Baxter permutations, respectivel
Superscripts for generating functions and cardinalities will be used as aboved@gx) =
> ud@x", whereud?® = |UD©@ N S,|. By convention, we sat”’ = uy = 1 (corres-
ponding to the empty permutation) augf) = uu(lo) =1. lfx e S, we write|a| = n.

Now we introduce several combinatorial objects which will occur in subsequent sections:
noncrossing partitions, Sabdér paths, Baxter permutations, and the associahedron.

By anoncrossing partitiof [N] := {1, 2, ..., N} we mean a collectioB,, By, ..., By
of nonempty, pairwise disjoint subsets &]whose union is N] (that is, a partition of
[N]), with the property that if < a < b < ¢ < d < N with a, ce B; andb, d € Bj, then
i = j (thatis, no two “blocks” of the partition “cross each other”). Thus, all partitions of
{1, 2, 3, 4} exceptl 3/ 2 4 are noncrossing.

If the elementd and j lie in the same block of a partition, we write~ j. As is
customary, we assume that the elements within each block are increasingly ordered and th
the blocks are indexed in increasing order of their minimum elements.

The set NEN) of noncrossing partitions ofN] is known to form a lattice under the
refinement order, whose enumerative and structural properties were investigated, for ex
ample, in [12, 13, 15]. We will make reference to the rank of a noncrossing partition,
rank(w) = N — bk(zr), wherer € NC(N) has bKw) blocks, and we will use NQN, k) to
denote the set of noncrossing partitions Nfl havingk blocks. If = e NC(N) we write
| = N. Itisknown (see, e.g., [7, 15]) thtIC(N)| = 15 (%), theNth Catalan number,
and that the rank generating function of NQ is

S LNY (N e
CN(q) = Z q k) :ZN ( k) (k—l)qk l’ (3)

7 € NC(N) k=1

ag-analogue of the Catalan number whose coefficients are the Narayana numbers ([15]).
Noncrossing partitions will play a role throughout the present paper since it turns out,
from [15] and [25], that genus zero permutations can be completely characterized as follows

Lemma 2.1 Leta e Sy. Then da) = 0if and only if the cycle decomposition @fgives
a noncrossing partition dfN], and each cycle at is increasing.
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Saying that amm-cycle of « is increasing means that its elements are expressible as
a < a@ < o?@ < --- < a™1(@). The reader familiar with [15] will recognize
that, in the language of Kreweras’ paper, a genus zero permutai®the “trace” of the
corresponding noncrossing partition, with respect toNheycleo .

Thus, the number of permutations$y whose genus is zero is tith Catalan number.
A particular encoding of noncrossing partitions which appears in [21] (briefly described,
for the reader’s convenience, in Section 3) will be used to encode genus zero permutation:

In our g-enumeration results involving the Sokier numbers, we use the following
lattice path interpretation (see, e.g., [5]). [Ss#(N) denote the collection of lattice paths
in the plane which start at the origin, end(&t, N), are bounded by the horizontal axis
and the liney = x, and consist of steps of three allowable types: (1, 0) (East), (0, 1)
(North), and (1, 1) (diagonal). TheBchN)| = Schy, the Nth Schoder number, and we
refer to such paths &chibder paths We consider the statistic Diag, hnumber of diagonal
steps, on Scloder paths, and we I18chy x = |{p € SCHN) : Diag(p) = k}|. For instance,
Schy ;1 = 3, accounting for the paths DEN, EDN, END, where E, N, D stand for East, North,
and diagonal steps. The numb&mah, « have the generating function

1—qgx—/1— (4x +29x) + q2x2
2x ’

SchD(x, q) := Z SchyxNgk =
n,k>0

(4)

The statistides turns out to have an interesting distribution on alternating Baxter permuta-
tions. A permutatiorr € Sy is aBaxter permutatiotif it satisfies the following conditions
foreveryi = 1,2,...,N —1: if a7(i) < k,m < o7 + 1) and ifa(k) < i while
a(m) > i + 1, thenk < m; similarly, if o7 1( +1) < k,m < «1() and ifa(k) < i
while (m) > i + 1, thenk > m. Informally, a permutation satisfies the Baxter condi-
tion if between the occurrences of consecutive valuasidi + 1, the smaller values are
“near” i and the larger values are “nedr+ 1. Thus, forN < 3 all permutations are
Baxter. In the symmetric grou§, there are 22 Baxter permutations; the Baxter condition
failsfori =2in2413and 314 2. Iterms of forbidden subsequences, a permutation
o =a(Da(2)...a(N) e Sy is Baxter iff it does not contain any 4-term subsequence of the
patten 24 1 3 or 31 4 2 iwhich the roles of 2 and 3 are played by consecutive values; that
is, there are no indices 4 j < k <l < m < N such thatx(l) < a(j) < a(m) < a(k)
anda(j) +1=a(m),orak) < a(m) < a(j) < a() anda(m) + 1 = a(j).

Finally, we summarize a few facts about the associahedron, which will occur in Sections 5
and 6 (see, e.g., [16, 26] for additional information and related developments).

Forn > 1, let A, denote the following simplicial complex: the vertices represent
diagonals in a convexn + 2)-gon, and the faces are the sets of vertices corresponding
to collections of pairwise noncrossing diagonals. Thus, the maximal faces correspond tc
the triangulations of the polygon and aie — 2)-dimensional. In [16], Lee constructs
an(n — 1)-dimensional simplicial polytopeQ,, called theassociahedropwith boundary
complexA,.

In general, thef -vector of a(d — 1)-dimensional simplicial complex i§ = (f_1, fo, f1,

..., fg_1), where f; is the number of-dimensional faces (withf_; = 1 accounting for
the empty face). Tha-vector,h = (hg, hy, ..., hg), contains equivalent information and
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is defined by
d . d .
Yo fia@-1* =) hig' (5)
i=0 i=0

The f - andh-vector of a (simplicial) polytope are those of the (simplicial) complex formed
by its boundary faces. Lee [16] shows that theector of the associahedrdp, is given
by the coefficients o€,(q), that is,

n—1
D o hi(Qua™ ! = Ch(@). (6)
i=0

In [5] it is shown thatfi_1(Qpn) is the number of Sclader paths with final poingn, n),
havingn — 1 —i diagonal steps, and in which the first non-East step is North. In particular,
the total number of faces &, is %Scm.

3. Enumeration and g-enumeration of alternating permutations of genus zero

Our approach to proving the two main results of this section (Theorems 3.2 and 3.4) is
as follows. Based on Lemma 2.1, genus zero permutations can be identified with non
crossing partitions. We characterize the descents of a genus zero permutation in terms of
word encoding the associated noncrossing partition. From this characterization, we derivi
a grammar for the formal language of the words encoding the nonempty genus zero alter
nating permutations. In turn, the grammar rules lead to a system of equations from whict
we obtain the generating functions for the classes of up-down and down-up permutation:
of genus zero, and Theorem 3.2 follows. This approach is then refined to pecoiinting
these permutations according to the statisés. Using @-grammar (or attribute grammar,
see, e.g., [11]) we obtain tlgpanalogue results of Theorem 3.4.

We begin with a brief description of an encoding (given in [21]) of noncrossing partitions
aswordsoverthealphal®, E, R, L}. If # e NC(N), forN > 1, thenthe word associated
with 7 isw(m) = wiws . .. wny—_1 Where

B, ifi i+ 1andiisnotthe largest element in its block;
E, ifi i+ 1and + 1lisnotthe smallest elementin its block;

Wi =L, ifii+1,iisthelargestelementin its block, and- 1 is the
smallest element in its block;
R, ifi~i+1.

For details on this encoding and applications to deriving structural properties of the lattice of
noncrossing partitions, we refer the interested reader to [21]. For our purposes, we also vie\
w as encoding the genus zero permutation whose cycle decomposition gives the noncrossit
partitionz. Observe thatr| = |w| + 1 and that theB’s and E’s are matched in pairs,
forming a well-parenthesized system whBs playing the role of left parentheses.
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i1 2 3 4 5 6 7
w: R B R R L E
a(i): 2 7 4 5 3 6 1

Figure 2 Encoding of a genus zero permutatiog Sy by a wordw € {B, E, R, L}N-1,

Figure 2 shows an example: the genus zero permutatien2 7 4 5 3 6 1€ &, the
noncrossing partition determined by its cycle decompositien (1 2 7)(3 4 5(6), and the
word w = RBRRLEwhich encodes the noncrossing partition and, hence, enaodes

Next, toward the enumeration of the wordswvhich correspond to alternating permuta-
tions of genus zero, we characterize it termsdhe positions € {1, 2, ..., N — 1} which
are descents for the corresponding permutation.

Lemma 3.1 Leto e Sy be a permutation of genus zero encoded by the word=
wiws. .. wn-1 €{B, E, R, L}*. Thenforeachl <i <N —1,

i ¢ Deqw) iff wij =1L,
or wj €{R, E} andwj 1 €{B, R}.

Equivalently

i € Deqw) iff wj =B,
or wj €{R, E} and eitheri= N — 1 or elsew;,; €{L, E}.

Proof: The proof involves a case-by-case analysis of the conditiong evhich charac-
terizei € Deqa).

Supposav; = B. Using Lemma 2.1, this implies thati) > i + 1. The noncrossing
condition on cycles forces(i + 1) < «(i), soi € Deq«) whenevemw; = B.

If wi = R, thena(i) = i + 1, and whethei is a descent depends an ;. If
wit1 € {R, B}, thena(i +1) > i + 2 andi is an ascent o&. If wj 1€{L, E} orif
i =N —1,thena(i) =i + 1is the maximum and(i + 1) is the minimum in their cycle
of o. Thusa(i +1) <i < «f(i), soi e Deqw). Similar arguments, which we omit, apply
in the cases; = L or E, completing the proof. |

We can now prove the relation between the entries in the table of figure 1 anobiSchr”
numbers.

Theorem 3.2 The number of up-down and down-up alternating permutations of genus
zero satisfies

o _ 0 _
Upn = Upp_q = SChy_a,

1
0 0
dén) = dén)ﬁ-l = ESCh,,
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forn>1,and § = 1, d° = d” = 0. Equivalently

u@x) = 1+ x(1 + x)Schx?),
d9x) = %(1 + x)[Schx?) — 1].

Proof: Letus denote by U the language formed by the words= {B, E, R, L}* corre-
sponding to the nonempty permutations of genus zero which alternate starting and endin
with an ascent; similarly, we will denote D, DU, andD D the languages for the other
three types of alternating permutations of genus zero. ugk) = >, _,, X!, and
ud(x), du(x), dd(x) be similarly defined as the enumerators according to length of the
words in the appropriate language.

Also,U =UU +UD andD = DU + DD denote the languages formed by the words
corresponding to the nonempty permutationsli? andD©, respectively.

Using Lemma 3.1, we obtain the following grammar:

UU - e+L+LDU+RDU
UD—~ LDD+RDD

DU - RL(e+DU)+B(L+LDDL+RDDL)E(L+LDU)
+B(e+UD) E DU

DD -+ R+RLDD+B(L+LDDL+RDDL)E(+LDD)
+B(e+UD) EDD.

The empty word is denoted by and, of coursepB, E, R, L do not commute. Each
of the four derivation rules follows from similar arguments. In the interest of brevity,
we include only a proof of the third rule (the first two rules are rather obvious, the
fourth is similar to the third). Lett e DU© N Sy (with N necessarily odd), and =
wiws. .. wn_1 € {B, E, R, L}* be its associated word. By Lemma 3il; € {R, B, E},
but w; cannot beE since the number dB’'s must be at least equal to the numbelEs in
every prefix ofw. Thusw; € {R, B}.

Supposeaw; = R. Sincea must end with an ascent, we hadMe> 3, and Lemma 3.1
implies thatw, must beE or L. However,w, cannot beE because nd precedes it,
sow,; = L. This is consistent witlx having an ascent in the second position, and by
Lemma 3.1 imposes no restriction an. If N > 3, thenwzwy ... wy_1 Must be in the
languageDU . This gives the first term in the derivation rule folJ .

Suppose now thaty; = B and consider the factorization = BvEv’, where BvE
is the shortest prefix ofv in which the number oB’s equals the number dE’s. Two
cases emerge, depending on the parity of the length &f |v| is odd, sayjv| = 2i — 1,
thenv e UU is nonempty, R+ 1€ Deqw), andv’ e UU. Moreover, Lemma 3.1 requires
wy € {L, R, E} so that 2¢ Deq«), butw, = E is not possible here by the choice of the
factorizationw = BvEv'. Also, since 2 ¢ Deqw) andwyi;1 = E, Lemma 3.1 forces
v to end inwy = L. Finally, Lemma 3.1 shows that these requirements are consistent
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with w3 ... wz_1 € DD wheni > 2. Concerning’, Lemma 3.1 implies that it must be
either empty or begin witle or L. In fact,v’ is nonempty since ends in an ascent, and
it must begin withL in order forw; . .. wy 1 1w4 42 to contain no mord&’s thanB’s. Also,
wois2 = L does not impose additional conditions @n This gives the second term of the
derivation rule forDU. If |v]| is even, saylv| = 2i > 0, then we must have = ¢ or
veUD, 2i +2¢ Deg«), andv’ € DU. Lemma 3.1 applied toi2+ 2 ¢ Deqw), implies
thatv” must begin withB or R, which is consistent with’ € DU. Hence, the last term of
the derivation rule foDU.

Now, the replacement &f with 1 and of each 0B, E, R, L with x, yields a system of
equations fouu(x), ud(x), du(x), dd(x), the enumerating series (by word-length) for the
four languages under consideration. The generating functions (by length) of the permutatiol
classetJU©@, UD©@, DU©@, DD© then follow immediately:uu© (x) = 1 4+ x uu(x),
ud@(x) = x ud(x), du®(x) = x du(x) anddd® (x) = xdd(x). The factors ok account
for the fact thate| = |w| + 1 if w encodes the nonempty permutatiprand the additional
unit in uu(x) accounts for the empty permutation with no werdassociated with it.

Following calculations which we omit, we obtain

uu@(x) = 1+ x(1+ xSchD(x?)),
ud@(x) = x(SchD(x?) — 1),
du® (x) = g(SchD(xz) — ),

dd@x) = %(SchD(xz) —1).

Hence,u©@(x) = uu@(x) + ud@x) andd@(x) =du© (x) + dd© (x) have the desired
expressions, and the values of the coefficients follow. ]

Before stating and proving our next result, which refines Theorem 3.2, we illustrate it
with an example. The statistic Digg), the number of diagonal steps of the patHeads
to ag-analogue of the numbé&ch, of Schioder paths with final pointn, n). Forn = 2
we obtain Diag(EENN)= Diag(ENEN)=0, Diag(DEN)_ Diag(EDN)= Diag(END)=1,
Diag(DD)= 2, hence theg-analogue 2-3q + q 2 of the total numbeBch = 6 of paths. On
the other hand, the statlsdes{a) the number of alternating descents, applied 8 N S,
the genus zero alternating permutation$lof, 3, 4, 5} which begin with an ascent, gives:
des(2534]) deg15342 =2,deg23154=deg2435)=deg14352 =
1,deg13254 = 0. This produces thg-analogue 82 + 3q + 1 of uéo) = 6. The fact
that these twaj-analogues are reciprocal polynomials is not an accident. As Theorem 3.4
asserts, Diag andes have essentially the same distribution. In our proof, Lemma 3.3 plays a
role analogous to that of Lemma 3.1 relative to Theorem 3.2. It characterizes the alternatin
descents of an alternating permutation of genus zero in terms of its word encoding, and i
the key to deriving the rules ofggrammar, from which the relevant generating functions
follow.

Lemma 3.3 Leta € Sy be an alternating permutation of genus zero encoded by the
word w = wiws...wN-1 € {B, E, R, L}*. Then i is an alternating descent ofif and
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onlyifl<i <N —2andaf(i) is a peak andvjwi;1 € {BL, BR}, or «(i) is a valley and
wiwiy1 €{LE, RR ER}.

Proof: Clearly,i < N —2is necessary for an alternating descent. Suppdses a peak.
Theni € Deqo) andi + 1¢ Des(«), and Lemma 3.1 implies that w1 € {BL, BR, BE,

RL, RE, EL, EE}. In the first two cases,andi + 2 lie in different cycles ofx and the
noncrossing condition on these cycles foregs) > «a(i + 2), hencei is an alternat-

ing descent. By Lemma 3.1, the casew;+1 = BE requires in fact that <N — 3 and
wjwi1wie € {BEB, BER}. Consequentlyy (i) =i + 2,a(i +2)>i+2, soi ishotan
alternating descent. Similar arguments show that the remaining casgsafqrs imply thati

is not an alternating descent. The characterization of alternating descents among valleys fo
lows similarly, fromthe consideration of the possibilitiesv; .1 € {LB, LR, LE, RB, RR

E B, E R} and the additional constraints from Lemma 3.1. O

Theorem 3.4 Let the Schider paths be enumerated according to their final point and
number of diagonal steps

Sch DX, q) = Z Z XNquaQ(p)

N peSchy
=1+ A+ qX+ 2+3q+0)x*+(5+ 100+ 69> + 9 + - -+,

and let the up-down and down-up alternating permutations of genus zero be enumerate
according to their length and alternating descents statjstic

uOx,q) = Y xWlgiese),

acUO®

dOx, g = Y x|l qdese)

aeDO
Then

u@(x, @) = 1+ x(1+ x)Sch Dx?q, g~
=14+ X+X)+A+PC+xH+1+39+29)X° +x8) + - -

and

1+ X _
d®x, q) = m[SCh D(x%q, g — 1+ x* — x°q]

=X+ +A+q+gHx*+x3
+(1+39+59% + 29} (x° +x) + - .

Proof: UsingLemma 3.3 we canrefine the grammar rules used inthe proof of Theorem 3.2
in the factorization of the words, we introduce the paranggterecord the occurrence of an
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alternating descent. In doing so, itis useful to distinguish, for each langtageords cor-
responding to the nonempty permutationsinthe dé@gNeighted byg?es, the sublanguage
of words beginning with a prescribed letteX, :={q%w:a € X — {1}, w = w(a),
w1 =Y}. We obtain

UU, - L+L(DUg+DUp)

UUg — R(QDUg +DUg)

UD, — L(DDg+ DDg)

UDg — R(qDDg + DDg)

DUg — RL(e+DURr+ DUp)

DUg — Bq[L + L(DDg + DDg)L + R(QDDg + DDg)L]
xqE(L+L (DUg+ DUg))
+B(e +qUD, +9qUDg) E (QDUg + DUg)

DDgr — R+ RL(DDg+ DDg)

DDg — B[L + L(DDg+ DDg)L + R(DDg + DDg)L]
xqE (e +L(DDg+ DDg))
+B(e+qUD, +qUDg) E(q DDg + DDg).

Allthe rules are obtained by applying Lemmas 3.1 and 3.3. We include only the treatment
of the rules forDU , and DU ; which are refinements of the rule f@U in the proof of
Theorem 3.2.

Let w be the word encoding e DU, If w; = R, thenw € RL(e + DU), as in the
proof of Theorem 3.2, and by Lemma 30U — DU + DU ;. Lemma 3.3 applied to
the peakx (1) implies that 1 is not an alternating descent, and applied to the va{@®yit
implies that 2 is not an alternating descent (singev,wsz cannot beRLE). Thus we get
the desired derivation rule f@U .. If wi; = B, we consider the factorizatian = BvEv’
as in the proof of Theorem 3.2. Whé¢n = 2i — 1 for somei > 1, we know thatw;
must beR or B. In both cases, Lemma 3.3 implies that the peé&k) gives an alternating
descent, hence the first factor@in the derivation rule foDU ;. The valleya(2) gives
an alternating descent only whenws = RR, hence the factor off inside the bracket.
We also havawy woi 1 = LE as in the proof of Theorem 3.2, and Lemma 3.3 shows that
the valleyx (2i) gives an alternating descent. Hence the factay fufllowing the bracket.
Based on the discussion in the proof of Theorem 3.2, we havgw, o, = EL and, by
Lemma 3.3, the peak(2i + 1) does not give an alternating descent. This establishes the
first term in the derivation rule fobU ;. The second term refines the last term BiJ
from the proof of Theorem 3.2, corresponding to the dase= 2i > 0. By Lemma 3.3,
the peakx (1) gives an alternating descenbitt ¢, while the peakr(2i + 1) does not give
an alternating descent (sineg; >, = E), and the valleyx(2i + 2) gives an alternating
descent only whemyi ;3 = R.
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The solution of the system of equations, obtained with the aid of Maple, gives

uu@(x, q) = 1+ x(1 + uy, (X, q) + UUg(X, ))
= 1+ x(1+ xSchD(x?q, g7 1)),
ud®(x, q) = x(ud, (x, q) + udg(x, o))
= X(SchD(x*q, ™) — 1),
du®(x, ) = x(dug(x, @) + dug (X, ))

X
= 3 g 67 — 1+ X,

dd@(x, q) = x(ddg(x, q) + ddg(x, Q)

1
= m[SChD(qu, g~ h —1+x*—x%q],

with the same notational conventions as in the proof of Theorem 3.2. m|

Remark 3.5 The complete solution to the system of eight equations appearing in the

proof of Theorem 3.4 exhibits the following relations among the different subclasses of
alternating permuations of genus zero:

0]
m[SChD(quy g hH-1+x*—qx]

(©]

1 1
= (P x.9) - x?) = ud®x, q) = ﬁ(du(ﬁ)(x, Q) — x%) = du®(x, q)

1
= ;(ddé?)(x, Q - x%) =x dd?(x, q)

=x34+ 1+ q+9)x°+ (1+ 39+ 59° + 2°)x’
+(1+6q + 169 + 160° + 6g4)x° + - - -,
(if)
2 2 2 -1
m[(l—x +gx9)SchD(x“q,q™") — 1]

1
=~ (x. ) = udg’(x. )

=gx>+ (29 + 99)x° + (39 + 507 + 3g®)x’
+(4q + 149° + 199° + 89)x° + - - -,
(iii)
x[SchD(x’q, g™ — 1]
1
= ;(uu((’)(x, ) —1—x—x%) =ud?x,q)

=1+ P+ A+ q@+29x°+ (1 +q)(1 + 59 + 59°)x”
+ (1491 +909 + 2197 + 144%)%° + - -,
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(iv)
X
2—x24qx?

=du (x, q) = x dd’ (x, q)

=g+ x>+ 291+ q)>x" + g1+ q)(3+ 8q + 60°)x°
+2q(1+ q)%(2 + 8q + 9g%)x**
+q(1+ q)(5+ 40g + 11592 + 1369° + 5791
+2q(1+ q)%(3+32q + 1189% + 1769° + 93gH)x® + - -

[(1— x?)SchD(x?q, 4~ %) — (14 qx?)]

Some of the relations are transparent, e.g., sincé) D(O) is equivalent tax(1) = 1 and
o' € DD, wherea'(i) i= a(i + 1) — 1, we haveud( )(x 1) = x dd@(x, 1); and since
the valleya (1) does not give an alternating descent we )(x Q) = x dd?(x, q).

Other equalities (e.gdul (x, q) = x dd (x, q) anddu(o)(x q) x dd? (x, )) follow
alternatively from the grammar rules and induction.

Still other of these facts can be deduced from the encoding of the permutations, e.g., th
divisibility of ud? (x, q) anduuly (x, q) by q. Indeed, letx eUDY. If wy = wy = R,
then the valleyx (1) gives an alternating descent (hence a factay)pind ifwiw, = RB
then it does not. In the latter case, we must hayes {L, R} (in which case the peak
a(2) gives an alternating descent), w4 = ER (in which case the valley(3) gives
an alternating descent), or yesw, = EB. The last case leads to= RBEBEBE..
and sincer ends with a descent, the repetition®E terminates with one of the preceding
cases which gives an alternating descent.

The factors of(1 + q) and (1 + g)? occurring in (i) and (iv) are not obvious from the
grammar rules, and it is a calculus exercise to verify them from the formulae for the gener-
ating functions. It would be interesting to explain their presence combinatorially. We also
remark that additional observations can be proved through a combination of Lemmas 3.1
3.3 and induction, e.g.:

If « € UQ(2n) thena(2n) = 2n, (7
If « e U©@2n+ 1) thena(2n) e {2n 2n + 1}, (8)
uy = uy , = dconry) = uconry),, = Sch_1, (9)

wheredconr? = [{« € D@ N Sy : 1 andN in the same cyclg (thus,dcond” = 0 if N
is odd), andiconr? = [{« € U@ N Sy : 1 andN in the same cyclg (thus,uconrd = 0
if N is even), count “connected” alternating permutations of genus zero.

4. Alternating Baxter permutations

We begin this section with the relation between alternating permutations of genus zero an
Baxter permutations, which prompted our investigation of the distributiotesfon the
class of alternating Baxter permutations.



182 DULUCQ AND SIMION

Proposition 4.1 If @ € Sy is an alternating permutation of genus zethenc is a Baxter
permutation.

Proof: Since the Baxter conditionis always validfoe= 1, N—1,assume X i < N—2.
By Lemma 2.1, the cycle decomposition @fgives a noncrossing partition and we let
w=wiws...wN_1 € {B, E, R, L}* be the encoding af as in Section 3.

Supposew; = B. Sincea is an alternating permutation, Lemma 3.1 implies that
i e Degw) andthatw;_; € {R, E, L}. Firstsuppose;_; € {R, E}. Inthis caseg (i) < i
anda(j) < i foralla=(i) < j <i. We also haver (i + 1) > i + 1, with equality
holding if wi;1 € {L, E}, and the noncrossing condition on cycles implieséh@&) > i +1
foralli +1 < k < =% + 1), if this interval is nonempty. The Baxter condition also
holds fori whenw;_; = L. This time the noncrossing property of the cycles implies that
a (i) > a i +1) >i+1andthaw(k) > i foralla (i + 1) < k < (i) if this
interval is nonempty.

The remaining casesy = E, R, L, have similar proofs which we omit. O

Itis easy to see that neither of the possible converse statements to Proposition 4.1 is tru
the identity permutation is Baxter of genus zero but not alternating; 56 1 32 4 is
alternating Baxter but of genus 2.

Our next result extends the combinatorial interpretation of squares and products of twc
consecutive Catalan numbers from [9] tg-analogue.

Theorem 4.2 Consider the g-analogue of the Catalan numbers

N1
ov@ = 3 @t =3 L () ((Ny)a 4o
k=1

aeSy
9(a)=0

and the distribution of the alternating descents statistic on alternating Baxter permutations

(B)(q) — Z qd’és(w’

weu®

dP@:= Y. q®.

aeD{
Then for every n> 1,
Ugns1(@) = digk (@) = Ca(@)Cnia (@), (11)
U (@) = dip’ (@) = [Cr(@]? (12)
Proof: Firstnote thatit suffices to prove théﬁrl = Cn(0)Cn11(q) andul = [Cn(a)]?.

Indeed, itis easy to check that the mapp8g— Sy sending a permutatianto g defined
byB() = N+1—«f(i), respects the Baxter condition, restricts to a bijection betvﬁlaf\éh
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a=214131548563711291110

14 15 8 6

Figure 3 Example of an alternating Baxter permutatioand its associated Baxter trégw).

andU?, and complements the valuedés. Since the coefficients of the right-hand sides
of (11) and (12) are symmetric sequences, we mﬁ?/)e{q) = d,(\‘B) Q).

Following [9], there is a bijection betvveémz(fil andBaxter treeswith 2n + 3 vertices.
These are complete plane binary trees, rooted, and increasingly labeled, generated throu
an insertion process of the vertices which ensures the Baxter condition for the permutatiot
o € Snya arising from the in-order traversal of the tree (the leftmost and rightmost leaves
bear special symbols that are not part of the permutation (figure 3)).

Inturn, the Baxter trees are in bijective correspondence with pelirg (') of plane rooted
binary trees, having + 1 andn vertices, respectively. In this correspondence (see T9)),
is the plane rooted binary tree formed by the internal vertices of the original Baxter tree anc
T” is the plane rooted binary tree obtained after removing the labels of the decreasingly
labeled plane rooted binary tree whose in-order traversal gives the subwofdrafied by
the peaks. It is rather remarkable that the original BaxterTr@e can be reconstructed
from theunlabeledrees(T’, T”). In figure 4, the forced labels f@r andT” are indicated
in parenthesis.

Subword of valleys: Subword of peaks:
2134531910 141586 7 12 11
T'(@) (1) T () 15)

a9

(10)

@13)

NC-partition for T': NC-partition for T":
178/23/46/5 17/24/3/56

Figure 4 Example of the pair of treeF(, T”) for an alternating Baxter permutation and the corresponding
noncrossing partitions.
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In [9], the insertion process for Baxter trees is encoded by a shuffle of two Dyck words,
with the end result that both sides of (2) are interpreted as the count of alternating Baxte
permutations of [& + 1]. Similarly, alternating Baxter permutations of2are shown to
be in bijective correspondence with paifis, T”) of plane rooted binary trees, each having
n vertices. Thus, fog = 1, (11) and (12) are proved in [9].

These facts from [9] and a few simple observations will yield geanalogues of
Theorem 4.2. Clearly, the permutationobtained from a Baxter tree is alternating be-
cause the tree is complete binary. Also, the internal verticdq@f give the valleys ofy,
and left edges ifT’ correspond to alternating descents among valleys. More precisely, if
a is a vertex inT” which has a left child, ther is not the first valley, and an alternating
descent occurs at the valley preceding it.

On the other hand, a plane rooted binary treencn 1 (unabeled) vertices encodes a
noncrossing partition off{ + 1], by the following recursive procedure. The root (which
corresponds to the minimum element under consideration) and its successive right desce
dants constitute the blod; of the partition. Ifv is one of these vertices and has a left child,
then the noncrossing partition corresponding to the left subtreésainserted (“nested”)
betweenv and its successor iB;. (Thus, the tree consisting of a root and two children
gives the partition 1 3 2.) By construction, the partition is noncrossing and, if the number
of vertices that have a left child & then the number of blocks of the resulting patrtition is
s+ 1.

ConsequentlyC,.1(q), which enumerates noncrossing partitionsrof{ 1] according
to the number of blocks diminished by one unit also gives the distribution of descents on
the valleys of up-down Baxter permutations ofi[2 1].

In T”, right edges correspond with descents between peaks afhd the correspon-
dence with noncrossing partitions follows similarly (interchanging right and left). Thus,
Cn(q) gives the distribution of descents on the peaks of up-down Baxter permutations of
[2n +1].

Based on the validity of the bijective correspondeace- (T’, T”) in [9], the proof of
(11) is completed. With suitable but minor modifications as in [9], one obtains (121

Remark 4.3 In Niven’s notation [19], alternating permutations are permutations with
monotonicity pattera- —+ - - - or—+ — - - - (“4" for ascents and=~" for descents). Niven
proved that the up-down and down-up patterns are the most popular monotonicity pattern
over the entire symmetric group. What is the most popular monotonicity pattern over the
class of Baxter permutations?

Numerical evidence suggests that the two alternating patterns may still be the answel
but, if this is true in general, it is due to reasons more subtle than in the case of the entire
symmetric group. For the symmetric group (see [19]), increasing the number of “sign
changes” in a monotonicity pattern leads to an increase in the number of permutation:
realizing the pattern. However, for Baxter permutations it turns out for instance that the
pattern+ + 4+ — — 4+ (with 2 sign changes) is represented by 30 permutations, while the
pattern— + — + 4+ + (with 3 sign changes) is represented only by 28 permutations.
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5. Lattice paths and the associahedron

Just as thg-analogue (3) of the Catalan numbers gives the rank generating function of the
noncrossing partition lattice,@analogue of the Schder numbers gives its characteristic
polynomial.

Theorem 5.1 The g-analogue

SchDn:q):= Y g”® (13)
p e Schn)

of the Schdder number obtained from counting Setler paths according to their number
of diagonal steps and the characteristic polynomial of the noncrossing partition lattice

anem (@ = Y (0, m)gnirenen (14)
7 € NC(n)

are related by

(=D)"Sch On; @) = xnen+1) (—). (15)

Proof: Itis known thatthe noncrossing partition lattice is an EL-shellable poset. It admits,
for example, the following EL-labeling constructed by Gessel for the lattice of unrestricted
set partitions, and which Bfher [3] observed works as well for NC: the covering fram

to p is labeled by the larger of the minima of the two blocksrofhich are merged in order

to obtainp. Therefore, from the general theory of EL-shellable posets (see, e.g., [4]) it
follows that if 7 € NC(n + 1), then(—l)fa”‘(”>u(0, ) is equal to the number of maximal
0-7 chains in NGn + 1) whose sequence of labels (startinddjis decreasing. In turn,

the interval P, ] is isomorphic to the product of the noncrossing partition lattice$NG
wheren; are the cardinalities of the blocks of

By [13] (Theorem 2.2), there is a bijection between the maximal chains ¢ffl@&ith
prescribed label sequenzda permutation of 23, ..., m) and the noncrossing partitions
of {2, 3, ..., m} each of whose blocks constitutes a decreasing subsequehc@afr ex-
ample, in NC(5) there are 7 maximal chains with label sequgnree 5 4 2,corresponding
to the following noncrossing partitions: 23 /4 /5,23/4/5,24/3/5,25/ 3/ 4,
2/3/45,245/3,23/45.)

In particular, there is a bijection between the decreasingly labeled chains (n;NC
and the noncrossing partitions in NG — 1). It is easy to see that this bijection can be
extended to a bijection between the decreasingly labeled chaifisif) fnd the product
[[;NC(nj — 1.

Finally, there is a natural bijection between (@) and Schoder paths from (0, 0) to
(m, m) with no diagonal steps (we may call such paths “Catalan paths”). Namely, in a Cata-
lan path, view East steps as left parentheses and North steps as right parentheses; num
the Eaststeps 2, ..., min order, starting from the origin; number each North step with the
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number of its matching East step; the Catalan path then corresponds biuniquely with the nor
crossing partition whose blocks consist of the numbers assigned to contiguous North step:
(For instance, the path EEENENNENN corresponds to the partitiohd4/ 3 NC(5).)

Using these facts, we will construct a bijection between the@&tdhrpaths from (0, 0) to
(n+1, n+1) beginning with a diagonal step and havindjagonal steps and the decreasingly
labeled chains it J,, eNC(n+1,k)[O’ m]. A simple translation of the paths (moving (1, 1) to
the origin and deleting the initial diagonal step) yields then a bijection between thedéchr”
paths from (0, 0) tgn, n) and havingk — 1 diagonal steps and the decreasingly labeled
chains fromD to partitions in NGn + 1, k). Finally, (15) follows from a simple calculation:

XNy (=) = =" Z |M(6, ﬂ)|qbk(”)*1

7 e NC(n+1)
N+l )

= (-D") ' ) #{decreasingly labeled-r chaing
k=1 7 € NC(n+1,k)

= (=1)"SchD(n; q).

It remains to exhibit a bijection between the Suthet paths from (0, 0) th+ 1, n+ 1)
beginning with a diagonal step and havikgliagonal steps total and the decreasingly
labeled maximal chains imneNC(nﬂ,k)[@, 7]. Let p be such a Sclader path. We begin
by constructing a partition = B;/B;.../Bx € NC(n+ 1, k). Factor the Scluder path as
p = p'(Dcy) p”, where D is the last diagonal step pfandc is the longest Catalan path
which follows after D (having as its 45-degree barrier the line containing the step D). For
example, the patlp of figure 5, givescs = ENEENN, formed by the six steps following
the diagonal step markeds. Letny := 1+ |c«|/2, where|c| is the number of steps of
(necessarily even), be the cardinality of #ik block of . Replacing the patp with p’'p”
and repeating the factorization process, we determine the cardinalities of all bleckIof

Figure 5 lllustration to the proof of Theorem 5.1.
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determiner itself, we apply recursively the following method of establishing the elements
of By. If p”’ =@, thenletBy ={n+2—ng,,n+1—ny,...,n+1}. If p” # @, thenp”
begins with a North step which matches a unique East stgp(tfiese are denotediind

Ex in figure 5, where they occur fdr= 3, 4, 5). This East step eventually constitutes, say,
the hth horizontal step of a Catalan path arising from the factorization process. Then
By is “nested” between théh — 1)st and thehth element ofB;. For example, the blocks

B; and B, resulting from the Scluder path of figure 5 will lie between the second and
third elements oB,. Due to the noncrossing condition and the indexing of the blocks in
increasing order of their minima, we obtain a well-defined noncrossing partitiohhe
path in figure 5, gives =12/34101516/567/89/1112 13 14.

Having obtained the partition € NC(n + 1, k) in this manner, each Catalan path
corresponds to a unique noncrossing partitiompH 1], which we realize with the elements
of B; := Bj — {m;}, wherem; is the minimum ofB;. For example, the Catalan path
¢, = EENEENNN from figure 5 gives the noncrossing partition 4 15 1® of B, , and
m, = 3. Itis easy to verify that the path can be reconstructed fromand the partitions
of By forj =1,....k

In turn, by [13], each of thesk noncrossing partitions corresponds bijectively with a
decreasingly Iabeleﬁ-Bj chain for the appropriatg, with label setB;". Forj = 2 in our
example, this chain i), 316/ 4 / 10/ 15,3 15 16/ 4/ 10, 3 15 16/ 4 10, B,.

The proof is completed by simply interleaving tkehains in the unique way that gives
a decreasingly labelddtr chain. o

By combining Theorem 5.1 and results from [5] we recover a reciprocity relation between
the rank generating function and characteristic polynomial of noncrossing partition lattices
([14], Lemma 4.5).

Corollary 5.2 If xncamy (@) and Ryem) () denote the characteristic polynomial and the
rank generating functiorrespectivelyfor the noncrossing partition lattice N@), then

xnen+1 (@) = (=D (1 — g)Rugm (1 — a), (16)
foralln > 1.

Proof: Forn > 1, consider the boundary complex, of the associahedro®, and

the simplicial complexA, * p, the join of A, with a single vertex simplicial complex.
Obviously, f_1(Ap*p) = Land fi_1(Anx p) = fi_o(An) + fi_1(Ap) fori > 1. The
two terms in this relation can be interpreted in terms of 8dhr'paths counted by their
number of diagonal steps, using Proposition 2.7 of [5]. Namely(ithe 1)-dimensional
faces ofA, * p which containp correspond bijectively with thé — 2)-dimensional faces

of Ay, and these are equinumerous with the 8der paths ending &n, n) which have

n — i diagonal steps and the first non-East step is a North step. On the other hand, th
(i — 1)-dimensional faces oA, * p which do not contairp correspond bijectively with
the (i — 1)-dimensional faces oA, itself and are equinumerous with the Satief paths
ending at(n, n) which haven — 1 — i diagonal steps and the first non-East step is a North
step; in turn, such paths correspond bijectively with the &dérpaths ending dh, n)
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which haven — i diagonal steps and in which the first step or else the first non-East step is
diagonal (simply replace the first EN corner with a diagonal step). Consequently,

Y fisa(Anx p)g"" = SchD(n; g). (17)
i=0

Also, theh-vector of A, * p is that of A,, extended by, (A, x p) = 0, so,
n
D hi(Anx g™ =qCa(@). (18)
i=0

Therefore, by the general relation (5) betweenfthandh-vector of a simplicial complex
we have

SchD(n; g — 1) = qCh(a), (19)
for all n > 1. Combining this with Theorem 5.1, we obtain

xncn+n (@) = (=1)"SchD(n; —q) = (-D"(1 - q)Ch(1— )
= (=1)"(1 — q)Rncm (1 — ). -

6. Alternating Baxter permutations and polytopes

Let a{ff denote the number of alternating Baxter permutationd\gf\ith i alternating
descents. Note that, by (11) and (12 B,) is well-defined without specifying whether the
permutations begin with an ascent or a descent. Also, (11) and (12) show that the sequen
(affi))izo is symmetric and unimodal since its generating polynomial is the product of two
symmetric and unimodal polynomials, see [1]. These are necessary (but not sufficient
conditions for(affi))izo to be theh-vector of a simplicial convex polytope.

Theorem 6.1 For every N> 1, there exists atiN — 2)-dimensional simplicial polytope
Q}f’ whose h-vector is given by the number of alternating Baxter permutations counted
according to thades statisticthatis forO<i < N — 2,

hi (QY”) = ). (20)

Proof: Using (11) and (12), a polytop@(NB) as claimed exists if and only if the candidate
f -vector given by

N-—-2
> fia(Q)aN T = Crua (L4 a)Cpns (14 0)
i=0

1 N -1 N +1
-l 7 fa)seo([ 5 )

is indeed realizable by a simplicial polytope.
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Figure & lllustration to Theorem 6.1.

By [5], as discussed in Section 5, thievector of the associahedr@, is given by

m—1

4 1
3 m—1-i __ .
i§=0 fi—_1(Qm)q =174 chhD(m, Q). (21)

Hence, the desirefl-vector forQ\y’ agrees with that of the simplicial compley’ :=
Apnayx Ajnay, the join of the boundary complexes of the associah@qlm%lw andQL%J .
We claim thatA(NB) isindeed polytopal. Let be any of the vertices dpy which represents
a diagonal dissecting a conveMX +2)-gon into a (%1 +2)-gonP’anda (%J + 2)-gon
P”. By the general theory of polytopes (see, e.g., [26]) a vertex figug\o#t the vertex
v is a polytope whose face lattice is isomorphic to the intervaJy ] of the face lattice of
Qn. More explicitly, if H is a hyperplane which intersed@s and separatasfrom all other
vertices ofQy, thenQn NH is an(N — 2)-dimensional polytope whospdimensional
faces are in bijective and inclusion-preserving correspondence wil th#&)-dimensional
faces of Qy which containv. In turn, the latter are precisely the faces with vertex set
{v}UV'UV”, whereV’ andV” are independent dissections of the two polygéhsnd
P”, respectively. ThusquB) is polytopal, being relizable as the boundary complex of a
vertex figureQy /v of the associahedron. ]

Figure 6 illustrates the construction fo‘B). As another exampIngB) is a convex
bipyramid over a pentagon.

Corollary 6.2 Letiy, ip, ..., ik beintegersi; > 1foreach j=1,...,k, and leti +
i+ --+ixk=N. Fori>0, define hand f_; by

N—k )

Y higN =L @G, (@) - - Ci (@) (22)

i=0

and

, N—k—i .__ . ). i
i§=0 fi_1q =aT q)kSch Di1; g)Sch iz; q) - - - Sch Di; q). (23)
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Then there exists a(N — k)-dimensional simplicial polytope with h-vect@ng, h4, ...,
hn_x) and f-vector(f_q, fo, ..., fnok—1).

Proof: By the previous discussion, the associahedron satisfies the conclusiok when
Letk > 2 and consider a convéN + 2)-gon. Choosé& — 1 noncrossing diagonals which
dissect it intok polygons havind; + 2,i, + 2, ..., ik + 2 vertices, respectively. Denote
by F = F, i,....i, the face ofQy representing this set of noncrossing diagonals. Then (see
[26]), the interval F, Q] in the face lattice ofQy is isomorphic to the face lattice of a
face-figure,Qn/F, of the polytopeQy with respect td=. Hence, thg -dimensional faces

of Qn/F are in inclusion-preserving bijection with thi¢ + k — 1)-dimensional faces of

Qn which containF. The desiredf - andh-vector for the polytopeQy /F follow from
arguments similar to those in the proof of Theorem 6.1. |

Remark 6.3 Inthe case& = 1, 2 of Corollary 6.2, the polytopes havevectors which
enumerate some class of permutations according to a combinatorial statistic: genus zel
permutations according to the number of cycles diminished by one unit, and alternating
Baxter permutations according to the number of alternating descents, respectively. We ar
not aware of such interpretations foe 3.
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