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Abstract. This paper gives a new formula for the plethysm of power-sum symmetric functions and Schur
symmetric functions with one part. The form of the main result is that forµ ` b,

pµ(x) ◦ sa(x) =
∑

T

ωmajµ(T)ssh(T)(x)

where the sum is over semistandard tableauxT of weightab, ω is a root of unity, and majµ(T) is a major index
like statistic on semistandard tableaux.

An Sb-representation, denotedSλ,b, is defined. In the special case whenλ ` b, Sλ,b is the Specht module
corresponding toλ. It is shown that the character ofSλ,b on elements of cycle typeµ is∑

T

ωmajµ(T)

where the sum is over semistandard tableauxT of shapeλ and weightab. Moreover, the eigenvalues of the action
of an element of cycle typeµ acting onSλ,b are{ωmajµ(T) : T}. This generalizes J. Stembridge’s result [11] on
the eigenvalues of elements of the symmetric group acting on the Specht modules.

Keywords: symmetric function, plethysm, eigenvalue, representation of the symmetric group

1. Introduction

1.1. Tableaux

A partition of n is a weakly decreasing sequenceλ = (λ1 ≥ · · · ≥ λl ) of positive integers
which sum ton. Both|λ| =n andλ ` n is used to denote thatλ is a partition ofn. The value
l is the number of parts ofλ and is denotedl (λ). Let [λ] = {(i, j ) : 1 ≤ i ≤ l (λ) and 1≤
j ≤ λi } ⊂ Z2. The set [λ] is the Ferrers diagramof λ and is thought of as a collection
of boxes arranged using matrix coordinates. Theconjugateof λ is the partitionλ′ whose
Ferrers diagram [λ′] is the transpose of [λ].

A tableauof shapeλ andweight(or content) α = (α1, . . . , αk) is a filling of the Ferrers
diagram ofλ with positive integers such thati appearsαi times. A tableau issemistandard
if its entries are weakly increasing from left to right in each row and strictly increasing down
each column. In this paper, the primary class of tableaux of interest is semistandard tableaux
of weight (b, . . . ,b)︸ ︷︷ ︸

a times

which is abbreviatedba. If λ ` ab, let Sλ,a be the set of semistandard
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tableaux of shapeλ and weightba andWλ,a be the set of tableaux of shapeλ and weight
ba. Tableaux of weight 1n are calledstandard.

If [ ν] ⊆ [λ], let [λ/ν] denote theskew-shape[λ]\[ν]. A filling of [ λ/ν] with αi many
i ’s is askew-tableauof shapeλ/ν and weightα. A semistandard skew-tableau is defined
similarly.

1.2. Symmetric functions

The symmetric function notation in this papers closely follows that of Chapter 1 in
Macdonald [9]. Let3n denote the ring of symmetric functions of homogeneous degree
n with rational coefficients in the variables{x1, x2, . . .}. Let3 =⊕n≥03

n be the ring of
symmetric functions. Two important bases of3 both of which are indexed by partitions
are the Schur symmetric functionssλ(x) and the power sum symmetric functionspλ(x).
3 has a bilinear, symmetric, positive definite scalar product given by〈sλ, sµ〉 = δλ,µ.

When two Schur symmetric functions are multiplied together and expanded in terms of
Schur symmetric functions,

sµ(x)sν(x) =
∑

λ`|µ|+|ν|
cλµ,νsλ(x),

the resulting multiplication coefficientscλµ,ν are nonnegative integers. These coefficients
are calledLittlewood-Richardson coefficients. See either Section I.9 of [9] or Section 4.9
of [10] for details.

Let f (x) andg(x) be symmetric functions. Theplethysmof f (x) andg(x) is denoted
f (x) ◦ g(x). Since plethysm results in this paper are proven via a result of A. Lascoux, B.
Leclerc, and J.-Y. Thibon [6], a definition of plethysm is omitted. The key results of [6] are
reviewed in Section 4. A definition of plethysm is given in Section I.8 of [9]. Plethysm is
not symmetric. However, it does have the property of being algebraic in the first coordinate.
A proof of this proposition is given in Section I.8 of [9].

Proposition 1.1
(a) ( f1(x)+ f2(x)) ◦ g(x) = ( f1(x) ◦ g(x))+ ( f2(x) ◦ g(x)).
(b) ( f1(x) f2(x)) ◦ g(x) = ( f1(x) ◦ g(x))( f2(x) ◦ g(x)).

When taking the plethysm of two Schur symmetric functions,

sµ(x) ◦ sν(x) =
∑

λ`|µ| |ν|
aλµ,νsλ(x)

the resultingplethysm coefficients aλµ,ν are nonnegative. However, no good combinatorial
description of these numbers is known. The main result of this paper is a new formula for
pµ(x) ◦ sa(x). Using Proposition 1.1, this gives a method for computingf (x) ◦ sa(x) for
any symmetric functionf (x).
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1.3. Characters of Sn

Let Sn denote the symmetric group onn objects. The conjugacy class of a permutation is
determined by its cycle type. Thus, the conjugacy classes ofSn are indexed by partitions
of n. For λ ` n, let zλ =

∏
i≥1 i ni (λ)ni (λ)! whereni (λ) equals the number of parts ofλ

equal toi . The number of permutations inSn with cycle typeλ is n!/zλ.
Let Rn be the vector space of rational valued class functions onSn. If f ∈ Rn andλ ` n,

f (λ) is used to denote the value off on permutations of cycle typeλ. Rn has a bilinear,
symmetric, positive definite scalar product given by

〈 f, g〉 = 1

n!

∑
σ∈Sn

f (σ )g(σ−1) =
∑
λ`n

1

zλ
f (λ)g(λ).

In the above formula, the fact thatσ andσ−1 have the same cycle type is used. Forλ ` n,
denote the irreducible character ofSn corresponding toλ by χλ. The set{χλ : λ ` n} is an
orthonormal (with respect to the just defined scalar product) basis forRn. Another basis
for Rn is given by{φλ : λ ` n} whereφλ(µ) = δλ,µ.

Let R =⊕n≥0 Rn. Define thecharacteristic map ch: R→ 3 by ch :φλ 7→ 1
zλ

pλ(x).
The next proposition list several facts about the characteristic map which are used in this
paper. Using these results, the characteristic map converts symmetric function results into
results aboutSn-characters and vice-versa. This is done without explicit mention. Proofs
are given in Section I.7 of [9].

Proposition 1.2
(a) ch is a vector space isomorphism between3 and R.
(b) ch is an isometry(i.e., 〈 f, g〉R = 〈ch( f ), ch(g)〉3).
(c) ch(χλ) = sλ(x).

The following proposition list some useful facts about symmetric functions and their
relationship withSn-characters. Proofs are given in Chapter I of [9].

Proposition 1.3
(a) sλ(x) =

∑
µ`|λ|(χ

λ(µ)/zµ)pµ(x).

(b) pµ(x) =
∑

λ`|µ| χ
λ(µ)sλ(x).

(c) 〈pλ(x), pµ(x)〉 = δλ,µzλ.

2. Formula for pµ(x) ◦ sa(x)

Definition Given a semistandard tableauT , i is adescentwith multiplicity k if there exists
k disjoint pairs{(x1, y1), . . . , (xk, yk)} of boxes in the Ferrers diagram ofT such that the
entry in eachxj is i , the entry in eachyj is i + 1, yj is in a lower row thanxj for all j , and
there does not exist a set ofk+ 1 pairs of boxes which satisfy these conditions. Letmi (T)
denote the multiplicity ofi as a descent inT .
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Example 1 Let T be the following semistandard tableau.

1 1 1 1 2 2 4

2 2 3 4

3 3 4 5

(1)

In this example,m1(T) = 2, m2(T) = 3, m3(T) = 1, m4(T) = 1. The positions of the
xj ’s which contribute to descent statistic are underlined.

One method for selecting the(xj , yj ) pairs which contribute tomi (T) is the following.

(i) Set j = 0.
(ii) Let x be the right-mosti which has not been previously considered.

(iii) Let y be the right-mosti +1 which is to left of or directly belowx and has not already
been selected as ayj .

(iv) If such ay exists, incrementj by one, letxj = x, let yj = y, and add(xj , yj ) to the
list of pairs.

(v) If there are anyi which have not been considered, goto step (ii). Otherwise, stop.

The statisticmi (T) equals the number of pairs found. This algorithm clearly generates
a list of (xj , yj ) pairs which satisfy the definition of descent. In the above example, the
underlinedxj are the ones obtained by this algorithm. Step (ii) systematically goes through
the i ’s from right to left. What happens if the order in which thei ’s are considered is
changed? Surprisingly, the size of the list of(xj , yj ) pairs does not depend on the order in
which thei are considered as possiblex’s so long as the choice for the correspondingy is
the “greedy” choice of the right-most allowablei + 1 as in step (iii). In fact as a set, the
resultingi + 1’s which make up theyj ’s do not depend on the order in which thei ’s are
examined. Thus, to computemi (T), the i ’s may be consider in any order. This is proven
after the next example and plays a key role later in Lemma 3.1.

Example 2 Supposei = 3 and the relevant part ofT is

32 31 41

34 33 42

44 43

The subscripts differentiate the various 3’s and 4’s and increase from right to left. Consider
the pairs of 3’s and 4’s where the 3 is in a higher row than the 4 (or equivalently the 3 is in
the same column or a column to right of the 4). The dots in the picture below indicate the
possible pairs.

41

42 · ·
43 · · · ·
44 · · · ·

31 32 33 34
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The above algorithm for selecting(xj , yj ) pairs is to work through the columns from left
to right, and in each column select the highest row which has not already been selected
and contains a dot in that column. TheX’s in the pictures below indicate the selections
for two possible ordering of columns. Notice that the rows containing anX are the same
in both.

41

42 X ·
43 · X · ·
44 · · X ·

31 32 33 34

41

42 X ·
43 X · · ·
44 · · X ·

34 31 33 32

Theorem 2.1 When selecting(xj , yj ) pairs by the above greedy algorithm, the set of yj ’s
selected does not depend on the order in which the i’s are considered.

Proof: Suppose two orderings of thei ’s differ by a neighboring transposition. Since the
symmetric group is generated by neighboring transpositions, it suffices to prove that the
rows selected do not change under this transposition. Following the notation of Exam-
ple 2, suppose columnsk andk+ 1 are transposed. Assume without loss of generality that
the number of dots in columnk is greater than or equal to the number in columnk + 1.
The rows selected while considering columns 1 tok − 1 are the same in both. Suppose
in columnk that row y′ is selected and in columnk + 1 row y′′ is selected. Since the
number of dots in columnk is greater than the number of dots in columnk + 1, row y′

is higher than rowy′′. When columnsk andk + 1 are transposed, there are two cases
based on whether or not there is dot in columnk + 1 row y′. If there is a dot in this
position, then in the transposed case, in columnk + 1, row y′ is selected and in column
k, row y′′ is selected. If there is no dot in this position, then in the transposed case, in
columnk + 1, row y′′ is selected and in columnk, row y′ is selected. In either case, rows
selected by columnsk andk + 1 are the same. Thus, no differences occur in the later
selections. 2

Definition Given a semistandard tableauT , for j , k ≥ 1, define the( j, j + k)-major
index, denoted majj, j+k(T), by

majj, j+k(T) =
j+k−1∑
i= j

(i − j + 1)mi (T).

Define majj, j (T) to be 0.



P1: VBI

Journal of Algebraic Combinatorics KL629-03-Doran August 20, 1998 14:9

258 DORAN

Example 3 Using (1) asT .

maj1,2(T) = 1 · 2 = 2

maj1,3(T) = 1 · 2 + 2 · 3 = 8

maj1,4(T) = 1 · 2 + 2 · 3 + 3 · 1 = 11

maj1,5(T) = 1 · 2 + 2 · 3 + 3 · 1 + 4 · 1 = 15

maj2,3(T) = 1 · 3 = 3

maj2,4(T) = 1 · 3 + 2 · 1 = 5

maj2,5(T) = 1 · 3 + 2 · 1 + 3 · 1 = 8

maj3,4(T) = 1 · 1 = 1

maj3,5(T) = 1 · 1 + 2 · 1 = 3

maj4,5(T) = 1 · 1 = 1

WhenT is standard, maj1,n(T) is the usual major index of a standard tableau. As a slight
abuse of notation, let maj(T) denote maj1,n(T), wheren is the largest entry appearing inT ,
even whenT is not standard. The statistic majj, j+k(T) can be viewed as maj(T ′) whereT ′

is the semistandard skew-tableau formed by the entries{ j, . . . , j + k} in T , but with each
entry reduced byj − 1 so that the values which appear inT ′ run from 1 tok.

Definition Given a partitionµ ` b of lengthl , let ri = µ1+ · · · +µi . Setr0 = 0. Given
a semistandard tableauT with entries less than or equal tob. Define

ωmajµ(T) =
l∏

i=1

ω
majri−1,ri

(T)
µi

whereωµi = e2π i /µi .

Example 4 Let T be (1). The value ofωmajµ(T) is computed for everyµ ` 5.

µ ωmajµ(T)

(5) ω15
5 = 1

(4, 1) ω11
4 ω

0
1 =−i

(3, 2) ω8
3ω

1
2 =−ω2

3

(3, 1, 1) ω8
3ω

0
1ω

0
1 =ω2

3

(2, 2, 1) ω2
2ω

1
2ω

0
1 =−1

(2, 1, 1, 1) ω2
2ω

0
1ω

0
1ω

0
1 = 1

(1, 1, 1, 1, 1) ω0
1ω

0
1ω

0
1ω

0
1ω

0
1 = 1

Some more examples are done in Appendix A. Now the main result can be stated.
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Theorem 2.2 Letµ ` b, then

pµ(x) ◦ sa(x) =
∑

SST T
wt(T)=ab

ωmajµ(T) ssh(T)(x).

Example 5 Using the values found in Appendix A,

p(1,1,1) ◦ s(2) = s(6) + 2s(5,1) + 3s(4,2) + s(4,1,1) + s(3,3) + 2s(3,2,1) + s(2,2,2),

p(2,1) ◦ s(2) = s(6) + s(4,2) − s(4,1,1) − s(3,3) + s(2,2,2),

p(3) ◦ s(2) = s(6) − s(5,1) + s(4,1,1) + s(3,3) − s(3,2,1) + s(2,2,2).

The “(x)”s have been omitted.

Corollary 2.3 Letµ ` b, then

〈pµ(x) ◦ sa(x), sλ(x)〉 =
∑

SST T
sh(T)=λ,wt(T)=ab

ωmajµ(T).

A similar but different formula forpµ(x) ◦ sa(x) is given in [2]. Their work is also
reproduced in Example 8 of Section I.8 of [9].

3. Charge and Kostka polynomials

In this section, the charge of a semistandard tableau is defined and is related to the major
index. Most of the definitions in this section are taken from Chapter 2 of [1] which is
an excellent reference on this material. It should be noted that these definitions are the
“reverse” of those given in Section III.6 of [9]. However, they give the same value for the
charge of a semistandard tableau.

Definition Let T be a semistandard tableau or semistandard skew-tableau. Theword of
T , denotedw(T), is the sequence of integers gotten by reading the entries ofT from left to
right in each row starting with the bottom row and moving up.

Example 6 Let T be (1). Thenw(T) = 334522341111224.

Definition Let T be a semistandard tableau or semistandard skew-tableau of weight 1b.
Assign anindexto each number inw(T) as follows: the number 1 is given index 0, and
if i has indexr , theni + 1 is given indexr or r + 1 depending on whetheri + 1 is to the
left or right, respectively, ofi in w(T). Thechargeof T , denoted c(T), is the sum of these
indices.
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Example 7 Let T be

1 2 6 7 12

3 5 8 9

4 10 11

Then

w(T) = 4 10 11 3 5 8 9 1 2 6 7 12

1 5 6 1 2 4 5 0 1 3 4 7

The index of each number has been written below it. Thus, c(T) = 1+ 5+ 6+ 1+ 2+
4+ 5+ 0+ 1+ 3+ 4+ 7= 39.

Notice that thei ’s for which i occurs to the right ofi + 1 inw(T) are the descents ofT .
Thus, maj(T) is the sum of thei ’s such thati is to the right ofi+1 inw(T). The definition of
the major index can be extended to arbitrary wordsw of weight 1b by setting maj(w) to be the
sum of thei ’s such thati is to the right ofi+1 inw. Likewise, the definition of charge can be
extended to arbitrary words of weight 1b by the obvious generalization of the above definition
of charge. So, for a standard tableauT , c(T)= c(w(T)) and maj(T)=maj(w(T)).

Proposition 3.1 Letw be a word of weight1b. Then

c(w) ≡
maj(w)+ b

2
if b is even,

maj(w) if b is odd.
(modb)

Proof: Let D = {i : i is to the right ofi + 1}. So, maj(w) =∑i∈D i . Wheni ∈ D, i and
i + 1 are assigned the same index when calculating c(w). Wheni /∈ D, the index given to
i + 1 is one greater than that given toi . Thus, wheni /∈ D, the index of everyj > i is
incremented by one and contributesb− i to the charge ofw.

c(w) =
∑
i /∈D

b− i

=
b−1∑
i=1

(b− i )−
∑
i∈D

(b− i )

= b(b− 1)

2
− |D|b+maj(w)

≡ b(b− 1)

2
+maj(w)(modb)

Whenb is evenb(b−1)
2 ≡ b

2 (modb). Whenb is odd, b(b−1)
2 ≡ 0 (modb). 2

The definition of charge is extended to semistandard tableau and semistandard skew-
tableau of arbitrary weightµby decomposingw(T) into several standard wordsw1, . . . , wµ1
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and defining the charge ofT be the sum of the charges of thewi ’s. Letw(T) be a word
with weightµ. To construct subwordw1, readw(T) from right to left. Select the first 1
which occurs, then select the first 2 which occurs to the left of the previously selected 1,
and so on. If at any stage there is noi + 1 to the left ofi , then circle around to the right
and search fori + 1 again readingw(T) from right to left. Continue until ani is reached
for which i + 1 does not appear inw(T). The wordw1 is formed by taking the selected
numbers in the order in which they appear inw(T). To constructw2, remove the selected
numbers which formw1 fromw(T) and repeat the above process. Each subsequentwi is
obtained by removing the numbers which make upwi−1 from what remains ofw(T) and
repeating the selection process. The weight ofwi is 1µ

′
i .

Definition Let T be a semistandard tableau or semistandard skew-tableau of weightµ.
Letw1, . . . , wµ1 be the decomposition ofw(T). Thechargeof T is defined to be c(w1)+
· · · + c(wµ1).

Example 8 Let T be

1 1 1 2 3

2 2 3 4 4

3 4

w(T) = 342234411123,w1 = 3241,w2 = 2413,w3 = 4312, c(T) = 1+ 2+ 3= 6.

Definition Let |λ| = |µ|. TheKostka polynomial, denotedKλ,µ(q), is given by

Kλ,µ(q) =
∑

SST T
sh(T)=λ,wt(T)=µ

qc(T).

This is not the usual definition of the Kostka polynomial. The fact that this is equivalent
to the usual definition is a deep result of A. Lascoux and M. Sch¨utzenberger [8].

Lemma 3.2 Let T be a semistandard tableau or semistandard skew-tableau of weight ab,

then

c(T) ≡
maj(T)+ b

2
if b is even and a is odd,

(modb).
maj(T) otherwise.

Proof: Letw1, . . . , wa be the decomposition ofw(T). Eachw j is a word of weight 1b.
Let ki be the number ofw j ’s in which i is to right of i + 1. If i is to right of i + 1 inw j ,
theni +1 is in a lower row than isi in T . Eachi appears in one and only onew j . Thus, the
w j ’s provide an ordering on thei ’s. The method for selectingi + 1 in each word is exactly
the “greedy” method described in step (ii) of the algorithm given in Section 2. Thus by
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Theorem 2.1,ki = mi (T). So, maj(T) = maj(w1)+ · · · +maj(wa). By Proposition 3.1,

maj(T) ≡

(

maj(w1)+ b

2

)
+ · · · +

(
maj(wa)+ b

2

)
if b is even,

(modb)
maj(w1)+ · · · +maj(wa) if a is odd.

≡
{

maj(w)+ a
b

2
if b is even,

(modb)
maj(w) if a is odd.

≡
{

maj(w)+ b

2
if b is even anda is odd,

(modb)
maj(w) otherwise. 2

Corollary 3.3 Letλ ` ab. Then

Kλ,ab(ωb) = (−1)(b−1)a
∑

SST T
sh(T)=λ,wt(T)=ab

ω
maj(T)
b .

Proof: By Lemma 3.1,

ω
c(T)
b =

{
ω

maj(T)+ b
2

b if b is even anda is odd,

ω
maj(T)
b otherwise.

=
{
−ωmaj(T)

b if b is even anda is odd,

ω
maj(T)
b otherwise.

= (−1)(b−1)aω
maj(T)
b

Thus,Kλ,ab(ωb) =
∑

T ω
c(T)
b = (−1)(b−1)a∑

T ω
maj(T)
b . 2

Definition Let |µ| + |ν| = |λ|. Theskew-Kostka polynomialdenotedKλ/ν,µ(q), is given
by

Kλ/ν,µ(q) =
∑

SSSTT
sh(T)=λ/ν,wt(T)=µ

qc(T).

Since Lemma 3.2 holds for semistandard skew-tableaux as well as semistandard tableaux,
the obvious analog of Corollary 3.3 withλ replaced byλ/ν also holds. The next result
gives the relationship between skew-Kostka polynomials and Kostka polynomials. A proof
of this is given in Chapter 2 of [1].

Theorem 3.4 Let |µ| + |ν| = |λ|. Then

Kλ/ν,µ(q) =
∑
η`|µ|

cλν,ηKη,µ(q).



P1: VBI

Journal of Algebraic Combinatorics KL629-03-Doran August 20, 1998 14:9

A NEW PLETHYSM FORMULA FOR SYMMETRIC FUNCTIONS 263

Corollary 3.5 Let |λ| − |ν| = ab. Then

∑
SSSTT

sh(T)=λ/ν,wt(T)=ab

ω
maj(T)
b =

∑
η`ab

cλν,η
∑

SST T
sh(T)=η,wt(T)=ab

ω
maj(T)
b

 .
Proof: ∑

SSSTT
sh(T)=λ/ν,wt(T)=ab

ω
maj(T)
b = (−1)(b−1)a

∑
SSSTT

sh(T)=λ/ν,wt(T)=ab

ω
c(T)
b

= (−1)(b−1)aKλ/ν,ab(ωb)

= (−1)(b−1)a
∑
η`ab

cλν,ηKη,ab(ωb)

=
∑
η`ab

cλν,η
∑

SST T
sh(T)=η,wt(T)=ab

ω
maj(T)
b


2

4. Modified Hall-Littlewood functions

This section contains a result of Lascoux, Leclerc, and Thibon [6] which ties the plethysm
of power-sum symmetric functions and Schur symmetric functions to Kostka polynomials
evaluated at roots of unity.

Definition Let |µ| = |ν|. Green’s polynomial, Xν
µ(q), is given by

Xν
µ(q) =

∑
λ`|ν|

χλ(µ)Kλ,ν(q).

Definition Themodified Hall-Littlewood function, Q′ν(x;q) is given by

〈Q′ν(x;q), pµ(x)〉 = Xν
µ(q).

Theorem 4.1 [6]

Q′ab(x;ωb) = (−1)(b−1)a pb(x) ◦ sa(x).
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5. Proof of the main result

Proof of Theorem 2.2: Proof by induction on the number of parts ofµ. First supposeµ
has one part. Soµ = (b). Let n = ab andλ ` n.

〈pb ◦ sa(x), sλ(x)〉
= (−1)(b−1)a〈Q′ab(x, ωb), sλ(x)〉 (Theorem 4.1)

= (−1)(b−1)a
∑
µ`n

〈Q′ab(x, ωb), (χ
λ(µ)/zµ)pµ(x)〉 (Proposition 1.3(a))

= (−1)(b−1)a
∑
µ`n

(χλ(µ)/zµ)X
ab

µ (ωb)

= (−1)(b−1)a
∑
µ`n

(χλ(µ)/zµ)
∑
η`n

χη(µ)Kη,ab(ωb)

= (−1)(b−1)a
∑
η`n

Kη,ab(ωb)

(∑
µ`n

χλ(µ)χη(µ)/zµ

)
︸ ︷︷ ︸

= δλ,η
= (−1)(b−1)aKλ,ab(ωb)

=
∑

SST T
sh(T)=λ,wt(T)=ab

ω
maj(b)(T)
b (Corollary 3.3)

Since the Schur functions are a basis for the symmetric functions, this shows that

pb ◦ sa(x) =
∑

SST T
wt(T)=ab

ω
maj(b)(T)
b ssh(T)

which is the base case for the induction.
Let l = l (µ). Letµ∗ be the partition(µ1, . . . , µl−1). By the induction hypothesis, the

theorem holds forpµ∗(x) ◦ sa(x) and pµl (x) ◦ sa(x).

pµ(x) ◦ sa(x)

= (pµ∗(x) ◦ sa(x))(pµl (x) ◦ sa(x))

=

 ∑
SST T1

wt(T1)=a(b−µl )

ωmajµ∗ (T1) ssh(T1)(x)


 ∑

SST T2
wt(T2)=aµl

ω
maj(b)(T2)

b ssh(T2)


=

∑
SST T1

wt(T1)=a(b−µl )

∑
SST T2

wt(T2)=aµl

ωmajµ∗ (T1) ωmaj(T2)
µl

ssh(T1)(x) ssh(T2)(x)
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〈pµ(x) ◦ sa(x), sλ〉
=

∑
SST T1

wt(T1)=a(b−µl )

∑
SST T2

wt(T2)=aµl

ωmajµ∗ (T1)ωmaj(T2)
µl

cλsh(T1),sh(T2)

=
∑

ν`a(b−µl )

∑
η`aµl

∑
SST T1

wt(T1)=a(b−µl ),sh(T1)=ν

∑
SST T2

wt(T2)=aµl ,sh(T2)=η

ωmajµ∗ (T1)ωmaj(T2)
µl

cλν,η

=
∑

ν`a(b−µl )

 ∑
SST T1

wt(T1)=a(b−µl ),sh(T1)=ν

ωmajµ∗ (T1)


 ∑

SSSTT3
wt(T3)=aµl ,sh(T3)=λ/ν

ωmaj(T3)
µl


=

∑
SST T4

wt(T4)=ab,sh(T4)=λ

ωmajµ(T4)

In the last step, the following bijectionϕ between∪ν{(T1, T3) : sh(T1) = ν,wt(T1) =
ab−µl , sh(T3) = λ/µ,wt(T3) = aµl } and {T4 : sh(T4) = λ,wt(T4) = ab}. Construct
ϕ(T1, T3) by incrementing every entry ofT3 by b − µl and placingT1 inside T3. For
example,

ϕ

1 1 2

2
,

1

1 2

2

 = 1 1 2 3

2 3 4

4

.

This is clearly a bijection. Furthermore, it has the property that

ωmajµ∗ (T1) ωmaj(T3)
µl

= ωmajµϕ(T1,T3).

Again since the Schur symmetric functions form a basis, this computation gives the desired
result. 2

Let α = (α1, . . . , αl ) be a composition ofb which when sorted isµ. Defineωmajα(T) in
the analogous manner. Then since nothing in the above proof depended on the fact thatµ

is a partition, we have

l∏
i=1

pαi (x) ◦ sa(x) =
∑

SST T
sh(T)=λ,wt(T)=ab

ωmajα(T).

Sincepi (x)’s commute and plethysm is algebraic in the first coordinate, the following result
is proven.
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Corollary 5.1 Let α = (α1, . . . , αl ) be a composition of b which when sorted is the
partitionµ. Then

pµ(x) ◦ sa(x) =
∑

SST T
sh(T)=λ,wt(T)=ab

ωmajα(T).

6. Definition of Sλ,b

By looking at the charts in Appendix A, one quickly guesses that for a fixedλ ` ab,

ψ(µ) =
∑

SST T
sh(T)=λ,wt(T)=ab

ωmajµ(T)

is a character ofSb. This section defines the representationSλ,b whose character isψ(µ).
In the next section, the even stronger result that theωmajµ(T) asT varies are the eigenvalues
of an element of cycle typeµ acting onSλ,b is proven.

Let λ ` n = ab. The definition of theSb-representationSλ,b closely follows that
of the Specht modules. The Specht modules are a concrete construction of the irreducible
representations ofSb. Whena = 1 (soλ ` b), Sλ,b is the Specht module corresponding toλ.
James’ monograph [4] and Sagan’s book [10] are a good sources on the Specht modules.

There are two group actions onWλ,b which are needed to defineSλ,b. The first is the
action ofSb by permuting the values of the entries. This action is denoted byπ · T .

Example 9

(123) · 2 1 3 1

3 2
= 3 2 1 2

1 3

The second is the action ofSn by permuting positions. This action is denoted byσ ∗ T .
For a given tableauT , let RT denote the subgroup ofSn which set-wise fixes the rows of
T , and letCT denote the subgroup ofSn which set-wise fixes the columns ofT . If the
shape ofT is λ, andλ′ is the conjugate partition ofλ, thenRT ' Sλ1 × Sλ2 × · · · × Sλl and
CT ' Sλ′1 × Sλ′2 × · · · × Sλ′λ1

.

Example 10{
σ ∗ 2 1 3 1

3 2
: σ ∈ RT

}

=
{

2 1 3 1

3 2
,

1 2 3 1

3 2
,

2 1 3 1

2 3
,

1 3 1 2

3 2
, . . .

}
{
τ ∗ 2 1 3 1

3 2
: τ ∈ CT

}

=
{

2 1 3 1

3 2
,

3 1 3 1

2 2
,

2 2 3 1

3 1
,

3 2 3 1

2 1

}
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It should be noted that these two actions commute. That is,π · (σ ∗ T) = σ ∗ (π · T).

Definition Let Wλ,b be the complex vector space with basisWλ,b.

SinceSb acts onWλ,b, Wλ,b is aSb-(permutation) representation.

Definition GivenT ∈Wλ,b, define the elementeT in Wλ,b by

eT =
∑
σ∈RT

∑
τ∈CT

(sgnτ)(στ) ∗ T.

Let Sλ,b be the subspace ofWλ,b generated by{eT : T ∈Wλ,b}.

Theorem 6.1 Sλ,b is a subrepresentation of Wλ,b with dimension|Sλ,b|. Furthermore,
{eT : T ∈ Sλ,b} is a basis for Sλ,b.

As mentioned before, whena = 1, Sλ,b is the Specht module corresponding toλ. Since
the proof of this Theorem follows the Specht module case so closely, the proof is omitted.
See Chapter 4 of [4] or Section 2.3 of [10] for details. Letχλ,b be the character ofSλ,b.
Whena = 1 (soλ ` b), χλ,b = χλ. The next result, in conjunction with Corollary 2.3,
shows thatSλ,b is the desiredSb-representation. A proof is given in [3].

Theorem 6.2 [3] Letλ ` n = ab andµ ` b. Thenχλ,b(µ) = 〈pµ(x) ◦ sa(x), sλ〉.

7. Eigenvalues ofSλ,b

The next result is the basic tool used to determine the eigenvalues of a group element acting
on a representation. A proof is given in [11].

Proposition 7.1 Let V be a representation of G of dimension n with characterχV . Let
g ∈ G be an element of order m.{ωe1

m, . . . , ω
en
m } are the eigenvalues of g acting on V if and

only if

ωke1
m + · · · + ωken

m = χV (g
k)

for all 0≤ k < m.

Lemma 7.2 Letλ = ab and d| b. If ζ1 andζ2 are both primitive dth roots of unity, then
Kλ,ab(ζ1) = Kλ,ab(ζ2).

A proof of this is given in [6].
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Corollary 7.3 Let |λ/ν| = n = ab and d| b. If ζ1 andζ2 are both primitive dth roots of
unity, then ∑

SSSTT
sh(T)=λ/ν,wt(T)=ab

ζ
maj(T)
1 =

∑
SSSTT

sh(T)=λ/ν,wt(T)=ab

ζ
maj(T)
2 .

Proof: This follows from Lemma 7.2 and the skew version of Corollary 3.3 referred to
in the comments after the definition of skew-Kostka polynomials. 2

Lemma 7.4 Let |λ/ν| = n = ab and d| b. Then∑
SSSTT

sh(T)=λ/ν,wt(T)=ab

ω
d maj(T)
b

=
∑

ν=η0⊂η1⊂···⊂ηd=λ|ηi /ηi−1|=a(b/d)

d∏
i=1

 ∑
SSSTT

sh(T)=ηi /ηi−1,wt(T)=a(b/d)

ω
maj(T)
b/d

 (2)

Proof: Let T be a semistandard skew-tableau of shapeλ/µ and weightab. Let ηi be
the shape formed by the entries ofT with values in{1, . . . , i (b/d)}. DecomposeT into
a sequence ofd semistandard skew-tableaux(T1, . . . , Td) by lettingTi be the entries ofT
in positionsηi /ηi−1 reduced by(i − 1)(b/d) so that the values run from 1 tob/d. For
example, letT be

3

1 2 4

1 1 2 3

2 3 4 4

with a = 3, b = 4, andd = 2. Then

T1 =
1 2

1 1 2

2

T2 =

1

2

1

1 2 2

This gives a bijection between the terms appearing on the two sides of(2). It is clear that
under this bijection

ω
d maj(T)
b =

∏
i

ω
maj(Ti )

b/d

which shows that term for term the two sides of(2) are equal. 2

Theorem 7.5 Let λ ` n = ab andµ ` b. Takeσ ∈ Sb of cycle typeµ. Then the
eigenvalues ofσ acting on Sλ,b are {ωmajµ(T) : T ∈ Sλ,b}.
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Proof: Let σ be a permutation of typeµ. Pick k. The cycle type ofσ k is the partition
which contains gcd(k, µi ) parts equal toµi /gcd(k, µi ) for 1≤ i ≤ l (µ). Call this partition
µ∗. Let di = gcd(k, µi ).

By Theorem 6.2 and Corollary 2.3,

χλ,b(µ) =
∑

SST T
sh(T)=λwt(T)=ab

ωmajµ(T).

∑
SST T

sh(T)=λwt(T)=ab

(
ωmajµ(T)

)k

=
∑

∅=ν0⊂···⊂νl=λ|νi /νi−1|=µi

l∏
i=1

 ∑
SSSTT

sh(T)=νi /νi−1wt(T)=aµi

ωk maj(T)
µi



=
∑

∅=ν0⊂···⊂νl=λ|νi /νi−1|=µi

l∏
i=1

 ∑
SSSTT

sh(T)=νi /νi−1wt(T)=aµi

ωdi maj(T)
µi



=
∑

∅=ν0⊂···⊂νl=λ|νi /νi−1|=µi

l∏
i=1


∑

νi−1=ηi,0⊂···⊂ηi,di =νi

|ηi, j /ηi, j−1|=a(µi /di )

di∏
j=1


∑

SSSTT
sh(T)=ηi, j /ηi, j−1

wt(T)=a(µi /di )

ω
maj(T)
µi /di




=
∑

∅=η1,0⊂···⊂η1,d1=η2,0⊂···⊂ηl ,dl=λ

l∏
i=1

di∏
j=1


∑

SSSTT
sh(T)=ηi, j /ηi, j−1

wt(T)=a(µi /di )

ω
maj(T)
µi /di


=

∑
SST T

sh(T)=λwt(T)=ab

ωmajµ∗ (T) ssh(T)(x)

=χλ,b(µ∗)

So, by Proposition 7.1, the result is proven. 2

Whenλ ` b, Theorem 7.5 reduces to the result of J. Stembridge [11] on the eigenvalues
of the action of permutations on the irreducible representations of the symmetric group.

Appendix A: Extended Example

Example 11 The charts below giveωmajµ(T) for all µ ` 3 and all semistandard tableaux
T of weight 23. The charts are organized based on the shapeλ of T . The column sums are
the character valuesχλ,3.
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λ = (6)
T ωmaj(1,1,1)(T ) ωmaj(2,1)(T ) ωmaj(3)(T )

1 1 2 2 3 3 1 1 1

1 1 1

λ = (5, 1)
T ωmaj(1,1,1)(T ) ωmaj(2,1)(T ) ωmaj(3)(T )

1 1 2 2 3
3

1 1 ω2
3

1 1 2 3 3
2

1 −1 ω3

2 0 −1

λ = (4, 2)
T ωmaj(1,1,1)(T ) ωmaj(2,1)(T ) ωmaj(3)(T )

1 1 2 2
3 3

1 1 ω3

1 1 2 3
2 3 1 −1 1

1 1 3 3
2 2

1 1 ω2
3

3 1 0

λ = (4, 1, 1)
T ωmaj(1,1,1)(T ) ωmaj(2,1)(T ) ωmaj(3)(T )

1 1 2 3
2
3

1 −1 1

1 −1 1

λ = (3, 3)
T ωmaj(1,1,1)(T ) ωmaj(2,1)(T ) ωmaj(3)(T )

1 1 2
2 3 3

1 −1 1

1 −1 1
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λ = (3, 2, 1)
T ωmaj(1,1,1)(T ) ωmaj(2,1)(T ) ωmaj(3) (T )

1 1 2
2 3
3

1 −1 ω2
3

1 1 3
2 2
3

1 1 ω3

2 0 −1

λ = (2, 2, 2)
T ωmaj(1,1,1)(T ) ωmaj(2,1)(T ) ωmaj(3)(T )

1 1
2 2
3 3

1 1 1

1 1 1
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