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Abstract. Let W be a Coxeter group acting as a matrix group by way of the dual of the geometric representation.
Let L be the lattice of intersections of all reflecting hyperplanes associated with the reflections in this representation.
We show thatL is isomorphic to the lattice consisting of all parabolic subgroups ofW. We use this correspondence
to find all W for which L is supersolvable. In particular, we show that the only infinite Coxeter group for which
L is supersolvable is the infinite dihedral group. Also, we show how this isomorphism gives an embedding of
L into the partition lattice wheneverW is of type An, Bn or Dn. In addition, we give several results concerning
non-broken circuit bases (NBC bases) whenW is finite. We show thatL is supersolvable if and only if all NBC
bases are obtainable by a certain specific combinatorial procedure, and we use the lattice of parabolic subgroups
to identify a natural subcollection of the collection of all NBC bases.
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1. Introduction

By an arrangementA, we mean a collection of (possibly infinite) codimension 1 subspaces
of a finite dimensional real vector spaceV . Associated toA is a lattice which consists of
all possible intersections of elements ofA, ordered by reverse set inclusion. A rich theory
has been developed to study the properties of this lattice whenA is finite (see [7]). IfW
is a finite group generated by a set of reflections acting onRn, the reflection arrangement
corresponding toW is the arrangement consisting of the reflecting hyperplanes of all pos-
sible reflections inW. We call the intersection lattice corresponding to this arrangement a
reflection lattice (with groupW) and denote it byLW.

The main purpose of this paper is to establish an isomorphism between this lattice and
the lattice consisting of all parabolic subgroups ofW, denotedPW, and to use this corres-
pondence to study the supersolvability ofLW. Because of the strong similarities between
this isomorphism and the isomorphism established in the fundamental theorem of Galois
theory, we refer to this isomorphism as the “Galois correspondence” forLW.

In Section 2, we establish our notation and recall some of the basic results we use. The
Galois correspondence and the characterization of the groupsW for whichLW are supersolv-
able holds for an arbitrary Coxeter group (using the dual of the geometric representation),
so we present the basic facts we need about Coxeter groups here. Also included is standard
material about arrangements and their associated lattices. These results may be found in [7]
for the case in which the Coxeter group (and hence the arrangement) is finite. The proofs
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that these results hold forLW even whenW is an infinite Coxeter group are straightfor-
ward generalizations of the proofs that may be found in [7], so we have not included them.
In Section 3 we give the basic tool of the paper which is Theorem 3.1, the theorem that
establishes the Galois correspondence for Coxeter groups. In Section 4 we explain how
this theorem may be viewed as a generalization of the correspondence betweenLSn and the
partition lattice by showing how the Galois correspondence can be used to realizeAn, Bn

andDn as sublattices of the partition lattice.
Section 5 is devoted to our main application of the Galois correspondence for reflection

lattices. In Theorem 5.1 we give several different characterizations of when a finite Coxeter
group has an associated reflection lattice which is supersolvable. For this characterization,
W is assumed to be finite because the proof uses heavily the Poincar´e polynomial associated
with W. In the infinite case, we are still able to achieve a complete enumeration of all
W for which LW is supersolvable (Theorem 5.3); however, we are not able to give the
other characterizations which appeared in Theorem 5.1. While the proof of Theorem 5.1
is relatively straightforward given that the Galois correspondence is known, the proof of
Theorem 5.3 makes use of a somewhat more intricate analysis of the parabolic subgroups of
W. Finally, in Section 6, we use the Galois correspondence to define a special subcollection
of the collection of all non-broken circuit bases in the latticeLW. Here we also assumeW
to be finite so that we can use certain characterizations of simple root systems which are
only true in the finite case.

2. Preliminaries

First we review a few facts about reflection groups that can be found, for example, in [6].
We are borrowing Humphreys’ notation. LetRn be then-dimensional Euclidean space
endowed with a certain positive definite symmetric bilinear form(v, u) (for v, u ∈ Rn). A
reflection rα :Rn → Rn sends the nonzero vectorα to its negative while fixing pointwise
the hyperplaneHα orthogonal toα. DefineW to be the group generated by all reflections
rα, α ∈ 8, where8 is a root systemof W. In general roots need not be of unit length,
but hereafter we will always choose root systems with roots of length one. It happens that
the reflectionsrα areall the reflections inW, andW is said to be areal ( finite) reflection
group.

Each elementw ∈ W can be expressed in the form:

w = rα1rα2 · · · rαk .

The smallest value ofk in any such expression forw is denotedal(w), and is called
theabsolute lengthof w. An expressionrα1rα2 · · · rαk is said to betotally reducedif k =
al(rα1 · · · rαk).

Given a simple system of roots1 for W, the subgroups ofW generated by subsetsI ⊆ 1
are of fundamental importance to our work.

Definition 2.1 If 1 is a simple system of roots forW, and if I <1, define WI =
〈{rα :α ∈ I }〉. H is a parabolic subgroup ifH = WI for someI .
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Let mi denote theexponentsof W, anddi = mi + 1 be the degrees ofW. There is
a very nice presentation forW in terms of the simple roots ofW that is also of impor-
tance to us. For any rootsα, β ∈ 8, let m(α, β) denote the order of the productrαrβ
in W.

Proposition 2.1 ([6, p. 16]) Fix a simple system1 in 8, and let sα be the reflection
corresponding toα ∈ 1. Then W is generated by the set S= {sα |α ∈ 1}, subject only to
the relations

(sαsβ)
m(α,β) = 1 (α, β ∈ 1).

This presentation ofW shows thatW is determined up to isomorphism by the set of
integersm(α, β), (for α, β ∈ 1). Coxeter (see [5]) encoded this information in a labelled
graph0 constructed as follows: Let0 be a graph whose vertex set is indexed by the ele-
ments of1; two distinct verticesα, β are joined by an edge, labelledm(α, β), whenever
m(α, β) ≥ 3. A pair of vertices not joined by an edge implicitly means thatm(α, β) = 2.
This graph is called the Coxeter graph ofW and uniquely determines (up to isomor-
phism)W. Note that since simple systems are conjugate,0 does not depend on the choice
of 1.

This result inspires the following generalization of a finite real reflection group, called a
Coxeter group, see for example [6, p. 105].

Definition 2.2 (W, S,m) is called a Coxeter group if the following are true:

(a) S is a finite set.
(b) m : S× S→ Z∪ {∞} is a function so that

(i) m(s, s) = 1 for all s ∈ S.
(ii) m(s, s′) = m(s′, s) ≥ 2 for all s, s′ ∈ Swith s 6= s′.

(c) W = 〈S〉/〈〈(ss′)m(s,s
′) : s, s′ ∈ S〉〉 where〈S〉 indicates the free group generated by

S and〈〈(ss′)m(s,s
′) : s, s′ ∈ S〉〉 indicates the normal subgroup of〈S〉 generated by the

elements(ss′)m(s,s
′).

By abuse of language, we will sometimes state that an abstract group,W, is a Coxeter group.
By this, we will mean that there is a Coxeter group(W′, S,m) such thatW is isomorphic to
W′. Using this convention, we observe that Proposition 2.1 simply states that every finite
real reflection group is a Coxeter group.

If (W, S,m) is a Coxeter group, we can define the concept of a parabolic subgroup as
follows.

Definition 2.3 Let (W, S,m) be a Coxeter group.

(a) G ⊂ W is called a parabolic subgroup if and only if there is aT ⊂ W and aw ∈ W
such that the following hold:
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(i) T ⊂ S
(ii) G = 〈wTw−1〉.
If G is a parabolic subgroup, define rank(G) = |T |.

(b) PW is the partially ordered set whose elements are all the parabolic subgroups of
(W, S,m), ordered by set inclusion.

Note that this definition is independent of any representation ofW as a matrix group. One
can also generalize the concept of a reflection without explicit use of any representation of
the Coxeter group. The reflections of(W, S,m) are simply defined to be all elements of
W which are conjugate to some element inS. However, for notions such as roots, simple
root systems, etc., we will need a linear representation of the groupW. There is a natural
representation associated with a Coxeter group which is called its geometric representation.

Definition 2.4 Let (W, S,m) be a Coxeter group.

(a) Let V = spanR(S) be the vector space generated byS (that is, the freeR-module
generated byS).

(b) Letσ be the representation

σ : W→ GL(V)

defined in the following way. First, lets, s′ ∈ S. Then define

σ(s)(s′) = s′ + 2(cos[π/m(s, s′)])s.

Next, extendσ(s) to a function fromV to V by requiring that it be linear. Finally,
extendσ to a function fromW to GL(V) by requiring that it be a group homomorphism.
σ is called the geometric representation ofW.

(c) Letσ ∗ denote the adjoint representation ofσ , that is,

σ ∗ : W→ GL(V∗)

is defined by

[σ ∗(w)(θ)](v) = θ(σ (w)−1v)

for all w ∈ W, θ ∈ V∗ ≡ Hom(V,R) andv ∈ V . We call σ ∗ the co-geometric
representation. Note that

[σ ∗(w)(θ)](σ (w)v) = θ(v)

for all w ∈ W, θ ∈ V∗ andv ∈ V .
(d) Define an inner productB on V by defining

B(s, s′) = −cos[π/m(s, s′)]
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wheres, s′ ∈ S, and extendingB to a function onV×V by requiring that it be bilinear.
Note thatB(σ (w)v, σ (w)v′) = B(v, v′) for all w ∈ W andv, v′ ∈ V . Note thatB
defines a natural mapb from V to V∗ as follows:

b(v)(v′) = B(v, v′)

for all v, v′ ∈ V . σ (respectivelyσ ∗) givesV (respectivelyV∗) the structure of aW
module, and one can easily verify thatb is a morphism of theW modulesV andV∗.
Hence, whenB is non-degenerate (and thusb is an isomorphism), the representations
σ andσ ∗ are equivalent, so there is no need to distinguish between them. In particular,
this is true whenW is finite because in this caseB is positive definite. However,
for many Coxeter groups,B is degenerate, and the representationsσ andσ ∗ are not
equivalent. Because we make essential use of the results concerning the Tits’ cone, we
must restrict our attention toσ ∗, and notσ . Next, we summarize these results.

Definition 2.5 Let (W, S,m) be a Coxeter group, with co-geometric representationσ ∗.

(a) Let I ⊂ S. DefineCI as follows:

CI = {θ ∈ V∗ : θ(s) = 0 if s ∈ I andθ(s) > 0 if s ∈ S− I }.

(b) Let

U = {σ ∗(w)(v) :w ∈ W andv ∈ CI for someI ⊂ S}.
U is called the Tits’ cone ofW.

Here is the basic theorem concerning Tits’ cones (see [6], p. 126, Theorem (a)).

Theorem 2.1 (Tits) Letw ∈ W and I, J ⊂ S. If w(CI ) ∩ CJ 6= ∅, then I = J and
w ∈ 〈I 〉 sow(CI ) = CI . In particular, 〈I 〉 is the precise stabilizer of each point of CI , and
wCI partitions U, for all w ∈ W, I ⊂ S.

Finally, we make explicit the definition of roots and simple systems of roots for Coxeter
groups.

Definition 2.6 Let (W, S,m) be a Coxeter group with geometric representationσ .

(a) A simple system of roots forW is the setσ(w)(S)wherew is some fixed element ofW.
(b) An elementr of V is called a root ifr is contained in some simple system of roots

for W.8 is used to denote the set of roots, that is,

8 = {r ∈ V : r = σ(w)(s) for somew ∈ W ands ∈ S}.

We have now given the information we need concerning Coxeter groups, and we turn
to the definition of the arrangement associated with a Coxeter group, together with some
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basic properties of arrangements. In what follows we have used [7] as the basic reference.
We should note that in [7] it is assumed thatA is finite, while theA we define here will
be infinite for infinite Coxeter groups. However, the proofs of all the results we give below
follow exactly as presented in [7] for any arrangement, finite or otherwise, as long as the
hyperplanes are in a finite dimensional vector space. Hence, we will not reproduce them
here. In our case, this vector space will beV∗ which is always finite dimensional.

We start with some basic notation and definitions. LetX be a subset ofV . Define
X⊥ ⊂ V∗ as follows:

X⊥ = {θ ∈ V∗ : θ(x) = 0 for all x ∈ X}.

We usex⊥ to indicate{x}⊥ whenx ∈ V .
LetA be the set of allreflecting hyperplanesassociated withW, that is,

A = {α⊥ |α ∈ 8} = {Hα | α ∈ 8},

and let LW denote the poset of all possible intersections of hyperplanes inA ordered
by reverse set inclusion. Denote the partial order ofLW by ≤ (X ≤ Y if and only if
Y ⊆ X). It is a known fact [7, p. 23] thatLW is a geometric lattice, with rank function
given byr (X) = codim(X) for any X ∈ LW wheneverA is a central arrangement. We
should note that, in this paper, our arrangements will always consist of linear subspaces of
V∗, so our arrangements will always be central. Certain Coxeter groups have associated
with them a natural affine representation. While the standard technique of converting this
representation to a linear representation in one higher dimension does give the co-geometric
representation which is discussed in this paper (see [6, p. 133]), we never directly discuss the
arrangement obtained by taking the collection of reflecting hyperplanes from the original
affine representation. Hence, we need never consider the problems associated with non-
central arrangements.

All the reflecting hyperplanesHα have rank one and are called theatomsof LW.Moreover,
for any two elementsX andY of LW themeetof X andY is given by

X ∧ Y =
⋂
{Z ∈ LW | X ∪ Y ⊆ Z},

while if X ∩ Y 6= 0, thejoin of X andY is defined to be:

X ∨ Y = X ∩ Y.

We also need to review the notions of independent set and basis for geometric lattices. LetL
be a geometric lattice. LetA denote the set of atoms ofL. A subsetB = {b1, . . . ,bm} ⊆ A
is said to beindependentif the rank of the join of its elements

∨
B = b1∨· · ·∨bm satisfies,

r (
∨

B) = |B|.Otherwise,B is said to bedependent. A subsetB ⊆ A is said to be abasefor
an elementX ∈ L if and only if B is independent and if

∨
B = X. A circuit is a dependent

setB ⊆ A such that all its proper subsetsC ⊂ B are independent. Given a total order≺
on the set of atomsA, we say thatB = {b1, . . . ,bk} ⊆ A is abroken circuit, denotedBC,
if there is an atoma ∈ A such thata ≺ bi for all i = 1, . . . , k and B ∪ {a} is a circuit.
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In other words, the broken circuits are obtained from the circuits by removing the smallest
atom. Anon-broken circuit, NBC, is a set of atoms that does not contain any broken circuit.
Note thatNBCsets are independent sets of atoms.

There is a fundamental link between theNBCbases ofLW and the elements ofW when
W is finite. Indeed, the first author together with A. Goupil and A. Garsia established in
[2] the following correspondence. Let{Hα1, . . . , Hαk} be an NBC base whereαi < α j if
i < j . Let this NBC base correspond tow defined by

w = rα1 · · · rαk . (2.1)

It turns out that Eq.(2.1) is a totally reduced expression forw, and this correspondence is
a bijection betweenW and the set of allNBCbases ofLW (for a given total order onA).
Moreover, the enumerating polynomial for all theNBCbases ofLW∑

S∈NBC(W)

t |S| (2.2)

has a factorization that involves the exponents ofW (see [3]):∑
S∈NBC(W)

t |S| =
∏

i

(1+mi t).

We shall return to this factorization in Section 5.

3. The Galois correspondence for the lattice of parabolic subgroups

In this section we will show (Theorem 3.1) thatPW, the partially ordered set of parabolic
subgroups ofW, is order isomorphic toLW (and hence is a geometric lattice). This theorem
is almost a direct corollary of Tits’ theorem stated above. While the proof of Theorem 3.1
primarily uses this well-known basic tool, it appears the fact thatPW andLW are isomorphic
is not well known. In fact, while there is a huge body of literature devoted to the study of
LW, we are unable to even find the definition ofPW in the literature. (Frequent reference
can be found to the lattice consisting of all parabolic subgroups of the form〈T〉 whereT
is a subset of some fixedS. This lattice is isomorphic to the Boolean lattice of subsets
of S and is a proper sublattice ofPW.) This isomorphism is crucial for the results of this
paper because our main technique for resolving questions aboutLW will be to resolve the
corresponding question aboutPW.

We start with the definitions of the functions which will turn out to be the lattice iso-
morphism and its inverse betweenLW andPW. The notation for these functions varies
somewhat in the literature. We chose to use the notation from Galois theory because of the
very close parallel between this result and the fundamental theorem of Galois theory.

Definition 3.1 Let (W, S,m) be a Coxeter group, and letρ∗ denote the cogeometric
representation of(W, S,m).
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(a) Let H be a subset ofW. Define

Fix(H) = {φ ∈ V∗ : ρ∗(h)φ = φ for all h ∈ H}.

(b) Let X ⊂ V∗. Define

Gal(X) = {w ∈ W : ρ∗(w)(φ) = φ for all φ ∈ X}.

We now give the proof of the basic tool we will use in this paper.

Theorem 3.1 Gal is an (order and rank preserving) isomorphism from LW to PW with
inverseFix.

Proof: First we observe that Fix(G) ∈ LW if G is a parabolic subgroup. We see this
as follows. LetG = 〈wTw−1〉 where T is a subset ofS for somew ∈ W. Then
Fix(G) = ⋂

t∈T (wt)⊥, so Fix(G) ∈ LW. Also, since{wt : t ∈ T} is independent (w
is a linear isomorphism, andT ⊂ S is independent), the dimension of

⋂
t∈T (wt)⊥ is

dim(V∗)− |T |, which shows the rank of Fix(G) is |T |. By definition,|T | is also rank(G),
so Fix is rank preserving as well.

Next we observe that Gal(X) is a parabolic subgroup ifX is in LW. To see this, letU
denote the Tit’s cone inV∗ (see Definition 2.5). LetC = X ∩U . Notice that the interior of
C in X is non-empty, so that span(C) = X. Hence, Gal(X) = Gal(C) (using the fact thatρ∗

is a linear action). But Theorem 2.1, (in whichC is of the formCI ) says that Gal(C) = WI ,
which is a parabolic subgroup ofW. Moreover, ifC = CI , then rank(X) = |I |. Also,
rank(WI ) = |I |, thus Gal is rank preserving.

Now, since it is always true that Fix(Gal(X)) ⊃ X and Gal(Fix(G)) ⊃ G, the rank
preserving properties of these maps show that Fix(Gal(X)) = X and Gal(Fix(G)) = G,
which completes the result. 2

Observe that in the finite case, ifX ∈ LW and if8 is a root system forW then8 ∩ X⊥

is a root system for Gal(X).
In the next section we show how this “Galois” correspondence can be viewed as a

generalization of the well known correspondence betweenLSn and the partition lattice.
Indeed whenW is the symmetric groupSn, with its usual action by permutation matrices
onRn, the corresponding reflection lattice is isomorphic to the partition lattice, the lattice
consisting of all partitions of the set{1, . . . ,n} ordered by refinement. We will, in fact,
show that whenW is of type An, Bn or Dn, Theorem 3.1 can be interpreted as giving
a correspondence betweenW and certain sublattices of the partition lattice on the set
[n, n̄] = {1, . . . ,n, 1̄, . . . , n̄}.

4. Orbits of parabolic subgroups as partitions

It is a well known fact that the lattice of the braid arrangementAn+1 is isomorphic to
the partition latticeπn. Observe that to a partitionπ = (π1, . . . , πk) of the set [n] there
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corresponds the parabolic subgroup

Sπ1 × Sπ2 × · · · × Sπk

where Sπi is the group of permutations of the setπi . Clearly, the orbit decomposition
of this parabolic subgroup is given by the partitionπ . Thus, one can also interpret the
partition lattice as the lattice of orbits of all parabolic subgroups ofSn. It is this latter
observation that we wish to generalize to the arrangements of typeBn and Dn. For this
entire section, letW stand forSn, Bn or Dn. Consider the usual action ofW on the set
[n, n̄] = {1, . . . ,n, 1̄, . . . , n̄}. Note that, ifσ(i ) = j for i, j ∈ [n, n̄] then σ(ī ) = j̄ ,
wherem̄ = m. Let G be any subgroup ofW. Its set of orbits,O(G) = {Oa1, . . . ,Oak}
whereai ∈ [n, n̄], form a partition of the set [n, n̄]. We claim that the latticePW of
parabolic subgroups ofW is isomorphic to the posetO(PW) of partitions of the set [n, n̄],
corresponding to the orbits of the parabolic subgroups ofW, ordered by refinement. Even
though this correspondence seems very natural we have not encountered it explicitly in the
literature. Thus, we will give a detailed listing of the basic lemmas which will be useful in
proving Theorem 4.1, without burdening the reader with their detailed proofs.

First, we make some observations. Orbits appear inpairs, that is, ifOa = {a1, . . . ,ak},
with ai ∈ [n, n̄] is an orbit ofW, thenŌa = Oā = {ā1, . . . , āk} is also an orbit. Note that
whenG = Sm ⊂ Sn the orbits are:O1 = {1, . . . ,m},O1̄ = {1̄, . . . , m̄},Om+1 = {m+ 1},
Om+1 = {m+ 1}, . . . ,On = {n} andOn̄ = {n̄}. In general, for any subgroupG of Sn, the
orbits will always be of the formOb1 = {b1, . . . ,bk}wherebi ∈ [n] andOb̄1

= {b̄1, . . . , b̄k}
with b̄i ∈ [n̄]. Clearly the situation forW = Bm or Dm is different. Indeed, in both cases
the orbits areO1 = {1, 1̄, . . . ,2, 2̄, . . . ,m, m̄}, Om+1 = {m+ 1}, Om+1 = {m+ 1}, etc.
SinceO1 = O1̄ we say thatO1 is aself-barredpart. Next observe that ifH is a non-trivial
irreducible parabolic subgroup ofW then H is itself of typeAm, Bm or Dm. From these
observations one can easily conclude the following:

Lemma 4.1 Let H be a non-trivial parabolic subgroup of W.
(i) If H is irreducible, then H has either exactly one non-singleton orbit(which is self-

barred), or exactly2 non-singleton orbits that form a pair.
(ii) If H = H1⊕H2, then the non-singleton orbits of H1 are disjoint from the non-singleton

orbits of H2.

Corollary 4.1 Let H and K be two parabolic subgroups of W. Let H = H1⊕ · · · ⊕ Hr

and K : K1 ⊕ · · · ⊕ Ks where Hi and Ki are irreducible for all i’s. Assume that the orbit
decomposition of H and K are equal; i.e., O(H) = O(K ). Then r= s and there exist a
permutationπ ∈ Sr such thatO(Hi ) = O(Kπ(i )), for all i ’s.

LetO : PW → O(PW) be the map that takes a parabolic subgroup ofW to its set of orbits;
that is, to a partition of [n, n̄]. In the next lemma we describe the possible partitions of
[n, n̄] occurring in the posetO(PW). Let i, j ∈ [n], then three possible types of reflections
(i j )(ī j̄ ), (i j̄ )( j ī ), (i ī ) will be denoted by(i j ), (i j̄ ) and(i ī ), respectively.

Lemma 4.2 Letπ ∈ O(PW); thenπ has at most one self-barred part.
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Proof:

Case 1. W = Sn. If H is a parabolic subgroup ofSn, thenH is of the form: H = H1 ⊕
· · · ⊕ Hk whereHi are of typeAmi for all 1 ≤ i ≤ k. Thusπ containsno self-barred
parts. Moreover, ifπ ∈ O(Psn) thenπ is of the form

π = i1, . . . , i k|ī1, . . . , ī k| · · · |i k+m, . . . , i n|ī k+m, . . . , ī n (4.1)

wherei j ∈ [n] and ī j ∈ [n̄] for all j ’s.
Case 2. W = Dn. Note first that inDn there are no reflections of the form(i ī ). Thus,

there are no self-barred parts of cardinality 2. The orbits corresponding to the parabolic
subgroup generated by a reflection(i j̄ )are: 1|1̄| · · · |i j̄ | ī j | · · · |n|n̄. On the other hand,
there can be self-barred part of cardinality≥4. For example,H = 〈(i j ), (i, j̄ )〉 is a
parabolic subgroup ofDn andO(H) = 1|1̄| · · · | · · · |i j ī j̄ | · · · |n|n̄. To see that it is
not possible to have more than one self-barred part one needs only to realize that if
H = H1⊕· · ·⊕Hk is a parabolic subgroup ofDn, then there is at most one component
Hi which is of typeDmi ; the other components are of typeAmj . The components of
type Amj yield the parts occurring inpairswhile the component of typeDmi yields the
self-barred part.

Case 3. W = Bn. Since(i ī ) is a reflection ofBn, there are self-barred parts of cardinality 2
among the partitions ofO(PBn) and ifH = H1⊕· · ·⊕Hk is a parabolic subgroup ofBn,
then at most one componentHi is of typeBmi while all other components are of typeAmj .
Thus, again parts appear in pairs except for at most one part which is self-barred. Ob-
serve thatBn has reflection subgroups of typeDm, but those arenotparabolic subgroups
of Bn. 2

Our next goal is to show that the mapO : PW→O(PW) is one to one. Ifπ ∈O(PW)

has a self-barred part{a1, ā1, . . . ,am, ām} (and say for the simplicity of the arguments
that all the other parts are singleton) then there are two possible parabolic subgroups yield-
ingπ , mainlyH1 = 〈(a1,a2), . . . , (am−1,am), (am−1, ām)〉 ' Dm andH2 = 〈(a1,a2), . . . ,

(am−1,am), (am, ām)〉 ' Bm. But as we mentioned earlier,H1 is parabolic inDn, but not
in Bn, thus in this situation onceW is fixed the pre-image ofπ is uniquely determined. It
turns out that this example captures the whole complexity of the problem, and we can now
state:

Lemma 4.3 LetO : PW → O(PW) be the map that assigns to every parabolic subgroup
of W its orbit decomposition. O is a one-to-one map.

Proof (Sketch): LetO(G) = O(H) whereG andH are two irreducible parabolic sub-
groups ofW. Then Lemma 4.1 and Corollary 4.1 imply thatG = H . If G andH are not
irreducible, Lemma 4.2 yields the desired result. 2

We now describe the join of two partitionsπ andπ ′ in O(PW). Take the usual join in
the partition lattice and combine the self-barred parts into a single (thus self-barred) part.
This definition of join inO(PW) does correspond to the join of parabolic subgroups inPW.
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The meet of two partitions inO(PW) is the same as the meet in the partition lattice.
One also easily sees that the rank function inO(PW) is given by the following rule. Letk

be the number of non-self-barred parts ofπ ∈ O(PW); then the rank ofπ is r (π) = n− k
2.

Recall that ifH is a parabolic subgroup ofW with simple system1, the rank ofH in PW

is r (H) = |1|.

Lemma 4.4 Let H ∈ PW, and letO(H) be the corresponding partition of[n, n̄] in
O(PW). Then r(H) = r (O(H)).

Proof (Sketch): A straightforward proof by induction on rank(H)yields the desired result.
Indeed, ifH is of rank one, the number of non-self-barred parts inO(H) = 2(n− 1), so
r (O(H)) = n − 2(n−1)

2 = 1. To complete the proof, observe that ifs is a reflection of
W such thats 6< H thenr (H ∨ 〈s〉) = r (H) + 1. A study of the different cases,π ∨ ai

whereai is an atom ofOW (andai 6< π ) reveals that if the number of non-self-barred parts
of π was equal tok, then the number of non-self-barred parts ofπ ∨ ai = k − 2. Thus
r (O〈H, s〉) = n− (k−2)

2 = (n− k
2)+ 1 and the proof follows. 2

The above lemmas allow us to conclude that

Theorem 4.1 Let PW be the lattice of all parabolic subgroups of W ordered by inclusion,

and letO(PW) be the lattice of orbits of all the elements of PW ordered by refinement. PW

andOW are isomorphic. Moreover
(a) O(PSn) consists of all partitionsπ of [n, n̄] of the form given in Eq.(4.1).
(b) O(PBn) is the poset of all partitions with at most one self-barred part and with all parts

occurring in pairs.
(c) O(PDn) is the poset of all partitions with at most one self-barred part of cardinality≥4

and with all parts occurring in pairs.

Notice that one could establish the isomorphism betweenPW andO(PW) as a partially
ordered set and then use this correspondence to derive the form of meet, join and rank
within O(PW).

An interesting corollary is the following criteria for parabolic subgroups. Anadmissible
partition of [n, n̄] is a partition with paired parts together with at most one self-barred part.

Corollary 4.7 If H is a reflection subgroup of W with orbit decomposition yielding a
non-admissible partition of[n, n̄] then H is not a parabolic subgroup of W.

Given thatDn is a reflection subgroup ofBn which is not parabolic, the converse is not
true.

5. Supersolvable lattices

An interesting problem concerning the latticesLW is to determine if they are supersolvable
when W is irreducible. For an overview and references regarding this subject see [1].
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As we mentioned in the introduction it is not easy, in general, to determine if a lattice is
supersolvable. When the reflection group is eitherSn, Bn (the group of signed permutations),
orDn (the dihedral group), it is known that the corresponding lattices are supersolvable. But
the supersolvability ofLW for the other reflection groups does not seem to be mentioned
in the literature. Through personal communications with G. Ziegler and H. Terao it was
suggested that none of the others were supersolvable for finite reflection groups. In this
section, we give an elegant combinatorial proof (using the lattice of parabolic subgroups), of
the fact that the only supersolvable latticesLW, whenW is finite, are the ones corresponding
to eitherDn or the reflection groups of typeAn and Bn. Moreover, we are also able to
prove, using more involved arguments, that the only infinite irreducibleW for which LW

is supersolvable isD∞. Let us first recall the definition of supersolvability. LetL be a
geometric lattice of finite rankr (L) = n. An elementm ∈ L is calledmodular[8] if

r (m)+ r (m′) = r (m∨m′)+ r (m∧m′)

for everym′ ∈ L . Let 0̂ be the minimal element ofL and1̂ be its maximal element.
A geometric latticeL is said to besupersolvable[9] if it has a maximal chain

0̂= m0 < m1 < · · · < mn = 1̂

of modular elements, (called anM-chain of L). Let A be the set of atoms ofL, and let
∼ be an equivalence relation onA.

Definition 5.1

(1) Define℘(∼) to be

℘(∼) = {S| S⊆ A andScontains at most one element from each equivalence
class of∼}.

Note that when∼ is equality, then℘(∼) = ℘(A), the power set ofA.
(2) Let≺ be a total order onA. We say that theNBCbases ofL, NBC(L), with respect to
≺ are obtainable by the hands1 of ∼ if

NBC(L) = ℘(∼).

First we restrict our attention to finite reflection groups. In the next theorem we use the
classification of all the real finite reflection groups, together with their Coxeter diagrams
and lists of degrees. See for example [6, pp. 32, 59].

Theorem 5.1 Let W be an irreducible real finite reflection group, A be the collection of all
its reflecting hyperplanes, and LW its corresponding lattice. The following are equivalent:
(a) LW is supersolvable.
(b) There is a total order≺ and an equivalence relation∼ on A, so that the NBC(LW)

bases with respect to≺ are obtainable from the hands of∼.
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(c) There is a label of the Coxeter diagram of W(other than2) which is a degree of W.
(d) W is either of type An, Bn or isDn.

Proof:

c⇒ d An inspection of the list of the Coxeter diagrams [6, p. 32] and of the degrees
[6, p. 59] will verify this fact.

d⇒ a This is known (see for example [7]).
a⇒ b This is also a known theorem due to Bjorner and Ziegler in [3, Theorem 2.8].
b⇒ c This result is new and requires a proof. We will use the fact thatPW and LW

are isomorphic lattices. Assume that we have a total order≺, and an equivalence
relation∼ on the set of atomsA so that theNBCbases of cardinality 2 with respect
to≺ are obtainable by the hands of∼. Let a ∈ A, and [a] denote the equivalence
class ofa. We first note that|[a]| + 1 is a degree ofW for all a ∈ A. Indeed, our
Definition 5.1 implies that the generating function for the set of allNBCbases is∏

i

(1+ |[ai ]|t)

where{ai } form a set of representatives for the equivalence classes of∼. But, as
we mentioned in the preliminaries this generating function factors out as∏

i

(1+mi t) =
∏

i

(1+ (di − 1)t)

wheremi (resp.di ) are the exponents (resp. degrees) ofW. Next we show that

[a] = {b ∈ A | {a, b} is a broken circuit} ∪ {a} (5.1)

To this end, first assume thatb ∈ [a] andb 6= a. Since,a ∼ b then{a, b} /∈ ℘(∼),
thus{a, b} is not anNBC basis. This means that{a, b} is itself a broken circuit
since{a, b} is independent and singleton sets are never broken circuits. Hence, we
have shown

[a] ⊆ {b ∈ A | {a, b} is a broken circuit} ∪ {a}.

Next let b ∈ A such that{a, b} is a broken circuit. Hence{a, b} is not anNBC
basis, which means{a, b} /∈ ℘(∼). But this implies thata ∼ b. Thus showing:

[a] ⊇ {b ∈ A | {a, b} is a broken circuit} ∪ {a}

and consequently Eq.(5.1). Now, let a1 be the smallest atom ofA. We have that
{a1, b} (b ∈ A) is always anNBCbasis. Hence [a1] = {a1}, which corresponds to
the degree 2 which appears in the list of degrees for each of the real finite reflection
groupsW.Next, leta2 be the smallest atom inA−{a1}. For whichb ∈ A is {a2, b}
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a broken circuit? Clearly,{a2, b} is a broken circuit if and only if{a1,a2, b} is a
dependent set. But this is so only whenb < a1∨a2 andb is neithera1 nora2.Using
the identification between℘W andLW we let H = a1∨a2 be the corresponding
parabolic subgroup ofW. Viewed this way we realize thatb < H if and only if b
is a subgroup generated by a single reflection. There are as many such subgroups
as there are reflections inH. Hence,

|{a2}| = |{b ∈ A | b < a1 ∨ a2 andb 6= a1 or a2}| + 1

= |{h ∈ H | h is a reflection}| − 1.

But H is a rank 2 reflection group, so it is a dihedral group of orderk, for some
positive integerk. There are exactlyk such reflections inH , so

|{a2}| = k− 1.

Moreover,k is also the order of the product of any two generating reflections inH.
But the orders of such products are labels on the Coxeter diagram ofW (using here
the fact thatH is a parabolic subgroup ofW). Hence,

|{a2}| + 1= k

must be one of the labels of the diagram ofW. On the other hand, we saw earlier
that|[a2]| + 1 is also a degree ofW. Since the degree 2 occurs only once in the list
of degrees ofW (for anyW), k cannot be 2, and the theorem is complete. 2

Now we return to the case in whichW is allowed to be infinite. We now start with a
definition which will be convenient for our analysis.

Definition 5.1 Let (W, S,m) be a Coxeter group. Definem(W) to be the unordered list
of integersm(s, s′) for all s, s′ ∈ Swith s 6= s′. We will use [n1, . . . ,nk] to represent such
a list. So, for example, [2, 2, 3] = [2, 3, 2] 6= [2, 3].

The following result is the crucial idea which enables us to deal with the infinite case.

Lemma 5.1 Let W be an infinite Coxeter group for which every proper parabolic subgroup
is finite. Let H be a modular element inPW. Then H has either rank0, rank1 or is W.

Proof: AssumeH is a modular parabolic subgroup which does not have rank either 0, 1
or n ≡ rank(W). Let j = rank(H). Let H ′ be any parabolic subgroup with rank(H ′) =
n− j + 1. Such a subgroup exists sincej > 1 implies thatn− j + 1< n. Since bothH
andH ′ have rank strictly less thann, they are finite groups by assumption.

First, we claim that for anyw ∈ W, there must be a reflection inH ∩wH ′w−1. To see this,
assume that there is aw so thatH ∩wH ′w−1 contains no reflection. NowwH ′w−1 ∈ PW,
and henceH ∧wH ′w−1 is a parabolic subgroup. BecauseH ∧wH ′w−1⊂ H ∩wH ′w−1,
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we haveH ∧wH ′w−1 also contains no reflections. Since every parabolic subgroup is a
reflection group, we haveH ∧wH ′w−1 is trivial. Now, sinceH is a modular element, we
have

r (H ∨ H ′) = r (H)+ r (H ′)− r (H ∧ H ′) = n+ 1

which provides our desired contradiction.
Next, for every two (not necessarily distinct) reflectionsσ ∈ H andσ ′ ∈ H ′, define the

set

Aσ,σ ′ ≡ {w ∈ W :wσw−1 = σ ′}.

We claim every elementw of W is in someAσ, σ ′ . To see this, letσ be a reflection in
wH ′w−1∩ H . So σ ∈ H andσ = wσ ′w−1 with σ ′ a reflection inH ′, which shows
w ∈ Aσ, σ ′ for thisσ andσ ′. Now, there are only a finite number of the setsAσ, σ ′ because
H and H ′ are both finite. This means one of the setsAσ, σ ′ must be infinite sinceW is
infinite. Let

Z(σ ) ≡ {w ∈ W :wσw−1 = σ },

and letw′ ∈ Aσ, σ ′ , whereAσ, σ ′ is infinite. Then the functionf : Aσ, σ ′ → Z(σ ) defined by
f (w) = w−1w′ is one-to-one, which meansZ(σ ) is infinite. Now, letv be any eigenvector
of σ with eigenvalue−1. We have thatw(v) also must be an eigenvector with eigenvalue
−1 for σ if w ∈ Z(σ ). This meansw(v) = λwv. SinceW preserves the inner productB,
and sincev has positive length inB, we have thatλ2

w = 1 for everyw ∈ W. The function
w → λw is, therefore, a group homomorphism into{1,−1}. Hence, its kernel,K , is a
subgroup ofZ(σ ) of finite index, and hence is infinite. ButK is the stability subgroup of
W atv. Now Theorem 3.1 says that any stability subgroup is a parabolic subgroup. Since
K is an infinite parabolic subgroup, it must be all ofW. This shows thatσ commutes with
every element ofW. Hence,W = 〈σ 〉 ⊕W′ whereW′ is the subgroup generated by all
reflections distinct fromσ in a simple system of reflections containingσ . ButW′ is a proper
parabolic subgroup, and hence finite. This gives us thatW is finite, and we have produced
the desired contradiction. 2

Corollary 5.1 Assume W is an infinite Coxeter group with∞ /∈ m(W). ThenPW is not
supersolvable.

Proof: Let H be an infinite parabolic subgroup with smallest rank. IfPW is supersolvable,
thenPH will be supersolvable because it is the lower order ideal [0, H ] in PW. Every proper
parabolic subgroup ofH is finite, so we can apply Lemma 5.1. Since∞ /∈ m(W), we have
that rank(H) ≥ 3. Thus, no rank 2 element inPW can be modular by the lemma, which
means thatPH cannot be supersolvable. 2

To complete the study of infinite Coxeter groups, we rely upon a detailed analysis of
the rank 3 Coxeter groups for whichPW is supersolvable. Once this is known, the general
infinite case becomes easy to resolve.
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Theorem 5.2 Let W be a rank3 Coxeter group.PW is supersolvable if and only if m(W)

is one of the following lists:

[2, 2, n], [2, 3, 3] or [2, 3, 4]

where n is an integer strictly larger than1 or n = ∞.

Proof: The lists in the theorem represent the Coxeter groupsDn ⊕ Z2, A3 and B3, res-
pectively. SincePDn,PAn andPBn are each supersolvable for alln, the implication “⇐”
is true. (Note thatPDn is supersolvable for alln, includingn = ∞, since every rank two
lattice is always supersolvable.)

We now show “⇒”. AssumePW is supersolvable. First, we observe that either 2, or∞,
are inm(W). Indeed, ifW is finite, then 2 must be inm(W) by [6, p. 137]; ifW is infinite,
then∞must be inm(W) by Corollary 5.1. Next we perform a calculation. LetS= {s, t, u}
wheres andu are chosen in the following way. If 2 is inm(W), let m(s, u) = 2. If not,
let m(s, u) = ∞. Let ρ denote the geometric representation ofW. Define the following
matrices:

A ≡

−1 0 0

a 1 0

b 0 1

 , B ≡

1 a 0

0 −1 0

0 c 1

 , C =

1 0 b

0 1 c

0 0 −1


whereA = ρ(s)t , B = ρ(t)t andC = ρ(u)t . Hence, we have

a = 2 cos(π/m(s, t)),

b = 2 cos(π/m(s, u)),

c = 2 cos(π/m(t, u)).

Let H ≡ 〈A, B〉 andH ′ ≡ 〈A,C〉. We will find a conjugate ofH which has trivial meet
with H ′. This will mean that neitherH nor H ′ are modular elements inPW. Next, notice
that our argument will still apply whenA andC are interchanged. Hence, we can also
conclude that〈C, B〉 and 〈C, A〉 are not modular as well. Since every rank 2 parabolic
subgroup is conjugate to one of these three subgroupsH , H ′ or 〈C, B〉, we will then have
shown that there are no rank 2 modular elements inPW, which shows thatPW is not
supersolvable.

In order to find the desired conjugate ofH which will have trivial meet withH ′, observe
that every member ofH fixes e3 ≡ (0, 0, 1)t . So every element ofwHw−1 will fix the
vectorwe3.

Case 1. m(s, u) = 2 and sob = 0. If H ′ andwHw−1 have nontrivial meet, thenwHw−1

contains a reflection ofH ′. Sincem(s, u) is 2, s andu are the only reflections inH ′,
so eithers or u must be inH ′ andwHw−1. The fixed point sets of these reflections are

X1 ≡ span{e2, e3},
X2 ≡ span{e1, e2},
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respectively. Thus, ifwHw−1∧ H ′ 6= 0̂, thenwe3 must be in one of these two sets.
First, letw = BC so that

we3 = (ac,−c, c2− 1)t .

Since [2, 2, n] is listed in the theorem, we need only deal with the case in whichm(W)

has only one 2. Hence,a andc are not zero, and we havewe3 /∈ X1 andwe3 /∈ X2 as
long asc 6= 1. Thus, it remains to check the case for whichc = 1. In this situation,
we look at

BABCe3 = (a3− 2a,−1− a2,a2− 1)t .

If a = 1, thenm(W) = [2, 3, 3], which is listed in the theorem. Ifa = 21/2, then
m(W) = [2, 3, 4], which is also listed. Hence we must only considera > 21/2. Since
the roots ofa3− 2a are 0 and±21/2, we have thatBABCe3 is in neitherX1 nor X2.

Case 2. m(s, u) = ∞; that is,b = 2. Recall from our notation that if 2∈ m(W), then we
hadm(s, u) = 2. Hence, sincem(s, u) 6= 2, we may assume 2/∈ m(W).
We start by identifying the union of the fixed point sets of all the reflections inH ′ which
isD∞. Define, for each integern, the subspaceXn by

Xn = {(x, y, z)t : x(1− n) = z(n)}.

Let Y ≡ ⋃n Xn. Y is the desired union of fixed point spaces, but we only need thatY
contains every fixed point space for what follows. To see this, it is convenient to use
the following alternative description of the elements ofY : (x, y, z)t ∈ Y if and only if
either

(a) x = z= 0
or

(b) x + z 6= 0 andx/(x + z) is an integer.

Using this criterion, it is easy to check that bothA andC leaveY invariant so thatH ′

leavesY invariant. Moreover,Y contains both Fix(A) and Fix(C). HenceY contains
any vector fixed by any reflection inH ′.

With this information, we proceed as we did in the case whenb = 0. Let v = BCe3.
We will show thatv is not in the fixed point set of any reflection inH ′. Assume this is not
true; namely, thatv ∈ Y. Observe thata, c ≥ 1 since 2/∈ m(W). Hencex = 2+ ac is not
zero, so we may conclude that

(2+ ac)/(c2+ ac+ 1) ≡ n (5.1)

is an integer. Using that 1≤ a, c ≤ 2, we find that

(2+ ac)/(c2+ ac+ 1) ≤ 6/3. (5.2)
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Sincen is a strictly positive integer, we have either thatn = 1 orn = 2. If n = 2, then both
a andc must be 1, for otherwise (5.2) would be a strict inequality. Replacinga andc by 1
in Eq. (5.1) would then say thatn = 1, giving a contradiction. Ifn = 1, thenc = 1.

We now deal with the casec = 1 in the same way as we dealt with it before. Consider

BABCe3 = (a3+ 2a2− 2a− 2,−a2− 2a+ 1,a2+ 4a+ 3).

If this vector is inY, then

n ≡ (a3+ 2a2− 2a− 2)/(a3+ 3a2+ 2a+ 1)

is an integer. Note thatn is always less than 1. Whena > 1, we havea ≥ 21/2 so thatn is
positive, giving a contradiction. Whena = 1, thenn = −1/7 also giving a contradiction,
and the proof is now complete. 2

Corollary 5.2 Let W be a connected Coxeter group with∞ ∈ m(W).PW is supersolvable
if and only ifrank(W) = 2.

Proof: If rank(W) = 2,PW is a rank 2 lattice which is therefore supersolvable. Assume
W is not of rank 2. Then rank(W) ≥ 3 since∞ ∈ m(W) implies W is not of rank 1.
Assumes, s′ ∈ S with m(s, s′) = ∞. There is ans′′ with H ≡ 〈s, s′, s′′〉 connected since
W is connected. BecauseH is connected,m(H) cannot be [2, 2,∞]. This is the only
list in Theorem 5.2 which contains∞, soPH is not supersolvable. Hence,PW is also not
supersolvable. 2

Theorem 5.3 Let W be a connected Coxeter group. If PW is supersolvable, then either
W = D∞ or W is finite. Hence, PW is supersolvable if and only if W is of type An or Bn

for some n∈ N, or W isDn, the dihedral group, for n ∈ N ∪ {∞}.

Proof: Combine Corollaries 5.1 and 5.2 with Theorem 5.1. 2

6. Non-broken circuit bases

In this section we assumeW is finite. As we saw earlier, theNBCbases play a fundamental
role in many aspects of the theory of reflection groups, and the elements ofNBC(LW)

are in one to one correspondence with the elements ofW. So now if we consider the
lattice of parabolic subgroupsPW what can be said about itsNBCbases? Are they easy to
characterize? In this section we identify some of theNBCbases ofPW and show that when
translated into theLW lattice they remainNBCbases. Unfortunately, this characterization
does not yield allNBCbasis. For this entire section we fix a total order onRn. Let Hα be
an atom ofLW. Then there will be a unique positive rootα ∈ H⊥α . Thus, the total ordering
on Rn, when restricted to the roots ofW, gives rise to a total ordering on the atoms of
LW. Using this total ordering one can defineNBCbases forLW. Also, for any reflection
subgroupWI ⊆ W, we may use this total ordering ofRn to induce a total ordering on the
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root space ofWI . This ordering defines a unique system of simple roots forWI , denoted
by1I .

Theorem 6.1 Let WI be a parabolic subgroup of W. Then

NBCWI ≡ {α⊥ |α ∈ 1I }

is an NBC basis for LW.

Proof: SinceWI is parabolic, we have that1I ⊆ 1, where1 is a simple system of roots
for W. Let T be a subset ofNBCWI .We first show thatT is not a broken circuit. Note that
T is of the form

T = {α⊥ |α ∈ T ′}

whereT ′ ⊆ 1I ⊆ 1. Hence〈T ′〉 is a parabolic subgroup. First note that since1 is an
independent set of vectors inRn, so isT ′. This means that inLW, T is an independent set
of atoms. Next, letHαb be any atom ofLW so that{Hαb} ∪ T is a dependent set. We must
show thatHαb is larger or equal to some atom ofT. Now since{Hαb} ∪ T is dependent, we
have thatαb is a linear combination of elements ofT ′. Thus,αb ∈ (Fix(〈T ′〉))⊥. But by
the remark following Theorem 3.1, the root system for Gal(Fix(〈T ′〉)) is (Fix(〈T ′〉))⊥ ∩8
(where8 is the root system forW). Since by definitionαb ∈ 8, we have thatαb is a
root of Gal(Fix(〈T ′〉)). By means of the Gal correspondence and using the fact that〈T ′〉 is
parabolic, this means thatαb is a root of〈T ′〉. So,

αb =
∑
t∈T ′

λtαt

where theλt are positive real numbers. Sinceαb 6= 0, one of theλt is not equal to 0. We
consider two cases. First, assume that exactly one of theλt , sayλt0, is different than 0. In this
caseαb = ±αt0. But bothαb andαt0 are positive soαb = αt0. HenceHαb = α⊥b = α⊥t0 ∈ T
as desired. Next, assume that two or more of theλi are different than 0. Let αt0 be such
thatα⊥t0 is the smallest atom inT. Let αt1 be such thatα⊥t1 is as large as possible subject to
the condition thatλt1 6= 0. Thenαb − αt0 hasλt1 as the coefficient ofαt1 in its expansion
in terms ofαti . Sinceλt1 is strictly positive, and since the total order on the atoms ofLW is
given in terms of the lexicographic order taking1 as an ordered basis, we have thatαb−αt0
is strictly greater than 0. This shows thatHαb is strictly greater thanHαt0

. Hence,T is not
a broken circuit, and the proof is complete. 2

Note

1. By analogy to previous work of the first author, the equivalence classes of∼ are called the hands of∼ .
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