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Abstract. A symplectic matroid is a collectioB of k-element subsets of = {1, 2, ..., n, 125 ..., n*},

each of which contains not both bfandi* for everyi < n, and which has the additional property that for any
linear ordering< of J such that < j implies j* < i* andi < j* impliesj < i* foralli,j < n, B has

a member which dominates element-wise every other membBr &ymplectic matroids are a special case of
Coxeter matroids, namely the case where the Coxeter group is the hyperoctahedral group, the group of symmetri
of then-cube. In this paper we develop the basic properties of symplectic matroids in a largely self-containec
and elementary fashion. Many of these results are analogous to results for ordinary matroids (which are Coxet
matroids for the symmetric group), yet most are not generalizable to arbitrary Coxeter matroids. For example
representable symplectic matroids arise from totally isotropic subspaces of a symplectic space very similarly t
the way in which representable ordinary matroids arise from a subspace of a vector space. We also examir
Lagrangian matroids, which are the special case of symplectic matroids Wwkerg and which are equivalent

to Bouchet's symmetric matroids or 2-matroids.
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1. Symplectic matroids
Hyperoctahedral group and admissible permutationd.et
[nN=1{12,...,n} and p]*={1*,2...,n*}.

Define the map : [n] — [n]* byi — i* and the mag : [n]* — [n] by i* — i. Thenx
is an involutive permutation of the sét= [n] u [n]*.

We say that a subsé&t c J is admissiblef and only if K N K* = .

Let W be the group of all permutations of the Setvhich commute with the involutios,
i.e., a permutationv belongs tow if and only if w(i*) = w(i)* foralli € J. We shall
call permutations with this propergdmissible The groupW is known under the name
of the hyperoctahedral group BC It is easy to see thal is isomorphic to the group of
symmetries of tha-cube [-1, 1]" in then-dimensional real Euclidean spdge. Indeed, if
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€1, e, ..., €, is the standard orthonormal basisRf, thenW acts onR" by the following
orthogonal transformations: fore [n] we sete- = —g andwe = e,). Sincew is
an admissible permutation & = [n] u [n]*, the linear transformation is well-defined.
Also it can be easily seen th¥l{ is exactly the group of all orthogonal transformations
of R" preserving the set of vectofsey, ey, ..., +e,} and thus preserving the unit cube
[—1,1]". Indeed, the vectorge, i € [n], are exactly the unit vectors normal to the
(n — 1)-dimensional faces of the cube (given, obviously, by the linear equatjonstl,
i=12,...,n).

It is an easy exercise to check thatis the group generated by the following permuta-
tionsofJ, incycle notation(i, i*) foralli € [n],and(, j)(i*, j*)foralli, j € J,i # |, j*.

The name ‘hyperoctahedral’ for the gro\p is justified by the fact that the group of
symmetries of ther-cube coincides with the group of symmetries of its dual polytope,
whose vertices are the centers of the faces of the cube. The dual polytoperiecihe is
known under the name of-cross polytoper n-dimensional hyperoctahedron

Admissible orderings. We shall order the set in the following way:
nNf<n-1"<...<2"<1"<1<2<---<n—-1<n.

Now if w € W then we define a new ordering” of the setJ by the rule
i <* jifandonlyif w™ti <w™j.

Orderings of the formx™, w € W, are calledadmissibleorderings ofJ. They can be
characterized by the following property:

an ordering< on J is admissible if and only i is a linear ordering and
fromi < j it follows that j* < i*.

Denote byJi the set of all admissiblke-subsets inl. If < is an arbitrary ordering od,
it induces the ordering (which we denote by the same symbain Ji: if A, B € J and

A={ag<ay<---<a} and B={by <by <--- <by}
we setA < B if

a; < b,a<by, ..., a < by
Symplectic matroids. Now let B € J¢ be a set of admissible-element subsets of the
setJ. We say that the triple = (J, *, B) is aa symplectic matroidif it satisfies the

following Maximality Property

for everyw € W the sef5 contains a uniquev-maximal elemeni.e., a
subset Ac B such that B<™ Aforall B € B.
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The setB is called thecollection of basesf the symplectic matroid/, its elements are
calledbasesf M, and the cardinalitk of the bases is theank of M.

Symplectic matroids were introduced by Gelfand and Serganova in [12, 13], in a slightly
different, but obviously equivalent way: they used the minimality property in place of our
maximality property. In the case of symplectic matroids the two properties can be obtaine
from each other in the most trivial way, by reversing the inequalities. However, the paper [1]
explains why the maximality property fits better in the general theoiy/Bf, or Coxeter
matroids, of which symplectic matroids represent only a special case.

2. Representable symplectic matroids

Now we wish to see how symplectic matroids arise naturally from symplectic geometry, in
much the same way that ordinary matroids arise from projective geometry. We begin witt
astandard symplectic spacehich is a vector space over a fieldF with a basis

E:{e17e21""eﬂ’e1*7e2*5""en*}

and which is endowed with an antisymmetric bilinear fgrm) such thate , e;) = 0 for all
i,jedi#j*wherease,e:) =1=—(g+,g)fori € [n]. A totallyisotropic subspace
of V is a subspac¥ such that(u, v) = 0 for allu,v € U. LetU be a totally isotropic
subspace o¥ of dimensionk. SinceU L U, and dimU+ = 2n — dimU, we see that

k < n. Now choose a basisi, Uy, ..., Uk} of U, and expand each of these vectors in terms
of the basisE: uj = Y1_; & j&j+ ) |_, b jej.. Thus we have represented the totally
isotropic subspace as the row-space oftax 2n matrix (A, B), A= (& ;), B = (b ),
with the columns indexed by, specifically, the columns dk by [n] and those oB by [n]*.

Let us first see what it means in terms Afand B thatU is totally isotropic. Since
(uj, uj) = 0 for all i is immediate from the definition of the bilinear forrg, is totally
isotropic if and only if(u;, uy) = Oforalll, m < k, | £ m. From the definition of standard
symplectic space, this is equivalento, C']'J“ =Oforalll,m <k, | # m, whereC;" is
the 2x 2 minora, jbm j —am jbi,j of C = (A, B). In general, we will denote determinantal
minors of a matrix by using subscripts for column indices and superscripts for row indices
If we denote themth row of A by A™, this becomesA' - B™ — A™ . B! = 0, where-
denotes ordinary dot product of row vectors. This in turn is equivalefBfo= BA! where
t denotes transpose. Thus we have proven the following lemma.

Lemma 1 A subspace U of the standard symplectic space V is totally isotropic if and
only if U is represented by the matrd, B) with AB' symmetric.

Now, given ak x 2n matrix C = (A, B) with columns indexed byl, let us define a
family B € Ji by sayingX € B if X is an admissibl&-set and thd x k minor formed by
taking thejth column ofC for all j € X is nonzero.

Theorem 2 If U is totally isotropic thenB is the set of bases of a symplectic matroid.
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To prove this theorem, we first need the following result.

Theorem 3 Let C = (A, B) be a kx 2n matrix of rank k with columns indexed by J
such that AB is symmetric. Lek be an admissible ordering of J. Let K be the unique
maximal k-subset of J such that the correspondingkminor of C is nonsingular. Then
K is admissible.

Proof: Letusreorder the columns 6fby the ordering, starting with the largest column
index. Now,K is uniquely determined by the greedy algorithm of ordinary matroid theory.
In particular,K = {iy > i > --- > iy}, and if we denote by; thei;-th column ofC,
thenx; = G, is the first nonzero column &, x, = C;, is the first column ofC which
does not depend o@;,, and in generalx; = C;, is the first column ofC which does not
depend or(C;,, C,, ..., C;j,_,}. Note that for all, all columns betweeg;_, andC;, are
linear combinations ofxy, Xo, ..., X_1}.

Suppose now tha is not admissible. Thus there existssuch tham, m* € K, say
{m,m*} = {ig,in}, g < h. The hypothesis thaB' is symmetric means that for any two
rows, say those indexed byandv, 0=}, CJu (o= [Xgs Xa]" + 30 2gn i j [Xi0 X1,
where ;, x;]""* denotes the 2 2 minor of rowsu, v from the pair of column vectors, Xj.

The coefficients; ; come from expanding out each columrﬂf]‘fji as alinear combination

of x;. The term kg, Xn] occurs with coefficient 1 because it does not arise in the expansion
of anyCJ i~ with j # m, m*, since according to our admissible ordering, either adind

j* occur betweem andm®, hencex;, does not occur at all in the expansmrquf ., Or else

m andm* occur betweerj and j*, say with j being the largest, in which case neithgr

nor xy can occur in the expansion of the colu@p, hence both cannot occur in any term of
the expansion ot[:“ .. Now notice that the coefficients ; are independent af, v, since

they depend only on how each column®fs written as a linear combination of thxe

Let M = A, i = deflxq, X2, ..., X) be thek x k determinantal minor indexed
by K, and letN, , denote the cofactor o}, x,]""* in M, that is, Ny, is the comple-
mentary(k — 2) x (kK — 2) minor to [Xg, Xn]""*, with appropriate sign attached, so that
M = >, Nuo[Xg, Xn]"? = det(xy, Xa, ..., Xk). Thus

0=ZNU,U<[X9,Xh]u’U+ Z O{i,j[Xi,Xj]u’v>
u,v

i,ji#g.h
= det(Xq, ..., Xk) + Z o
i.j#g,h
x det(Xq, ..., Xg—1, Xi, Xg41s - - - » Xh—1, Xj, Xng1, - - - 5 Xk)
= def(Xq, Xo, ..., Xk),

since each of the other terms is a determinant having a repeated column. This contradic
det(xy, X, . . ., Xx) # 0, completing the proof. m]

Proof of Theorem 2: Let < be an admissible ordering df We must show that contains
a unigue maximal member. Let be the set of alk-element subsets af such that the
correspondind x k minor of C is nonzero. Thu$ is just the set of admissible members
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of A. The previous theorem showed that the unique maximal meklmér4 was actually
in B. ThusK is clearly also the uniqgue maximal memberbf |

Notice that we have actually proven more than the Maximality Principle, namely:

Theorem4 If U istotally isotropic and< is an admissible ordering of, dhen the unique
maximal basispicked from the columns of C by the greedy algorithm according,ts
admissible.

A symplectic matroid3 which arises from a matrixA, B), with AB! symmetric, is
called arepresentable symplectic matro@hd(A, B) (with its columns indexed by) is a
representatioror coordinatizationof it (over F).

Example We now give an example of a nonrepresentable symplectic matroidnwtB,

k =2. LetB = {12, 12, 1*3, 1*3*, 23, 23, 2*3, 2*3*}. It is not difficult to see tha3

is in fact a symplectic matroid, if we allow ourselves to use techniques from Section 5.
According to Theorem 10, we have only to check that a certain polytope determiried by
has all of its edges parallel either to edges of the cube or to diagonals of two-dimensione
faces of the cube; see figure 1. Suppose i represented by a2 6 matrix (A, B).

Then the 2x 2 minors indexed by 13.3¢, 1*2, 1*2* are all 0. It follows that the columns
indexed by 13, and 3 are all nonzero scalar multiples of the same nonzero vegtor
and those indexed by 12, and Z are all indexed by nonzero scalar multiples of another
nonzero vectop, linearly independent from. ThenAB! —BA! = Cy 1 +Cp - +Cg3 =
vilaBl + v2[ BBl + vslaa] = y1[aB] # 0, wherey; are nonzero scalars. ThA8' cannot

be symmetric.

Now let us consider which matrix operations preserve the symplectic matroid represente
by (A, B). Let us write(A, B) ~ (C, D) whenever A, B) and(C, D) represent the same

1*3

12* 12

23*

Figure L The matroid polytope of a nonrepresentable symplectic matroid.
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symplectic matroid (with regard to the same indexing of the columns). Supposk that
a nonsingulak x k matrix. Then

(A, B) ~ (XA XB)

obviously, since row operations preserve dependencies among the columns. Note that he
the row-spac#) is unchanged, as is the symmetryAB!, although the matriAB! itself
may be changed via congruence, siXggxB)! = X (AB") X'.

Secondly, letA be a nonsingulan x n diagonal matrix. Then

(A, B) ~ (AA7L, BA),

since the collection of subsets of the columns which are linearly dependent is preserve
Now the row-space is changed, whereasB! is unchanged. This type of transformation
is referred to as thiorus actionon the representatiafA, B).

The rank and signature &B' are invariants of both of the above types of transforma-
tions.

Thirdly, let us consider permuting columns 6f Any time we permute the columns
of C, we permute the column indices in the same way, thus preserving the symplectic
matroid represented by the matrix. Which column permutations are guaranteed to preser
the fact that the row space corresponds to an isotropic subspsce\fell, thei th column
of A and theith column of B may be transposed, provided one of them is multiplied
by —1. Furthermore, théth and jth columns ofA may be transposed provided thé
and jth columns ofB are transposed at the same time. Thus, we see that all admissible
permutations of the columns &f preserve the symmetry &iB!.

3. Homogeneous symplectic matroids

A collectionB C J is said to ban-homogeneodufor every two element®; and B, of
B, |B1N[n]| = |BxN[n]| = m. In other words, all members & have the same number
of unstarred elements, and consequently also the same number of starred elements.
are going to show that a homogeneous symplectic matroid is equivalent to a flag matroic
which is a special kind of pair of ordinary matroids.

Let Fi, denote the set of all paifA, B), whereA is ak-subset of fi], B is al-subset
of [n]and A € B. Whenk = |, it will be convenient to identifyFy x with Py, the set of all
k-subsets inif]. We shall call 7 the set ok, |-flags. For every ordering®, w € Sym,
of [n] we define the ordering ofy by setting

(A1, Ap) <v (B1, By) if and 0n|y if Ay <” ByandA; <¥ B,.

Flag matroids. A subsetB C Fy is the set of bases offeag matroidof rank (k, I) if it
satisfies the Maximality Property: namelyuife Sym, there exist$ € B such that for all

G e B,G <" F. ltis easy to see from the Maximality Property that the first components
of B form an ordinary matroid of rank, which we will denoteM(B), while the second
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components form a matroMd, (B) of rankl. We remark parenthetically that in [4] we show
that the definition of flag matroid is equivalent to these two matroids being related by a
strong map which is the identity on]|

If Ais an admissible set im] u [n]*, denote byflag(A) a flag of two subsets built
according to the following procedure. Denodg = A N [n] (the set of the nonstarred
elements inA), A; = AN [n]* (the set of the starred elementsA) and takeA} < [n]
(the set of the starred elements with stars stripped off). Siiseadmissible AN A} = .
Now flag(A) is the pair(Ag, —A}) (where— denotes the complement in]).

Theorem 5 An m-homogeneous collectighof subsets din] u [n]* of cardinality m+-1
is a symplectic matroid if and only if flaf) is the set of bases of a flag matroid jorj of
rank (m, n — ). A collection of flagsF C F, is a flag matroid if and only if flagl(]-') is
a k-homogeneous symplectic matroid of rank k — | on [n] L [n]*.

Proof: The proof follows from the Maximality Property for symplectic matroids and flag
matroids. First, let us assume thatis the collection of bases of a homogeneous sym-
plectic matroid. Every ordering of [n] induces an admissible ordering afj[L [n]* (we
denote it by the same symbe): we set all starred elements tokesmaller than nonstarred
elements, andset < j*ifandonlyifj <i. NowletA < Bin B. By homogeneity and our
choice of orderingAg = AN[n] < Bp = BN[nJand A; = AN[n]* < By = BN[n]*,
consequenthA} > B} and—A} < —Bj. Thusflag(A) < flag(B), and we have shown that
flag is an order preserving map. The Maximality Propertyffag(3) now follows from
the Maximality Property foi3.

Conversely, suppose th#ag(B) is a flag matroid. Let an admissible orderirgof
[n] u[n]* be given. We now simply restriet to [n], obtaining an ordering equal to* for
somew € Sym. Suppose thalag(A) <* flag(B) for someA, B € B. ThenAg <* By
and—A; < —Bj. Itfollows thatA; >* B; andA; < By. Thus, theéth smallest element
of A; is less than or equal to theh smallest element A, in <, and likewise forAg andBy.
It follows that A < B, and thus the Maximality Property 8&g(3) implies the Maximality
Property of3.

This proves the first statement of the theorem. The second statement is just a reformul
tion of the first. a

Now we proceed to show that the homogeneous symplectic mafroidthe previous
theoremis representable if and only if the two ordinary matroidkaof 3) are representable
by a pair of subspaces related by containment. We say that an ordinary mMtadicank
k on the setifi] is represented by a subspadef F" if U is the row-space of k x n matrix
with columns indexed byr] such that the bases ®f are precisely the sets &fcolumns
of the matrix which are nonsingular.

Theorem 6 LetBB be a symplectic matroid of rank sl represented byA, B). Then the
following are equivalent

(1) Bis m-homogeneous

(2 tkA=mandrkB =1,
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(3) B may be represented by a matrix in block-diagonal form

Y O
0o 7))’
where Y ismx n, Zis| x n, and YZ = 0.

(4 Mp(flag(B)) is represented by rowsl) and M,_ (flag(B)) is represented bgrowsp
(Z))*, where rowspY) C (rowsp(Z))*.

Proof: The equivalence of (2) and (3) is immediate by puttig B) into row-echelon
form, where the condition tha&B! be symmetric is equivalent 862 = 0. Furthermore,
(3) implies (1) is obvious. The equivalence of (3) and (4) is immediate from the properties
of flag above, and the well-known fact that a representation of a matroid is equivalent tc
a representation of the dual matroid (which is the matroid obtained by complementing the
bases) via orthogonal complement of the row-space. NotadhsY) C (rowspZ))*
is equivalent torZ = 0.

Now we show that (1) implies (2). Suppose thatis m-homogeneous. Choose the
admissible ordering + 2 > --- = n > n* = ... = 2* = 1* and select the maximal set
K of columns which are linearly independent. By TheoreriK3s an admissible set, and
hence a basis if8. Hence|K N [n]] = m, and it follows thatA has rankm. A similar
argument using the reverse ordering shows Biatust have rank. |

4. Root systems of typeC,

For a deeper study of symplectic matroids we have to introduce the system of ve@®b6rs in
known as theoot system of type C

Roots. Lete,i € [n], be the standard orthonormal basisRh, and again sed- = —¢
fori* e [n]*. This defines the vectors for all j € J = [n] u[n]*. Now therootsare the
vectors 2j, j € J (calledlong rootg, together with the vectors, — e;j,, wherejy, j> € J,
j1 # j2 or j; (calledshort rooty. Written in the standard basgs, e, . . ., €,, the roots
take the form+=2e,i = 1,2,...,n,0or+e +€j,i,j =1,2,...,n,i # j. Notice that
both short and long roots can be writtereas- g for somei, j € J. The set of all roots is
denotedd.

Recall that ifr is a nonzero vector in the Euclidean space therrefiectiono; in the
hyperplane perpendicular tas the linear transformation &&" determined by

2(x,r1)
(r,r)

where(., -) is the standard scalar product®?. Reflections can be characterized as linear
orthogonal transformations &" with one eigenvalue-1 and(n — 1) eigenvalues 1; the
vectorr in this case may be chosen as an eigenvector corresponding to the eigenvalue
The set of points fixed by; isthe hyperplanéx, r) = 0 called thamirror of thereflectiono .

It is easy to see that whanis one of the long roots:2e, i € [n], theno; is the
linear transformation corresponding to the elemgnt= (i,i*) of W in its canonical

or(X) =X — r, forxeR",
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representation. Analogously,iif= & —ej, i, j € J, is a short root, then the reflection
or corresponds to the admissible permutatoe- (i, j)(i*, j*). Moreover, one can easily
check (for example, by computing the eigenvalues of admissible permutationd\from
their action onR") that every reflection in the group of the symmetries of the unit cube
[—1, 1]" is of one of these two types.

Now we see that use of the name ‘root system’ in regard to th@ sejustified, because
d satisfies the formal definition of a root system as given in [14joét systenis a finite
set® of nonzero vectors iR" satisfying, for allr € @, the following two conditions.

i) NRr ={r, —r}.
(i) or® = .

Simple systems of roots.Let« = R" — R be a linear function not vanishing on any
element of®. Let®dT={r € ®|a(r)>0and® ={r € ®|a(r) <0}. Thend® =
®tud~ andifr € @, then—r € ®~, and vice versa. We cadh™ and®~ positive and
negative systems of roqi@ssociated with).

All roots in ®* belong to the open halfspaegx) > 0 and thus span a convex poly-
hedral coneC. By definition, asimple systenil of roots is the set of all roots directed
along the edges (i.e., one-dimensional facesEoflt can be alternatively defined as a
(unique) minimal sety, ..., ry of roots in®* with the property that every root i+ is
a nonnegative linear combination of, ..., r,. It can be shown (see, for example, the
proof of Theorem 1.3 in [14]) that every simple systermdinis linearly independent and
thus contains the same number of roots. This number is obviously the ramnki &f, the
dimension of the subspaceRY spanned byb.

Standard simple system of rootsin our system of root® of typeC,,, consider the linear
functional

a(X) = X1 + 2% + 3X3 + - - - + NXq.
It is easy to see that a roet— g; is positive with respect ta if, in the ordering
nNf<n-1"<...<1"<1<2<---<n

of the setJ, we have > j. The system of positive roots™ associated withx is called
thestandard positive system of roofEhe set

Hz{zelaﬁ_elv"'aen_en—l}

is obviously the simple system of roots containedbih; it is called thestandard simple
system of roots

Vocabulary. We shall now describe natural one-to-one correspondences between the fol
classes of objects:
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admissible permutations of the skt
admissible orderings of the sét
systems of positive roots id;
systems of simple roots ib.

Indeed, for every admissible permutatiane W we have the admissible orderirg’
of J. Vice versa, if< is an admissible ordering a¥, then the permutation

n (n-2L* ... 1* 1 ..« n—=1 n
w=| . . . . . .
1 )2 o Jn e+ oo Jon—1 Jon
where

j1<J2 <+ < jan-1 < on,

is admissible and the orderingcoincides with<®.

Now if
ji<"jo <"+ <" Joan-1 <" Jon,
is an admissible ordering df, then the vectors;,, . €j,,,. - - - , €j,, form a basis irR". Let

V1, Yo, ..., Yn be the coordinates with respect to this basis@t = y; + 2y, + 3ys +
--- 4 ny,. Then, obviouslyy does not vanish on roots i, and, for a roogj — & in @,
the inequality(e; — &) > O is equivalentto < j. Thus, the system of positive roots
associated witky coincides with the system

wdt ={g—q|i <" |}

obtained from the standard systebi of positive roots by the action of the elemeant
Obviously, the simple system of roots containedbih is exactlywIl.

Now if T’ is an arbitrary simple system of roots arising from an arbitrary linear function
o« : R" — Rnotvanishing on roots i then the following objects are uniquely determined
by our choice offT":

o the system of positive roote™, which can be defined in two equivalent ways: as the set
of all roots which are nonnegative linear combinations of roots ffotnand as the set
{fre®|a(r) >0}

o the (obviously admissible) ordering on J defined by the rulei < j if and only if
(@) < a(e)).

In particular, we immediately have the following lemma (which is a special case of a more

general result about conjugacy of simple system of roots for arbitrary finite reflection groups

[14, Theorem 1.4]).

Lemma 7 Any two simple systems of rootsdnare conjugate under the action of W.
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If w € W then the setow®*, wd®~, wll will be called the system ofy-positive, w-
negative w-simple roots.

5. Convex polytopes associated with symplectic matroids
For an admissible se&k € Ji define the poinea € R" as
ea=86,+6e,+---+8e,  whereA={i iz, ..., Ik}
The following lemma is obvious.

Lemma 8 In this notation let A and B be admissible k-subsets. Ther B implies
that g5 — ex is a nonnegative linear combination of positive roots.

The reverse statement,
if eg — ea is a nonnegative linear combination of positive roots theg &,
is not in general true, as the following simple example shows. Let
J={4<3F<2<1"<1<2<3<4
andA = 2*1, B = 3*4. Then
eg—ep= (&g —€)+ (e2—€)

is the sum of positive roots, but it is not true that< B. This example shows that
the statement in the last two lines preceeding Theorem 8.1 in the paper by Gelfand an
Serganova [13] is incorrect, which, in its turn, compromises the proof of Theorem 8.1 in the
same paper; see [16, Theorem 3.4] for a complete proof of the Gelfand-Serganova Theorel
Theorem 10 is a special case of that result, for which we provide here a self-contained ar
elementary proof.

Our crucial tool is the following partial converse of Lemma 8.

Lemma9 Assume that A and B are admissible k-setsin J gnde, = Ar for a positive
rootr andA > 0. Then A< B.

Proof: Notice first that, since the vectoeg andeg have equal lengths, by their construc-
tion, the pointse, andeg are symmetric to each other with respect to the hyperpkine
which contains the origi® of the coordinate system RR" and which is perpendicular to
the edge éaeg], sinceH must also contain the midpoint of the edge. ObviouBlyis the
mirror of reflectiono, associated with the root This means; eg = e5 ands A = B for
the permutatiors, € W corresponding te,. We know already theg has one of the forms
(,i*or(, ji*, j* fori, j € J.
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Consider thefirst casg, = (i, i*). We can assume without loss of generality ffiat A,
thenB = (AU {iP)\{i*} andeg — en = g — g+. This has to be a positive root, §0- i *
andB > A

Assume now thas = (i, j)(i*, j*) and setk = {i, j,i*, j*}. Notice thatAnN K is
an admissible set. 1A N K is the empty sef) or one of the set$i, j} or {i*, j*} then
s A = A, which is impossible becauseA = B # A. Therefore we can can further
assume without loss of generality that we have one of the following subcAsek: = {i}
or AN K ={i, j*} and, correspondinghB = (AU {jh\{i} or B = (AU {i*, jH\{i, j*},
andeg —ex =€ —g oreg —ea = 2(e; — ). Buteg —ea = Ar for a positive root and
scalara > 0. Hencer =e; —&,i < j, j* <i* and then we easily see that< B. O

Now we come to our special case of the Gelfand-Serganova Theorem.

Theorem 10 LetB C Jk be a set of admissible k-sets in J. lzebe the convex hull of
the points g with A € B.

Then e, are vertices ofA for all A € A. Moreover the setB is the collection of bases
of a symplectic matroid on J if and only if all edgé£., one-dimensional facgsf A are
parallel to roots in®.

Proof: Assume first thaB3 is the collection of bases of a symplectic matrdidon the
setJ. Letl be an edge with vertices, andeg that is not parallel to any root. Then
there exists a linear functiam: R" — R which is constant oh and takes smaller values
on the other points oA. There is a unique simple system of robtsfy, ..., f, such that
a(fi) > 0,i =1,2,...,n. Inview of Lemma 7, the groulV acts transitively on the set
of all simple root systems, so thereise W sending(ry, r2, ..., rm} to {f1,f2, ..., f}.
Then for anyC e B distinct from A we havex(ec) < a(ea) and the vectoe: — ep has at
least one negative coefficient with respecfita f>, . . ., f,,}. Butthis makes impossible the
inequality A <* C, because the latter implies, by Lemma 8, that- e, is a nonnegative
linear combination of the root§. Therefore, by the maximality principléd is the w-
maximal element of8. But the same arguments can be applied to the vegeand yield
that B is also thew-maximal element of5, a contradiction to the maximality principle.

Assume now that the edges afare parallel to the roots. Fiw € W and the corre-
sponding systemIl = {fy, ..., fy} of w-simple roots.

Takea : R" — R alinear function such that(f;) > O foralli € {1,2,...,n}. Thena
does not vanish on any root.

By properties of convex polytopes attains a maximum at some vertex of A. We
want to prove thaey is a unique. Indeed, i&(ea) = a(eg) for some othereg € A,
the intersectiom\’ of A and the hyperplane(x) = «a(ea) is a face ofA containing two
different vertices. Therefora’ contains some eddeof A. Sincex is constant on the edge
[, it vanishes on a roat parallel tol, a contradiction.

Thus we established the uniqueness otthraaximal verte>xea. Our next aim is to prove
that A is thew-maximal base oM, i.e.,, B <* Afor all basesB € 5. Take an arbitrary
baseB € B. Leteg,, ..., eg, be all vertices adjacent & in A. The convex polytopé
lies in the convex polyhedral coriewith the vertex at the poirgg, spanned by the edges
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€g — €p:

m
= eB+ZMi(eBi —es) | ui = 0y.
i—1

By hypothesis, for all = 1,2,..., m, we can writeeg — eg = Air; wherei; > 0 and
ri is aroot. If all roots; arew-negative (ri) < 0 and thus o the functiona reaches
its maximum at the poingg, which meandB = A. Therefore, ifB is distinct fromA, at
least one of the roots,, say, isw-positive and by Lemma B <" B,. We can repeat the
same argument for the vertey, (denote itegw ), and so on, until we get tex through the

sequence of adjacent vertices = ego, €gn, €, ..., €go = €a, with BO <» BI+D
forl =0,1,...,t — 1. But this mean8 <¥ A. ThereforeA is thew-maximal element
in B. O

Let F C Fk, be a set of flags. Assign to eveFye Fi, the pointer in R" as follows:
if F = (A, B) thener = e + eg, Whereey is defined by

ex:Ze..

ieX

Let A be the convex hull of akg, F € Fy |, andAx the convex hull ok for F € F.
Let ® be the system of roots of tyf®,, let ¢ be the subsystem

Po={e —¢|i,jel,i#]j}

of type A, and letW be the Weyl group correspondingde, i.e., the group generated by
the reflections corresponding to the roots.

Proposition 11 (Gelfand-Serganova [13], see also [4, Theorem 6.1])F is the set of
bases of a flag matroid if and only if all edges/f are parallel to roots g—e;, i # |, of
the root system of type,A

Notice thatWp >~ Sym leaves invariant the vectog = e; + e+ - - - + €.

Proposition 12 The parallel translationA — vg of A is exactly the convex polytopge
associated with the full k-homogeneous symplectic matroid of rank k |. Every convex
polytopeA £ for a flag matroidF of rank (k, |) becomegsafter the translation, the convex
polytope for the corresponding homogeneous symplectic mareidlag™ (), obtained
explicitly in the following way. IfA, B) € F, (-B)*U A e B.

Proof: The first statement can be checked by a direct computation, the second follow:
from the observation that if is a flag matroid, the edges afr are parallel to the roots in

® hence the translated polytope- — vy has the same property. Therefore it is a polytope
of a symplectic matroid. Moreover, it is easy to see that this matrdi is m]
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6. Lagrangian matroids

A symplectic matroid of rank on J = [n] u [n]* is called aLagrangianmatroid. A
Lagrangian matroid is also calledsgmmetrionatroid in [6] or a 2matroidin [9]; these
concepts are also equivalentaematroids[6] and to Dress and Havelisetroids see [10].

For a proof that Lagrangian matroids and symmetric matroids are the same concept, s
[15, Prop. 1.15], or [16, Section 6.2]. Bouchet’s definition and Wenzel’s or Zelevinski-
Serganova’s proof amount to the following characterization of Lagrangian matroids.

Theorem 13 Let B be a collection of admissible n-subsets[of L/ [n]*. If T is an
admissible n-setcalled atransversaldefine

Z7 = {1l | there exists Be Bsuchthat IC BN T}.

ThenB is a Lagrangian matroid if and only i1 is the collection of independent sets of an
ordinary matroid for every transversal T.

This characterization gives a property of symplectic matroids, although it is no longer
a characterization in this more general setting. We retain all notation from the preceedin
theorem. In particular, a transversal is still an admisgibéet, althoughB now has rank.

Theorem 14 LetB be a symplectic matroid of rank k. Th&n is the collection of inde-
pendent sets of an ordinary matroid for every transversal T .

Proof: Letu : T — R beagivennonnegative function. Letdenote any linear ordering
onT which is compatible withe. As is well known from ordinary matroid theory, it suffices
to show that the greedy algorithm with respecktonZt always returns an optimal member
with respect tqu. We extend< to an admissible ordering &, also denoteék, by saying

i =i*foralli € T,andi, j €T, j <iimpliesi* < j*. Now we extendg. to a map on
J by settingu(i*) = 0 whenevei € T. Let B be a symplectic matroid of rarikon J.
By the Maximality Principle, there exist8y € B such thatBy > B for all B € 5. This
means thatt(BpN'T) = u(Bg) > n(B) = u(BNT). Thusu(l) for I € Z7 is optimized
byl = ByNT. ButByN T is clearly the member dfr returned by the greedy algorithm
with respect tox. ]

Example The converse of the preceeding Theorem is false, as can be seen from th
counterexampl€l2, 1*3, 23}. It is easy to see that this is not a symplectic matroid by way
of the Gelfand-Serganova Theorem.

Bouchet also gives an exchange axiom for Lagrangian matroids. Unfortunately, it doe:
not generalize in any straightforward way to symplectic matroids. Bouchet, in addition,
provides a very interesting way to construct Lagrangian matroids from Eulerian tours of
4-regular graphs. He provides as well, in [7], a notion of representation of Lagrangian
matroids which is similar to ours. We show in the next section that Bouchet'’s version of
the greedy algorithm for Lagrangian matroids generalizes to symplectic matroids.
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Now let us see how some of the considerations of represented symplectic matroid
specialize to the Lagrangian case. Suppose lthas a represented Lagrangian matroid.
Thus we are give€ = (A, B), whereA andB are now botm x n. Let By be a basis oM.

By an allowable permutation of the columns, we can bring the columns indexBgitbythe
leftmostn positions, replacing by (R, S), whereR is nonsingular, sinc® is a basis of

M. Hence(R, S) ~ (I,, R™1S) = (I, T), whereT is a symmetric matrix. The rank and
the signature of the symmetric matfxare invariants of the basiB, of M, independent

of the ordering ofBy, and also preserved by the torus action. These invariants may be
thought of as generalizing the orientation derived from a representation of an ordinary
matroid over the reals, wherein each ordered basis is assigned a sign according to the si
of the corresponding determinant of the representation. In the case of an orientation of &
ordinary matroid, however, the sign is dependent upon the ordering of the basis, and is als
not invariant under the torus action.

Let us now specialize our work on homogeneous symplectic matroids to the Lagrangial
case. GiverB, a collection ofm-element subsets ofi], we defined(B) = B U ([n]\ B)*,
and®(B) = {®(B) | B € B}. Then®(B) is anm-homogeneous collection of admissible
n-element subsets af.

Theorem 15 Members of5 are the bases of an ordinary matroid if and onlybif5) is a
homogeneous Lagrangian matroid. Furthermageis a representable ordinary matroid if
and only if®(B) is a representable homogeneous Lagrangian matroid.

Proof: Animmediate corollary of the results in Section 3. |

The first sentence of the preceeding result is also equivalent to Corollary 4.2 in [8],
although the terminology is very different.

Bouchet [6, Corollary 7.3] considers a second way of imbedding an ordinary matroid
into a Lagrangian matroid. L&t be the collection of independent sets of a matroid. Then
@ (7) still makes sense, and is a (honhomogeneous) Lagrangian matroid. This seems le
important than the above Theorem.

7. Greedy algorithm

Let us define aradmissible weight functioto be a functionw : J — R such that for
some admissible ordet on J,i > j fori, j € Jimpliesw(i) > w(j). We will say in
this situation that» is compatiblewith <. If 5 is any collection of subsets df, we say
that By € B is optimalif w(Bp) > »(B) for all B € B, where, as usualy(B) denotes
ZbeB w(b)

We now take essentially Bouchet's definition of a greedy algorithm, modified for the fact
thatk does not necessarily equalexcept that we cannot assume that the weight function
is symmetric (i.,e.w(i) = —w(i*) for alli € J), as Bouchet does. L&t > iy > ---ion
denote the elements dfin decreasing order, where, of courgg, = (in_1+1)*, since<
is admissible. i3 is a collection of admissiblk-element subsets af, define thegreedy
solutionof B with respect tav and< to be the seBy returned by the following procedure:
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. begin
By =0
forl =1to 2ndo
if BoU {i;} € B forsomeB € B
thenBg := Bg U {ij}
end

ok wphpE

Clearly the seBy returned is amember &, for if i is selected by virtue d8o U {i;} < B,
then all larger elements & must already be 8.

Theorem 16 Let B be a collection of admissible k-element subsets of J. Thena
symplectic matroid if and only if for every admissible orderingn J and every weight
functionw compatible with<, the greedy solution i is optimal.

Proof. If Bisasymplectic matroid, then by the Maximality Property for a given admissible
<, there is a member d# which dominates every other element®Elementwise. Thus,

it is clear that this member is the greedy solution and is also optimal foswammmpatible
with <.

Conversely, ifB is not a symplectic matroid, then there exists an admissible ordering

< under whichB has two distinct maximal members. B, is a maximal member, we
write By, = {b{™ > b > ... = b{™}, and letBy(I) denote(b{™, by"™, ..., ™}, and
B() = {Bn(l) | By € B}. Clearly, there exists a maximiak k such thai3; has a unique
maximal member, sincB; obviously does. Let] be one more than that maximial It
follows that there exisB; and B, in B such thatB;(q — 1) > B(q — 1) for all B € B,
b > biP for somep < g, andb{® < by’. Furthermore, if there exist more than one
B so thatB;(q — 1) = B(q — 1), we may assume we have chosen the lexicographically
greatest one foB;, that is, for any suclB # By, for the firstl such thatB,(1) # B(l), we
haveBi(l) = B(l).

Now let us choose the weight functian clearly compatible with<, by

) = 1 ifx> bg2>
Y =10 otherwise.
Then the greedy algorithm seleds, but clearlyw (By) = q > q — 1 = w(By). |

8. Symplectic matroid constructions

One of the striking features of the theory of ordinary matroids is the large number of
constructions, which allow one to derive new matroids from old; see, for example, [11]. In
this section, we investigate whether some of these constructions may have analogues f
symplectic matroids.

Unfortunately, the simplest and most important construction, that of submatroid, doe:
not have such an analogue. To see this, let us examine the symplectic Batpigsented
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by the matrix

0101 100
(A| B) = .
1010 000

Let us now “delete™4, 4*}, that is delete the last column of bofhiand B, resulting in

(A'| B'), say. AlthoughAB! was symmetricA’(B’)! is not, which does not in itself prove
thatB’ = {B € B | B C [3] U[3]*}is not a symplectic matroid. However, note tBats the
example of a nonsymplectic matroid considered following Theorem 14. Since deletion of
the pair{4, 4*} destroyed the property of being a symplectic matroid, it is clear the deletion
of single elements cannot always preserve that property, either.

Contraction, however, is a different story. Lig#be a symplectic matroid of rarkkon J,
and leta € J. ThenB' = {B\{a} | a € B andB e B} is a symplectic matroid of rank
k — 1, which is most easily seen by noting that the polytapeis a face (although not nece-
ssarily a facet) of the symplectic matroid polytopg, and hence satisfies the Gelfand-
Serganova criterion.

Direct sum of matroids also has the obvious analogue in symplectic matrogisanfi3,
are symplectic matroids on disjoint sesand J,, then8 = {B; U B, | By € By, By € By}
is a symplectic matroid, as is easily seen from the Maximality Property.

The only other constructions which we have found to have symplectic analogues ar
truncation and Higgs lift. 13 is a symplectic matroid of rankon J, andl < k, then the
truncation ofB to rankl is B" = {A € J | there existsB € B such thatA € B}. For
I > k, Higgs lift is defined in similar fashion, except for reversing the containment. The
proofs that these are again symplectic matroids lie beyond the scope of this paper, and w
be presented in a future paper in a more general setting.
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