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Abstract. A symplectic matroid is a collectionB of k-element subsets ofJ = {1, 2, . . . ,n, 1∗, 2∗, . . . ,n∗},
each of which contains not both ofi andi ∗ for everyi ≤ n, and which has the additional property that for any
linear ordering≺ of J such thati ≺ j implies j ∗ ≺ i ∗ and i ≺ j ∗ implies j ≺ i ∗ for all i, j ≤ n, B has
a member which dominates element-wise every other member ofB. Symplectic matroids are a special case of
Coxeter matroids, namely the case where the Coxeter group is the hyperoctahedral group, the group of symmetries
of the n-cube. In this paper we develop the basic properties of symplectic matroids in a largely self-contained
and elementary fashion. Many of these results are analogous to results for ordinary matroids (which are Coxeter
matroids for the symmetric group), yet most are not generalizable to arbitrary Coxeter matroids. For example,
representable symplectic matroids arise from totally isotropic subspaces of a symplectic space very similarly to
the way in which representable ordinary matroids arise from a subspace of a vector space. We also examine
Lagrangian matroids, which are the special case of symplectic matroids wherek = n, and which are equivalent
to Bouchet’s symmetric matroids or 2-matroids.
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1. Symplectic matroids

Hyperoctahedral group and admissible permutations.Let

[n] = {1, 2, . . . ,n} and [n]∗ = {1∗, 2∗, . . . ,n∗}.

Define the map∗ : [n] → [n]∗ by i → i ∗ and the map∗ : [n]∗ → [n] by i ∗ → i . Then∗
is an involutive permutation of the setJ = [n] t [n]∗.

We say that a subsetK ⊂ J is admissibleif and only if K ∩ K ∗ = ∅.
Let W be the group of all permutations of the setJ which commute with the involution∗,

i.e., a permutationw belongs toW if and only if w(i ∗) = w(i )∗ for all i ∈ J. We shall
call permutations with this propertyadmissible. The groupW is known under the name
of thehyperoctahedral group BCn. It is easy to see thatW is isomorphic to the group of
symmetries of then-cube [−1, 1]n in then-dimensional real Euclidean spaceRn. Indeed, if
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e1, e2, . . . ,en is the standard orthonormal basis inRn, thenW acts onRn by the following
orthogonal transformations: fori ∈ [n] we setei ∗ = −ei andwei = ew(i ). Sincew is
an admissible permutation ofJ = [n] t [n]∗, the linear transformation is well-defined.
Also it can be easily seen thatW is exactly the group of all orthogonal transformations
of Rn preserving the set of vectors{±e1,±e2, . . . ,±en} and thus preserving the unit cube
[−1, 1]n. Indeed, the vectors±ei , i ∈ [n], are exactly the unit vectors normal to the
(n− 1)-dimensional faces of the cube (given, obviously, by the linear equationsxi = ±1,
i = 1, 2, . . . ,n).

It is an easy exercise to check thatW is the group generated by the following permuta-
tions ofJ, in cycle notation:(i, i ∗) for all i ∈ [n], and(i, j )(i ∗, j ∗) for all i, j ∈ J, i 6= j, j ∗.

The name ‘hyperoctahedral’ for the groupW is justified by the fact that the group of
symmetries of then-cube coincides with the group of symmetries of its dual polytope,
whose vertices are the centers of the faces of the cube. The dual polytope for then-cube is
known under the name ofn-cross polytopeor n-dimensional hyperoctahedron.

Admissible orderings. We shall order the setJ in the following way:

n∗ < n− 1∗ < · · · < 2∗ < 1∗ < 1< 2< · · · < n− 1< n.

Now if w ∈ W then we define a new ordering≤w of the setJ by the rule

i ≤w j if and only if w−1i ≤ w−1 j .

Orderings of the form≤w, w ∈ W, are calledadmissibleorderings ofJ. They can be
characterized by the following property:

an ordering≺ on J is admissible if and only if≺ is a linear ordering and
from i ≺ j it follows that j∗ ≺ i ∗.

Denote byJk the set of all admissiblek-subsets inJ. If ≺ is an arbitrary ordering onJ,
it induces the ordering (which we denote by the same symbol≺) on Jk: if A, B ∈ Jk and

A = {a1 ≺ a2 ≺ · · · ≺ ak} and B = {b1 ≺ b2 ≺ · · · ≺ bk}

we setA ≺ B if

a1 ≺ b1,a2 ≺ b2, . . . ,ak ≺ bk.

Symplectic matroids. Now let B ⊆ Jk be a set of admissiblek-element subsets of the
set J. We say that the tripleM = (J, ∗,B) is a a symplectic matroid, if it satisfies the
following Maximality Property:

for everyw ∈ W the setB contains a uniquew-maximal element, i.e., a
subset A∈ B such that B≤w A for all B ∈ B.
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The setB is called thecollection of basesof the symplectic matroidM , its elements are
calledbasesof M , and the cardinalityk of the bases is therankof M .

Symplectic matroids were introduced by Gelfand and Serganova in [12, 13], in a slightly
different, but obviously equivalent way: they used the minimality property in place of our
maximality property. In the case of symplectic matroids the two properties can be obtained
from each other in the most trivial way, by reversing the inequalities. However, the paper [1]
explains why the maximality property fits better in the general theory ofWP-, or Coxeter
matroids, of which symplectic matroids represent only a special case.

2. Representable symplectic matroids

Now we wish to see how symplectic matroids arise naturally from symplectic geometry, in
much the same way that ordinary matroids arise from projective geometry. We begin with
astandard symplectic space, which is a vector spaceV over a fieldF with a basis

E = {e1, e2, . . . ,en, e1∗ , e2∗ , . . . ,en∗ }

and which is endowed with an antisymmetric bilinear form(·, ·) such that(ei , ej ) = 0 for all
i, j ∈ J, i 6= j ∗, whereas(ei , ei ∗) = 1= −(ei ∗ , ei ) for i ∈ [n]. A totally isotropic subspace
of V is a subspaceU such that(u, v) = 0 for all u, v ∈ U . Let U be a totally isotropic
subspace ofV of dimensionk. SinceU ⊥ U , and dimU⊥ = 2n − dimU , we see that
k ≤ n. Now choose a basis{u1, u2, . . . ,uk} of U , and expand each of these vectors in terms
of the basisE: ui =

∑n
j=1 ai, j ej +

∑n
j=1 bi, j ej ∗ . Thus we have represented the totally

isotropic subspaceU as the row-space of ak× 2n matrix (A, B), A = (ai, j ), B = (bi, j ),

with the columns indexed byJ, specifically, the columns ofA by [n] and those ofB by [n]∗.
Let us first see what it means in terms ofA and B that U is totally isotropic. Since

(ui , ui ) = 0 for all i is immediate from the definition of the bilinear form,U is totally
isotropic if and only if(ul , um) = 0 for all l ,m≤ k, l 6= m. From the definition of standard
symplectic space, this is equivalent to

∑
j Cl ,m

j, j ∗ = 0 for all l ,m≤ k, l 6= m, whereCl ,m
j, j ∗ is

the 2×2 minoral , j bm, j −am, j bl , j of C = (A, B). In general, we will denote determinantal
minors of a matrix by using subscripts for column indices and superscripts for row indices.
If we denote themth row of A by Am, this becomesAl · Bm − Am · Bl = 0, where·
denotes ordinary dot product of row vectors. This in turn is equivalent toABt = BAt where
t denotes transpose. Thus we have proven the following lemma.

Lemma 1 A subspace U of the standard symplectic space V is totally isotropic if and
only if U is represented by the matrix(A, B) with ABt symmetric.

Now, given ak × 2n matrix C = (A, B) with columns indexed byJ, let us define a
family B ⊆ Jk by sayingX ∈ B if X is an admissiblek-set and thek× k minor formed by
taking the j th column ofC for all j ∈ X is nonzero.

Theorem 2 If U is totally isotropic, thenB is the set of bases of a symplectic matroid.
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To prove this theorem, we first need the following result.

Theorem 3 Let C = (A, B) be a k× 2n matrix of rank k with columns indexed by J
such that ABt is symmetric. Let≺ be an admissible ordering of J . Let K be the unique
maximal k-subset of J such that the corresponding k× k minor of C is nonsingular. Then
K is admissible.

Proof: Let us reorder the columns ofC by the ordering≺, starting with the largest column
index. Now,K is uniquely determined by the greedy algorithm of ordinary matroid theory.
In particular,K = {i1 Â i2 Â · · · Â i k}, and if we denote byxj the i j -th column ofC,
thenx1 = Ci1 is the first nonzero column ofC, x2 = Ci2 is the first column ofC which
does not depend onCi1, and in general,xj = Ci j is the first column ofC which does not
depend on{Ci1,Ci2, . . . ,Ci j−1}. Note that for alll , all columns betweenCil−1 andCil are
linear combinations of{x1, x2, . . . , xl−1}.

Suppose now thatK is not admissible. Thus there existsm such thatm,m∗ ∈ K , say
{m,m∗} = {i g, i h}, g < h. The hypothesis thatABt is symmetric means that for any two
rows, say those indexed byu andv, 0=∑ j Cu,v

j, j ∗ = [xg, xh]u,v +∑i, j 6=g,h αi, j [xi , xj ]u,v,
where [xi , xj ]u,v denotes the 2×2 minor of rowsu, v from the pair of column vectorsxi , xj .
The coefficientsαi, j come from expanding out each column ofCu,v

j, j ∗ as a linear combination
of xi . The term [xg, xh] occurs with coefficient 1 because it does not arise in the expansion
of anyCu,v

j, j ∗ with j 6= m,m∗, since according to our admissible ordering, either bothj and
j ∗ occur betweenm andm∗, hencexh does not occur at all in the expansion ofCu,v

j, j ∗ , or else
m andm∗ occur betweenj and j ∗, say with j being the largest, in which case neitherxg

norxh can occur in the expansion of the columnCj , hence both cannot occur in any term of
the expansion ofCu,v

j, j ∗ . Now notice that the coefficientsαi, j are independent ofu, v, since
they depend only on how each column ofC is written as a linear combination of thexi .

Let M = Ai1,i2,...,i k = det(x1, x2, . . . , xk) be thek × k determinantal minor indexed
by K , and letNu,v denote the cofactor of [xg, xh]u,v in M , that is, Nu,v is the comple-
mentary(k − 2) × (k − 2) minor to [xg, xh]u,v, with appropriate sign attached, so that
M =∑u,v Nu,v[xg, xh]u,v = det(x1, x2, . . . , xk). Thus

0 =
∑
u,v

Nu,v

(
[xg, xh]u,v +

∑
i, j 6=g,h

αi, j [xi , xj ]
u,v

)
= det(x1, . . . , xk)+

∑
i, j 6=g,h

αi, j

× det(x1, . . . , xg−1, xi , xg+1, . . . , xh−1, xj , xh+1, . . . , xk)

= det(x1, x2, . . . , xk),

since each of the other terms is a determinant having a repeated column. This contradicts
det(x1, x2, . . . , xk) 6= 0, completing the proof. 2

Proof of Theorem 2: Let≺ be an admissible ordering ofJ. We must show thatB contains
a unique maximal member. LetA be the set of allk-element subsets ofJ such that the
correspondingk× k minor of C is nonzero. ThusB is just the set of admissible members
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ofA. The previous theorem showed that the unique maximal memberK ofA was actually
in B. ThusK is clearly also the unique maximal member ofB. 2

Notice that we have actually proven more than the Maximality Principle, namely:

Theorem 4 If U is totally isotropic, and≺ is an admissible ordering of J, then the unique
maximal basis, picked from the columns of C by the greedy algorithm according to≺, is
admissible.

A symplectic matroidB which arises from a matrix(A, B), with ABt symmetric, is
called arepresentable symplectic matroid, and(A, B) (with its columns indexed byJ) is a
representationor coordinatizationof it (over F).

Example We now give an example of a nonrepresentable symplectic matroid, withn= 3,
k = 2. LetB = {12, 12∗, 1∗3, 1∗3∗, 23, 23∗, 2∗3, 2∗3∗}. It is not difficult to see thatB
is in fact a symplectic matroid, if we allow ourselves to use techniques from Section 5.
According to Theorem 10, we have only to check that a certain polytope determined byB
has all of its edges parallel either to edges of the cube or to diagonals of two-dimensional
faces of the cube; see figure 1. Suppose thatB is represented by a 2× 6 matrix (A, B).
Then the 2× 2 minors indexed by 13, 13∗, 1∗2, 1∗2∗ are all 0. It follows that the columns
indexed by 1, 3, and 3∗ are all nonzero scalar multiples of the same nonzero vectorα,
and those indexed by 1∗, 2, and 2∗ are all indexed by nonzero scalar multiples of another
nonzero vectorβ, linearly independent fromα. ThenABt −BAt = C1,1∗ +C2,2∗ +C3,3∗ =
γ1[αβ] + γ2[ββ] + γ3[αα] = γ1[αβ] 6= 0, whereγ j are nonzero scalars. ThusABt cannot
be symmetric.

Now let us consider which matrix operations preserve the symplectic matroid represented
by (A, B). Let us write(A, B) ∼ (C, D) whenever(A, B) and(C, D) represent the same

Figure 1. The matroid polytope of a nonrepresentable symplectic matroid.
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symplectic matroid (with regard to the same indexing of the columns). Suppose thatX is
a nonsingulark× k matrix. Then

(A, B) ∼ (XA,XB)

obviously, since row operations preserve dependencies among the columns. Note that here
the row-spaceU is unchanged, as is the symmetry ofABt , although the matrixABt itself
may be changed via congruence, sinceXA(XB)t = X(ABt )Xt .

Secondly, let3 be a nonsingularn× n diagonal matrix. Then

(A, B) ∼ (A3−1, B3),

since the collection of subsets of the columns which are linearly dependent is preserved.
Now the row-spaceU is changed, whereasABt is unchanged. This type of transformation
is referred to as thetorus actionon the representation(A, B).

The rank and signature ofABt are invariants of both of the above types of transforma-
tions.

Thirdly, let us consider permuting columns ofC. Any time we permute the columns
of C, we permute the column indices in the same way, thus preserving the symplectic
matroid represented by the matrix. Which column permutations are guaranteed to preserve
the fact that the row space corresponds to an isotropic subspace ofV? Well, thei th column
of A and thei th column of B may be transposed, provided one of them is multiplied
by −1. Furthermore, thei th and j th columns ofA may be transposed provided thei th
and j th columns ofB are transposed at the same time. Thus, we see that all admissible
permutations of the columns ofC preserve the symmetry ofABt .

3. Homogeneous symplectic matroids

A collectionB ⊆ Jk is said to bem-homogeneousif for every two elementsB1 andB2 of
B, |B1 ∩ [n]| = |B2 ∩ [n]| = m. In other words, all members ofB have the same number
of unstarred elements, and consequently also the same number of starred elements. We
are going to show that a homogeneous symplectic matroid is equivalent to a flag matroid,
which is a special kind of pair of ordinary matroids.

Let Fk,l denote the set of all pairs(A, B), whereA is ak-subset of [n], B is a l -subset
of [n] and A ⊆ B. Whenk = l , it will be convenient to identifyFk,k with Pk, the set of all
k-subsets in [n]. We shall callFk,l the set ofk, l -flags. For every ordering≤w, w ∈ Symn,
of [n] we define the ordering onFk,l by setting

(A1, A2) ≤w (B1, B2) if and only if A1 ≤w B1 andA2 ≤w B2.

Flag matroids. A subsetB ⊆ Fk,l is the set of bases of aflag matroidof rank(k, l ) if it
satisfies the Maximality Property: namely, ifw ∈ Symn, there existsF ∈ B such that for all
G ∈ B,G ≤w F . It is easy to see from the Maximality Property that the first components
of B form an ordinary matroid of rankk, which we will denoteMk(B), while the second
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components form a matroidMl (B) of rankl . We remark parenthetically that in [4] we show
that the definition of flag matroid is equivalent to these two matroids being related by a
strong map which is the identity on [n].

If A is an admissible set in [n] t [n]∗, denote byflag(A) a flag of two subsets built
according to the following procedure. DenoteA0 = A ∩ [n] (the set of the nonstarred
elements inA), A1 = A ∩ [n]∗ (the set of the starred elements inA) and takeA∗1 ⊆ [n]
(the set of the starred elements with stars stripped off). SinceA is admissible,A∩ A∗1 = ∅.
Now flag(A) is the pair(A0,¬A∗1) (where¬ denotes the complement in [n]).

Theorem 5 An m-homogeneous collectionB of subsets of[n] t [n]∗ of cardinality m+ l
is a symplectic matroid if and only if flag(B) is the set of bases of a flag matroid on[n] of
rank (m, n− l ). A collection of flagsF ⊆ Fk,l is a flag matroid if and only if flag−1(F) is
a k-homogeneous symplectic matroid of rank k+ n− l on [n] t [n]∗.

Proof: The proof follows from the Maximality Property for symplectic matroids and flag
matroids. First, let us assume thatB is the collection of bases of a homogeneous sym-
plectic matroid. Every ordering≺ of [n] induces an admissible ordering of [n] t [n]∗ (we
denote it by the same symbol≺): we set all starred elements to be≺-smaller than nonstarred
elements, and seti ∗ ≺ j ∗ if and only if j ≺ i . Now letA ≺ B inB. By homogeneity and our
choice of ordering,A0 = A∩ [n] ≺ B0 = B∩ [n] and A1 = A∩ [n]∗ ≺ B1 = B∩ [n]∗,
consequentlyA∗1 Â B∗1 and¬A∗1 ≺ ¬B∗1. Thusflag(A) ≺ flag(B), and we have shown that
flag is an order preserving map. The Maximality Property forflag(B) now follows from
the Maximality Property forB.

Conversely, suppose thatflag(B) is a flag matroid. Let an admissible ordering≺ of
[n] t [n]∗ be given. We now simply restrict≺ to [n], obtaining an ordering equal to≤w for
somew ∈ Symn. Suppose thatflag(A) ≤w flag(B) for someA, B ∈ B. ThenA0 ≤w B0

and¬A∗1 ≤w ¬B∗1. It follows that A∗1 ≥w B∗1 andA1 ≺ B1. Thus, thei th smallest element
of A1 is less than or equal to thei th smallest element ofB1 in≺, and likewise forA0 andB0.
It follows that A ≺ B, and thus the Maximality Property offlag(B) implies the Maximality
Property ofB.

This proves the first statement of the theorem. The second statement is just a reformula-
tion of the first. 2

Now we proceed to show that the homogeneous symplectic matroidB of the previous
theorem is representable if and only if the two ordinary matroids offlag(B)are representable
by a pair of subspaces related by containment. We say that an ordinary matroidM of rank
k on the set [n] is represented by a subspaceU of Fn if U is the row-space of ak×n matrix
with columns indexed by [n] such that the bases ofM are precisely the sets ofk columns
of the matrix which are nonsingular.

Theorem 6 LetB be a symplectic matroid of rank m+ l represented by(A, B). Then the
following are equivalent:
(1) B is m-homogeneous,
(2) rk A = m andrk B = l ,



P1: JSN/PCY P2: JSN

Journal of Algebraic Combinatorics KL629-02-Borovik August 21, 1998 17:17

242 BOROVIK, GELFAND AND WHITE

(3) B may be represented by a matrix in block-diagonal form,(
Y 0
0 Z

)
,

where Y is m× n, Z is l × n, and YZt = 0.
(4) Mm(flag(B)) is represented by rowsp(Y) and Mn−l ( flag(B)) is represented by(rowsp

(Z))⊥, where rowsp(Y) ⊆ (rowsp(Z))⊥.

Proof: The equivalence of (2) and (3) is immediate by putting(A, B) into row-echelon
form, where the condition thatABt be symmetric is equivalent toYZt = 0. Furthermore,
(3) implies (1) is obvious. The equivalence of (3) and (4) is immediate from the properties
of flag above, and the well-known fact that a representation of a matroid is equivalent to
a representation of the dual matroid (which is the matroid obtained by complementing the
bases) via orthogonal complement of the row-space. Note thatrowsp(Y) ⊆ (rowsp(Z))⊥

is equivalent toYZt = 0.
Now we show that (1) implies (2). Suppose thatB is m-homogeneous. Choose the

admissible ordering 1Â 2 Â · · · Â n Â n∗ Â · · · Â 2∗ Â 1∗, and select the maximal set
K of columns which are linearly independent. By Theorem 3,K is an admissible set, and
hence a basis inB. Hence|K ∩ [n]| = m, and it follows thatA has rankm. A similar
argument using the reverse ordering shows thatB must have rankl . 2

4. Root systems of typeCn

For a deeper study of symplectic matroids we have to introduce the system of vectors inRn

known as theroot system of type Cn.

Roots. Let ei , i ∈ [n], be the standard orthonormal basis inRn, and again setei ∗ = −ei

for i ∗ ∈ [n]∗. This defines the vectorsej for all j ∈ J = [n] t [n]∗. Now therootsare the
vectors 2ej , j ∈ J (calledlong roots), together with the vectorsej1−ej2, where j1, j2 ∈ J,
j1 6= j2 or j ∗2 (calledshort roots). Written in the standard basise1, e2, . . . ,en, the roots
take the form±2ei , i = 1, 2, . . . ,n, or±ei ± ej , i, j = 1, 2, . . . ,n, i 6= j . Notice that
both short and long roots can be written asej − ei for somei, j ∈ J. The set of all roots is
denoted8.

Recall that ifr is a nonzero vector in the Euclidean space then thereflectionσr in the
hyperplane perpendicular tor is the linear transformation ofRn determined by

σr (x) = x − 2(x, r )

(r, r )
r, for x ∈ Rn,

where(·, ·) is the standard scalar product inRn. Reflections can be characterized as linear
orthogonal transformations ofRn with one eigenvalue−1 and(n − 1) eigenvalues 1; the
vectorr in this case may be chosen as an eigenvector corresponding to the eigenvalue−1.
The set of points fixed byσr is the hyperplane(x, r ) = 0 called themirror of thereflectionσr .

It is easy to see that whenr is one of the long roots±2ei , i ∈ [n], then σr is the
linear transformation corresponding to the elementsr = (i, i ∗) of W in its canonical
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representation. Analogously, ifr = ei − ej , i, j ∈ J, is a short root, then the reflection
σr corresponds to the admissible permutationsr = (i, j )(i ∗, j ∗). Moreover, one can easily
check (for example, by computing the eigenvalues of admissible permutations fromW in
their action onRn) that every reflection in the group of the symmetries of the unit cube
[−1, 1]n is of one of these two types.

Now we see that use of the name ‘root system’ in regard to the set8 is justified, because
8 satisfies the formal definition of a root system as given in [14]. Aroot systemis a finite
set8 of nonzero vectors inRn satisfying, for allr ∈ 8, the following two conditions.

(i) 8 ∩ Rr = {r,−r }.
(ii) σr8 = 8.

Simple systems of roots.Let α = Rn → R be a linear function not vanishing on any
element of8. Let 8+ = {r ∈ 8 |α(r )>0} and8− = {r ∈ 8 |α(r )<0}. Then8 =
8+ t8− and if r ∈ 8+, then−r ∈ 8−, and vice versa. We call8+ and8− positive and
negative systems of roots(associated withα).

All roots in 8+ belong to the open halfspaceα(x) > 0 and thus span a convex poly-
hedral coneC. By definition, asimple system5 of roots is the set of all roots directed
along the edges (i.e., one-dimensional faces) ofC. It can be alternatively defined as a
(unique) minimal setr1, . . . , rn of roots in8+ with the property that every root in8+ is
a nonnegative linear combination ofr1, . . . , rn. It can be shown (see, for example, the
proof of Theorem 1.3 in [14]) that every simple system in8 is linearly independent and
thus contains the same number of roots. This number is obviously the rank of8, i.e., the
dimension of the subspace inRn spanned by8.

Standard simple system of roots.In our system of roots8 of typeCn, consider the linear
functional

α(x) = x1+ 2x2+ 3x3+ · · · + nxn.

It is easy to see that a rootei − ej is positive with respect toα if, in the ordering

n∗ < n− 1∗ < · · · < 1∗ < 1< 2< · · · < n

of the setJ, we havei > j . The system of positive roots8+ associated withα is called
thestandard positive system of roots. The set

5 = {2e1, e2− e1, . . . ,en − en−1}

is obviously the simple system of roots contained in8+; it is called thestandard simple
system of roots.

Vocabulary. We shall now describe natural one-to-one correspondences between the four
classes of objects:
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• admissible permutations of the setJ;
• admissible orderings of the setJ;
• systems of positive roots in8;
• systems of simple roots in8.

Indeed, for every admissible permutationw ∈ W we have the admissible ordering≤w
of J. Vice versa, if≺ is an admissible ordering ofJ, then the permutation

w =
(

n∗ (n− 1)∗ · · · 1∗ 1 · · · n− 1 n

j1 j2 · · · jn jn+1 · · · j2n−1 j2n

)

where

j1 ≺ j2 ≺ · · · ≺ j2n−1 ≺ j2n,

is admissible and the ordering≺ coincides with≤w.
Now if

j1 <
w j2 <

w · · · <w j2n−1 <
w j2n,

is an admissible ordering ofJ, then the vectorsejn+1, ejn+2, . . . ,ej2n form a basis inRn. Let
y1, y2, . . . , yn be the coordinates with respect to this basis andα(y) = y1 + 2y2 + 3y3 +
· · · + nyn. Then, obviously,α does not vanish on roots in8, and, for a rootej − ei in 8,
the inequalityα(ej − ei ) > 0 is equivalent toi ≤w j . Thus, the system of positive roots
associated withα coincides with the system

w8+ = {ej − ei | i <w j }

obtained from the standard system8+ of positive roots by the action of the elementw.
Obviously, the simple system of roots contained in8+ is exactlyw5.

Now if 5′ is an arbitrary simple system of roots arising from an arbitrary linear function
α : Rn→ R not vanishing on roots in8 then the following objects are uniquely determined
by our choice of5′:

• the system of positive roots8+′, which can be defined in two equivalent ways: as the set
of all roots which are nonnegative linear combinations of roots from5′, and as the set
{r ∈ 8 | α(r ) > 0};
• the (obviously admissible) ordering≺ on J defined by the rule:i ≺ j if and only if
α(ei ) ≤ α(ej ).

In particular, we immediately have the following lemma (which is a special case of a more
general result about conjugacy of simple system of roots for arbitrary finite reflection groups,
[14, Theorem 1.4]).

Lemma 7 Any two simple systems of roots in8 are conjugate under the action of W.
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If w ∈ W then the setsw8+, w8−, w5 will be called the system ofw-positive,w-
negative,w-simple roots.

5. Convex polytopes associated with symplectic matroids

For an admissible setA ∈ Jk define the pointeA ∈ Rn as

eA = ei1 + ei2 + · · · + eik whereA = {i1, i2, . . . , i k}.

The following lemma is obvious.

Lemma 8 In this notation, let A and B be admissible k-subsets. Then A≤ B implies
that eB − eA is a nonnegative linear combination of positive roots.

The reverse statement,

if eB − eA is a nonnegative linear combination of positive roots then A≤ B,

is not in general true, as the following simple example shows. Let

J = {4∗ < 3∗ < 2∗ < 1∗ < 1< 2< 3< 4}

andA = 2∗1, B = 3∗4. Then

eB − eA = (e4− e3)+ (e2− e1)

is the sum of positive roots, but it is not true thatA ≤ B. This example shows that
the statement in the last two lines preceeding Theorem 8.1 in the paper by Gelfand and
Serganova [13] is incorrect, which, in its turn, compromises the proof of Theorem 8.1 in the
same paper; see [16, Theorem 3.4] for a complete proof of the Gelfand-Serganova Theorem.
Theorem 10 is a special case of that result, for which we provide here a self-contained and
elementary proof.

Our crucial tool is the following partial converse of Lemma 8.

Lemma 9 Assume that A and B are admissible k-sets in J and eB−eA = λr for a positive
root r andλ > 0. Then A≤ B.

Proof: Notice first that, since the vectorseA andeB have equal lengths, by their construc-
tion, the pointseA andeB are symmetric to each other with respect to the hyperplaneH
which contains the originO of the coordinate system inRn and which is perpendicular to
the edge [eAeB], sinceH must also contain the midpoint of the edge. Obviously,H is the
mirror of reflectionσr associated with the rootr . This meansσr eB = eA andsr A = B for
the permutationsr ∈ W corresponding toσr . We know already thatsr has one of the forms
(i, i ∗) or (i, j )(i ∗, j ∗) for i, j ∈ J.
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Consider the first case,sr = (i, i ∗). We can assume without loss of generality thati ∗ ∈ A,
thenB = (A∪ {i })\{i ∗} andeB − eA = ei − ei ∗ . This has to be a positive root, soi > i ∗

andB > A.
Assume now thatsr = (i, j )(i ∗, j ∗) and setK = {i, j, i ∗, j ∗}. Notice thatA ∩ K is

an admissible set. IfA ∩ K is the empty set∅ or one of the sets{i, j } or {i ∗, j ∗} then
sr A = A, which is impossible becausesr A = B 6= A. Therefore we can can further
assume without loss of generality that we have one of the following subcases:A∩ K = {i }
or A∩ K = {i, j ∗} and, correspondingly,B = (A∪ { j })\{i } or B = (A∪ {i ∗, j })\{i, j ∗},
andeB− eA = ej − ei or eB− eA = 2(ej − ei ). But eB− eA = λr for a positive rootr and
scalarλ > 0. Hence,r = ej − ei , i < j , j ∗ < i ∗, and then we easily see thatA < B. 2

Now we come to our special case of the Gelfand-Serganova Theorem.

Theorem 10 LetB ⊆ Jk be a set of admissible k-sets in J . Let1 be the convex hull of
the points eA with A∈ B.

Then eA are vertices of1 for all A ∈ 1. Moreover, the setB is the collection of bases
of a symplectic matroid on J if and only if all edges(i.e., one-dimensional faces) of1 are
parallel to roots in8.

Proof: Assume first thatB is the collection of bases of a symplectic matroidM on the
set J. Let l be an edge with verticeseA and eB that is not parallel to any root. Then
there exists a linear functionα : Rn→R which is constant onl and takes smaller values
on the other points of1. There is a unique simple system of rootsr̃1, r̃2, . . . , r̃n such that
α(r̃ i ) > 0, i = 1, 2, . . . ,n. In view of Lemma 7, the groupW acts transitively on the set
of all simple root systems, so there isw ∈ W sending{r1, r2, . . . , rn} to {r̃1, r̃2, . . . , r̃n}.
Then for anyC ∈ B distinct fromA we haveα(eC) ≤ α(eA) and the vectoreC − eA has at
least one negative coefficient with respect to{r̃1, r̃2, . . . , r̃n}. But this makes impossible the
inequalityA ≤w C, because the latter implies, by Lemma 8, thateC − eA is a nonnegative
linear combination of the roots̃r i . Therefore, by the maximality principle,A is thew-
maximal element ofB. But the same arguments can be applied to the vertexeB, and yield
that B is also thew-maximal element ofB, a contradiction to the maximality principle.

Assume now that the edges of1 are parallel to the roots. Fixw ∈ W and the corre-
sponding systemw5 = {r̃1, . . . , r̃n} of w-simple roots.

Takeα : Rn→ R a linear function such thatα(r̃ i ) > 0 for all i ∈ {1, 2, . . . ,n}. Thenα
does not vanish on any root.

By properties of convex polytopesα attains a maximum at some vertexeA of 1. We
want to prove thateA is a unique. Indeed, ifα(eA) = α(eB) for some othereB ∈ 1,
the intersection1′ of 1 and the hyperplaneα(x) = α(eA) is a face of1 containing two
different vertices. Therefore1′ contains some edgel of1. Sinceα is constant on the edge
l , it vanishes on a rootr parallel tol , a contradiction.

Thus we established the uniqueness of theα-maximal vertexeA. Our next aim is to prove
that A is thew-maximal base ofM , i.e., B ≤w A for all basesB ∈ B. Take an arbitrary
baseB ∈ B. Let eB1, . . . ,eBm be all vertices adjacent toeB in 1. The convex polytope1
lies in the convex polyhedral cone0 with the vertex at the pointeB, spanned by the edges
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eBi − eB:

0 =
{

eB +
m∑

i=1

µi
(
eBi − eB

) | µi ≥ 0

}
.

By hypothesis, for alli = 1, 2, . . . ,m, we can writeeBi − eB = λi r i whereλi > 0 and
r i is a root. If all rootsri arew-negative,α(ri ) < 0 and thus on0 the functionα reaches
its maximum at the pointeB, which meansB = A. Therefore, ifB is distinct fromA, at
least one of the roots,r p say, isw-positive and by Lemma 9,B ≤w Bp. We can repeat the
same argument for the vertexeBp (denote iteB(1) ), and so on, until we get toeA through the
sequence of adjacent verticeseB = eB(0) , eB(1) , eB(2) , . . . ,eB(t) = eA, with B(l ) ≤w B(l+1)

for l = 0, 1, . . . , t − 1. But this meansB ≤w A. ThereforeA is thew-maximal element
in B. 2

LetF ⊆ Fk,l be a set of flags. Assign to everyF ∈ Fk,l the pointeF in Rn as follows:
if F = (A, B) theneF = eA + eB, whereeX is defined by

eX =
∑
i∈X

ei .

Let1 be the convex hull of alleF , F ∈ Fk,l , and1F the convex hull ofeF for F ∈ F .
Let8 be the system of roots of typeCn, let80 be the subsystem

80 = {ei − ej | i, j ∈ I , i 6= j }

of type An, and letW0 be the Weyl group corresponding to80, i.e., the group generated by
the reflections corresponding to the roots.

Proposition 11 (Gelfand-Serganova [13], see also [4, Theorem 6.1])F is the set of
bases of a flag matroid if and only if all edges of1F are parallel to roots ei − ej , i 6= j, of
the root system of type An.

Notice thatW0 ' Symn leaves invariant the vectorv0 = e1+ e2+ · · · + en.

Proposition 12 The parallel translation1 − v0 of 1 is exactly the convex polytope0
associated with the full k-homogeneous symplectic matroid of rank k+n− l. Every convex
polytope1F for a flag matroidF of rank(k, l ) becomes, after the translation, the convex
polytope for the corresponding homogeneous symplectic matroidB = flag−1(F), obtained
explicitly in the following way. If(A, B) ∈ F, (¬B)∗ ∪ A ∈ B.

Proof: The first statement can be checked by a direct computation, the second follows
from the observation that ifF is a flag matroid, the edges of1F are parallel to the roots in
80 hence the translated polytope1F − v0 has the same property. Therefore it is a polytope
of a symplectic matroid. Moreover, it is easy to see that this matroid isB. 2
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6. Lagrangian matroids

A symplectic matroid of rankn on J = [n] t [n]∗ is called aLagrangianmatroid. A
Lagrangian matroid is also called asymmetricmatroid in [6] or a 2-matroid in [9]; these
concepts are also equivalent to1-matroids[6] and to Dress and Havel’smetroids, see [10].
For a proof that Lagrangian matroids and symmetric matroids are the same concept, see
[15, Prop. 1.15], or [16, Section 6.2]. Bouchet’s definition and Wenzel’s or Zelevinski-
Serganova’s proof amount to the following characterization of Lagrangian matroids.

Theorem 13 Let B be a collection of admissible n-subsets of[n] t [n]∗. If T is an
admissible n-set, called atransversal, define

IT = {I | there exists B∈ B such that I⊆ B ∩ T}.

ThenB is a Lagrangian matroid if and only ifIT is the collection of independent sets of an
ordinary matroid for every transversal T .

This characterization gives a property of symplectic matroids, although it is no longer
a characterization in this more general setting. We retain all notation from the preceeding
theorem. In particular, a transversal is still an admissiblen-set, althoughB now has rankk.

Theorem 14 LetB be a symplectic matroid of rank k. ThenIT is the collection of inde-
pendent sets of an ordinary matroid for every transversal T .

Proof: Letµ : T → R be a given nonnegative function. Let≺ denote any linear ordering
onT which is compatible withµ. As is well known from ordinary matroid theory, it suffices
to show that the greedy algorithm with respect to≺ onIT always returns an optimal member
with respect toµ. We extend≺ to an admissible ordering ofJ, also denoted≺, by saying
i Â i ∗ for all i ∈ T , andi, j ∈ T, j ≺ i implies i ∗ ≺ j ∗. Now we extendµ to a map on
J by settingµ(i ∗) = 0 wheneveri ∈ T . Let B be a symplectic matroid of rankk on J.
By the Maximality Principle, there existsB0 ∈ B such thatB0 º B for all B ∈ B. This
means thatµ(B0 ∩ T) = µ(B0) ≥ µ(B) = µ(B ∩ T). Thusµ(I ) for I ∈ IT is optimized
by I = B0 ∩ T . But B0 ∩ T is clearly the member ofIT returned by the greedy algorithm
with respect to≺. 2

Example The converse of the preceeding Theorem is false, as can be seen from the
counterexample{12, 1∗3, 23}. It is easy to see that this is not a symplectic matroid by way
of the Gelfand-Serganova Theorem.

Bouchet also gives an exchange axiom for Lagrangian matroids. Unfortunately, it does
not generalize in any straightforward way to symplectic matroids. Bouchet, in addition,
provides a very interesting way to construct Lagrangian matroids from Eulerian tours of
4-regular graphs. He provides as well, in [7], a notion of representation of Lagrangian
matroids which is similar to ours. We show in the next section that Bouchet’s version of
the greedy algorithm for Lagrangian matroids generalizes to symplectic matroids.
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Now let us see how some of the considerations of represented symplectic matroids
specialize to the Lagrangian case. Suppose thatM is a represented Lagrangian matroid.
Thus we are givenC = (A, B), whereA andB are now bothn×n. Let B0 be a basis ofM .
By an allowable permutation of the columns, we can bring the columns indexed byB0 to the
leftmostn positions, replacingC by (R, S), whereR is nonsingular, sinceB0 is a basis of
M . Hence(R, S) ∼ (In, R−1S) = (In, T), whereT is a symmetric matrix. The rank and
the signature of the symmetric matrixT are invariants of the basisB0 of M , independent
of the ordering ofB0, and also preserved by the torus action. These invariants may be
thought of as generalizing the orientation derived from a representation of an ordinary
matroid over the reals, wherein each ordered basis is assigned a sign according to the sign
of the corresponding determinant of the representation. In the case of an orientation of an
ordinary matroid, however, the sign is dependent upon the ordering of the basis, and is also
not invariant under the torus action.

Let us now specialize our work on homogeneous symplectic matroids to the Lagrangian
case. GivenB, a collection ofm-element subsets of [n], we define8(B) = B ∪ ([n]\B)∗,
and8(B) = {8(B) | B ∈ B}. Then8(B) is anm-homogeneous collection of admissible
n-element subsets ofJ.

Theorem 15 Members ofB are the bases of an ordinary matroid if and only if8(B) is a
homogeneous Lagrangian matroid. Furthermore, B is a representable ordinary matroid if
and only if8(B) is a representable homogeneous Lagrangian matroid.

Proof: An immediate corollary of the results in Section 3. 2

The first sentence of the preceeding result is also equivalent to Corollary 4.2 in [8],
although the terminology is very different.

Bouchet [6, Corollary 7.3] considers a second way of imbedding an ordinary matroid
into a Lagrangian matroid. LetI be the collection of independent sets of a matroid. Then
8(I) still makes sense, and is a (nonhomogeneous) Lagrangian matroid. This seems less
important than the above Theorem.

7. Greedy algorithm

Let us define anadmissible weight functionto be a functionω : J → R such that for
some admissible order≺ on J, i Â j for i, j ∈ J impliesω(i ) ≥ ω( j ). We will say in
this situation thatω is compatiblewith ≺. If B is any collection of subsets ofJ, we say
that B0 ∈ B is optimal if ω(B0) ≥ ω(B) for all B ∈ B, where, as usual,ω(B) denotes∑

b∈B ω(b).
We now take essentially Bouchet’s definition of a greedy algorithm, modified for the fact

thatk does not necessarily equaln, except that we cannot assume that the weight function
is symmetric (i.e.,ω(i ) = −ω(i ∗) for all i ∈ J), as Bouchet does. Leti1 Â i2 Â · · · i2n

denote the elements ofJ in decreasing order, where, of course,in+l = (i n−l+1)
∗, since≺

is admissible. IfB is a collection of admissiblek-element subsets ofJ, define thegreedy
solutionof B with respect toω and≺ to be the setB0 returned by the following procedure:
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1. begin
2. B0 := ∅
3. for l = 1 to 2n do
4. if B0 ∪ {i l } ⊆ B for someB ∈ B
5. thenB0 := B0 ∪ {i l }
6. end

Clearly the setB0 returned is a member ofB, for if i l is selected by virtue ofB0∪ {i l } ⊆ B,
then all larger elements ofB must already be inB0.

Theorem 16 Let B be a collection of admissible k-element subsets of J . ThenB is a
symplectic matroid if and only if for every admissible ordering≺ on J and every weight
functionω compatible with≺, the greedy solution inB is optimal.

Proof: If B is a symplectic matroid, then by the Maximality Property for a given admissible
≺, there is a member ofB which dominates every other element ofB elementwise. Thus,
it is clear that this member is the greedy solution and is also optimal for anyω compatible
with ≺.

Conversely, ifB is not a symplectic matroid, then there exists an admissible ordering
≺ under whichB has two distinct maximal members. IfBm is a maximal member, we
write Bm = {b(m)1 Â b(m)2 Â · · · Â b(m)k }, and letBm(l ) denote{b(m)1 , b(m)2 , . . . ,b(m)l }, and
B(l ) = {Bm(l ) | Bm ∈ B}. Clearly, there exists a maximall < k such thatBl has a unique
maximal member, sinceB1 obviously does. Letq be one more than that maximall . It
follows that there existB1 and B2 in B such thatB1(q − 1) º B(q − 1) for all B ∈ B,
b(p)1 Â b(p)2 for somep < q, andb(q)1 ≺ b(q)2 . Furthermore, if there exist more than one
B so thatB1(q − 1) = B(q − 1), we may assume we have chosen the lexicographically
greatest one forB1, that is, for any suchB 6= B1, for the firstl such thatB1(l ) 6= B(l ), we
haveB1(l ) Â B(l ).

Now let us choose the weight functionω, clearly compatible with≺, by

ω(x) =
{

1 if x º b(2)q

0 otherwise.

Then the greedy algorithm selectsB1, but clearlyω(B2) = q > q − 1= ω(B1). 2

8. Symplectic matroid constructions

One of the striking features of the theory of ordinary matroids is the large number of
constructions, which allow one to derive new matroids from old; see, for example, [11]. In
this section, we investigate whether some of these constructions may have analogues for
symplectic matroids.

Unfortunately, the simplest and most important construction, that of submatroid, does
not have such an analogue. To see this, let us examine the symplectic matroidB represented
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by the matrix

(A | B) =
(

0 1 0 1 1 0 0 0

1 0 1 0 0 0 0 1

)
.

Let us now “delete”{4, 4∗}, that is delete the last column of bothA and B, resulting in
(A′ | B′), say. AlthoughABt was symmetric,A′(B′)t is not, which does not in itself prove
thatB′ = {B ∈ B | B ⊆ [3] ∪ [3]∗} is not a symplectic matroid. However, note thatB′ is the
example of a nonsymplectic matroid considered following Theorem 14. Since deletion of
the pair{4, 4∗} destroyed the property of being a symplectic matroid, it is clear the deletion
of single elements cannot always preserve that property, either.

Contraction, however, is a different story. LetB be a symplectic matroid of rankk on J,
and leta ∈ J. ThenB′ = {B\{a} | a ∈ B and B ∈ B} is a symplectic matroid of rank
k−1, which is most easily seen by noting that the polytope1B′ is a face (although not nece-
ssarily a facet) of the symplectic matroid polytope1B, and hence satisfies the Gelfand-
Serganova criterion.

Direct sum of matroids also has the obvious analogue in symplectic matroids. IfB1 andB2

are symplectic matroids on disjoint setsJ1 andJ2, thenB = {B1∪ B2 | B1 ∈ B1, B2 ∈ B2}
is a symplectic matroid, as is easily seen from the Maximality Property.

The only other constructions which we have found to have symplectic analogues are
truncation and Higgs lift. IfB is a symplectic matroid of rankk on J, andl < k, then the
truncation ofB to rank l is B′ = {A ∈ Jl | there existsB ∈ B such thatA ⊆ B}. For
l > k, Higgs lift is defined in similar fashion, except for reversing the containment. The
proofs that these are again symplectic matroids lie beyond the scope of this paper, and will
be presented in a future paper in a more general setting.
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