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Abstract. LetW be a Coxeter group acting as a matrix group by way of the dual of the geometric representation.
LetL bethe lattice of intersections of all reflecting hyperplanes associated with the reflections in this representation
We show that. isisomorphic to the lattice consisting of all parabolic subgroup of\Ve use this correspondence

to find all W for which L is supersolvable. In particular, we show that the only infinite Coxeter group for which

L is supersolvable is the infinite dihedral group. Also, we show how this isomorphism gives an embedding of
L into the partition lattice whenevaW is of type A,, B, or Dy. In addition, we give several results concerning
non-broken circuit bases (NBC bases) wivgns finite. We show that is supersolvable if and only if all NBC
bases are obtainable by a certain specific combinatorial procedure, and we use the lattice of parabolic subgrou
to identify a natural subcollection of the collection of all NBC bases.
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1. Introduction

By an arrangemend, we mean a collection of (possibly infinite) codimension 1 subspaces
of a finite dimensional real vector spade Associated to4 is a lattice which consists of

all possible intersections of elements4fordered by reverse set inclusion. A rich theory
has been developed to study the properties of this lattice whifinite (see [7]). IfW

is a finite group generated by a set of reflections actinfarthe reflection arrangement
corresponding tdV is the arrangement consisting of the reflecting hyperplanes of all pos-
sible reflections inW. We call the intersection lattice corresponding to this arrangement a
reflection lattice (with groupyV) and denote it by y.

The main purpose of this paper is to establish an isomorphism between this lattice ant
the lattice consisting of all parabolic subgroupd/éf denotedPy, and to use this corres-
pondence to study the supersolvabilitylaf;. Because of the strong similarities between
this isomorphism and the isomorphism established in the fundamental theorem of Galoi:
theory, we refer to this isomorphism as the “Galois correspondencé’\for

In Section 2, we establish our notation and recall some of the basic results we use. Th
Galois correspondence and the characterization of the gildpswhich Ly are supersolv-
able holds for an arbitrary Coxeter group (using the dual of the geometric representation)
so we present the basic facts we need about Coxeter groups here. Also included is standa
material about arrangements and their associated lattices. These results may be found in |
for the case in which the Coxeter group (and hence the arrangement) is finite. The proof
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that these results hold fdry even whenW is an infinite Coxeter group are straightfor-
ward generalizations of the proofs that may be found in [7], so we have not included thern
In Section 3 we give the basic tool of the paper which is Theorem 3.1, the theorem the
establishes the Galois correspondence for Coxeter groups. In Section 4 we explain hc
this theorem may be viewed as a generalization of the correspondence betyaed the
partition lattice by showing how the Galois correspondence can be used to r&égliBg

and D, as sublattices of the partition lattice.

Section 5 is devoted to our main application of the Galois correspondence for reflectio
lattices. In Theorem 5.1 we give several different characterizations of when a finite Coxete
group has an associated reflection lattice which is supersolvable. For this characterizatic
W is assumed to be finite because the proof uses heavily the Pepalgnomial associated
with W. In the infinite case, we are still able to achieve a complete enumeration of all
W for which Ly is supersolvable (Theorem 5.3); however, we are not able to give the
other characterizations which appeared in Theorem 5.1. While the proof of Theorem 5.
is relatively straightforward given that the Galois correspondence is known, the proof o
Theorem 5.3 makes use of a somewhat more intricate analysis of the parabolic subgroups
W. Finally, in Section 6, we use the Galois correspondence to define a special subcollectic
of the collection of all non-broken circuit bases in the lattigge. Here we also assunW
to be finite so that we can use certain characterizations of simple root systems which a
only true in the finite case.

2. Preliminaries

First we review a few facts about reflection groups that can be found, for example, in [6]
We are borrowing Humphreys’ notation. LBf' be then-dimensional Euclidean space
endowed with a certain positive definite symmetric bilinear foonu) (for v, u € R"). A
reflectionr, : R" — R" sends the nonzero vecterto its negative while fixing pointwise
the hyperplanéd, orthogonal tax. DefineW to be the group generated by all reflections
r«, @ € ®, whered is aroot systemof W. In general roots need not be of unit length,
but hereafter we will always choose root systems with roots of length one. It happens th:
the reflections, areall the reflections inV, andW is said to be aeal ( finite) reflection
group.

Each elemeniv € W can be expressed in the form:

W="TgloTg-

The smallest value ok in any such expression far is denotedal(w), and is called
the absolute lengttof w. An expressior,,t,, - - - Iy, is Said to beotally reducedf k =
al(ry, - ry)-

Given a simple system of rootsfor W, the subgroups iV generated by subsetsc A
are of fundamental importance to our work.

Definition 2.1 If A is a simple system of roots foW, and if | <A, defineW, =
({re:a € 1}). H is a parabolic subgroup H = W, for somel.
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Let m; denote theexponentof W, andd; = m; 4+ 1 be the degrees aN. There is
a very nice presentation fol in terms of the simple roots diV that is also of impor-
tance to us. For any roots, 8 € @, let m(«, ) denote the order of the producir g
in W,

Proposition 2.1 ([6, p. 16]) Fix a simple system\ in ®, and let g be the reflection
corresponding tar € A. Then W is generated by the setSs, |« € A}, subject only to
the relations

(58)M“P =1 (a,B€A).

This presentation ofV shows thatw is determined up to isomorphism by the set of
integersm(w, B), (for o, B € A). Coxeter (see [5]) encoded this information in a labelled
graphI' constructed as follows: Ldt be a graph whose vertex set is indexed by the ele-
ments ofA; two distinct verticesy, g are joined by an edge, labell@d«, 8), whenever
m(e, 8) > 3. A pair of vertices not joined by an edge implicitly means thei, ) = 2.

This graph is called the Coxeter graph Wf and uniquely determines (up to isomor-
phism)W. Note that since simple systems are conjugBtdpes not depend on the choice
of A.

This result inspires the following generalization of a finite real reflection group, called a

Coxeter group, see for example [6, p. 105].

Definition 2.2 (W, S, m) is called a Coxeter group if the following are true:

(a) Sis afinite set.
(b) m:Sx S— ZU{oo} is a function so that

() m(s,s) =1forallse S
(i) m(s,s) =m(s,s) > 2foralls, s € Swiths #¢.

(€) W = (S)/({(s$)™=3) 15 s e S)) where(S) indicates the free group generated by
Sand(((s$)™*%) ;s s e S)) indicates the normal subgroup (8) generated by the
elementgss)MGs),

By abuse of language, we will sometimes state that an abstract §khigpa Coxeter group.

By this, we will mean that there is a Coxeter graWig’, S, m) such thawV is isomorphic to

W’. Using this convention, we observe that Proposition 2.1 simply states that every finite
real reflection group is a Coxeter group.

If (W, S, m)is a Coxeter group, we can define the concept of a parabolic subgroup as
follows.

Definition 2.3 Let (W, S, m) be a Coxeter group.

(@) G ¢ W is called a parabolic subgroup if and only if there i$ ac W and aw € W
such that the following hold:
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i) TcS
(i) G = (wTw™).

If G is a parabolic subgroup, define ra = |T|.
(b) Pw is the partially ordered set whose elements are all the parabolic subgroups c
(W, S, m), ordered by set inclusion.

Note that this definition is independent of any representatidif afs a matrix group. One
can also generalize the concept of a reflection without explicit use of any representation
the Coxeter group. The reflections @, S, m) are simply defined to be all elements of
W which are conjugate to some elementSinHowever, for notions such as roots, simple
root systems, etc., we will need a linear representation of the ghbuphere is a natural
representation associated with a Coxeter group which is called its geometric representatic

Definition 2.4 Let (W, S, m) be a Coxeter group.

(a) LetV = span(S) be the vector space generated ®ythat is, the freeR-module
generated bys).
(b) Leto be the representation

o:W — GL(V)
defined in the following way. First, let ' € S. Then define
o (S)(s) =S + 2(cosfr/m(s, s)])s.

Next, extendo (s) to a function fromV to V by requiring that it be linear. Finally,
extends to a function fromW to GL(V) by requiring that it be a group homomorphism.
o is called the geometric representationVef

(c) Leto* denote the adjoint representationogfthat is,

o*:W — GL(V*)
is defined by
[o*(w)(0)](v) = O(c (w) *v)

forallw e W, 0 € V¥ = Hom(V,R) andv € V. We callo* the co-geometric
representation. Note that

[0 (w) ()] (o (w)v) =0 (v)

forallw e W,0 € V*andv € V.
(d) Define an inner produd onV by defining

B(s, s') = —cosfr/m(s, s)]
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wheres, s’ € S, and extendindd to a function oriV x V by requiring that it be bilinear.
Note thatB(c (w)v, o (w)v") = B(v,v’) forall w € W andv, v' € V. Note thatB
defines a natural mapfrom V to V* as follows:

b(v)(v') = B(v, V")

forall v,v' € V. o (respectively™*) givesV (respectivelyvV*) the structure of av
module, and one can easily verify tHats a morphism of th&/ modulesV andV*.
Hence, wherB is non-degenerate (and things an isomorphism), the representations

o ando* are equivalent, so there is no need to distinguish between them. In particular,
this is true whenW is finite because in this cad® is positive definite. However,

for many Coxeter groups is degenerate, and the representatiorendo* are not
equivalent. Because we make essential use of the results concerning the Tits’ cone, w
must restrict our attention ®@*, and noto. Next, we summarize these results.

Definition 2.5 Let (W, S, m) be a Coxeter group, with co-geometric representation
(a) Letl c S. DefineC, as follows:
Ci={0eV*:0(s)=0ifsel andd(s) > 0ifse S—1}.
(b) Let
U={c"(w)):w e Wandv € C, forsomel C S}.
U is called the Tits’ cone o#V.
Here is the basic theorem concerning Tits’ cones (see [6], p. 126, Theorem (a)).
Theorem 2.1 (Tits) Letw e W and ,J c S If w(C))NCy # @, then | = J and
w € (l)sow(Cy) = C,. In particular, (I) is the precise stabilizer of each point of Gnd

wC, partitions U, forall w e W, | C S.

Finally, we make explicit the definition of roots and simple systems of roots for Coxeter
groups.

Definition 2.6 Let (W, S, m) be a Coxeter group with geometric representation

(a) Asimple system of roots faW is the setr (w)(S) wherew is some fixed element & .
(b) An elementr of V is called a root ifr is contained in some simple system of roots
for W. @ is used to denote the set of roots, that is,

O={reV:.r =oc(w)(s) forsomew € W ands € S}.

We have now given the information we need concerning Coxeter groups, and we turr
to the definition of the arrangement associated with a Coxeter group, together with some



10 BARCELO AND IHRIG

basic properties of arrangements. In what follows we have used [7] as the basic referenc
We should note that in [7] it is assumed thatis finite, while the A we define here will
be infinite for infinite Coxeter groups. However, the proofs of all the results we give below
follow exactly as presented in [7] for any arrangement, finite or otherwise, as long as th
hyperplanes are in a finite dimensional vector space. Hence, we will not reproduce the
here. In our case, this vector space will\bewhich is always finite dimensional.

We start with some basic notation and definitions. Kebe a subset o¥/. Define
X+ c V* as follows:

Xt ={9 eV*:0(x)=0forallx e X}.

We usex to indicate{x}* whenx € V.
Let A be the set of alteflecting hyperplaneassociated withV, that is,

A={at|a e ®}={H, |« € D},

and letLy denote the poset of all possible intersections of hyperplane$ ordered
by reverse set inclusion Denote the partial order dfyw by < (X < Y if and only if
Y € X). Itis a known fact [7, p. 23] thaL is ageometric lattice with rank function
given byr (X) = codim(X) for any X € Lw wheneverA is a central arrangement. We
should note that, in this paper, our arrangements will always consist of linear subspaces
V*, so our arrangements will always be central. Certain Coxeter groups have associat
with them a natural affine representation. While the standard technique of converting thi
representation to a linear representation in one higher dimension does give the co-geomet
representation which is discussed in this paper (see [6, p. 133]), we never directly discusst
arrangement obtained by taking the collection of reflecting hyperplanes from the origine
affine representation. Hence, we need never consider the problems associated with nc
central arrangements.

Allthe reflecting hyperplaned, have rank one and are called titemof Ly. Moreover,
for any two elementX andY of Ly themeetof X andY is given by

XAY=(|1Zelw|XUYCZ}
while if X N'Y # 0, thejoin of X andY is defined to be:
XvY=XnNY.

We also need to review the notions of independent set and basis for geometric lattides. Let
be a geometric lattice. L&t denote the set of atoms bf AsubsetB = {by,...,by} C A

is said to bendependenif the rank of the join of its elementgB = b, v - - - v by, satisfies,

r (\/B) = |B|. OtherwiseB is said to belependentA subseB C Ais said to be dasefor

an elemenKX € L ifand only if B is independent and /B = X. A circuit is a dependent
setB C A such that all its proper subseéisC B are independent. Given a total order

on the set of atom#, we say thaB = {by, ..., by} € Ais abroken circuif denotedBC,

if there is an atoma € Asuchthata < b foralli = 1,...,kandB U {a} is a circuit.
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In other words, the broken circuits are obtained from the circuits by removing the smallest
atom. Anon-broken circuitNBC, is a set of atoms that does not contain any broken circuit.
Note thatNBC sets are independent sets of atoms.

There is a fundamental link between tRBCbases oty and the elements & when
W is finite. Indeed, the first author together with A. Goupil and A. Garsia established in
[2] the following correspondence. LéH,,, ..., Hy} be an NBC base wherg < «; if
i < j. Letthis NBC base correspond todefined by

W="g . (2.2)

It turns out that Eq(2.1) is a totally reduced expression fer, and this correspondence is
a bijection betweeV and the set of alNBCbases ol (for a given total order o).
Moreover, the enumerating polynomial for all tNECbases oLy

t!S (2.2)
SeNBC(W)

has a factorization that involves the exponent8\bfsee [3]):

tﬂ=Ha+mu

SeNBC(W) i

We shall return to this factorization in Section 5.

3. The Galois correspondence for the lattice of parabolic subgroups

In this section we will show (Theorem 3.1) tHajy, the partially ordered set of parabolic
subgroups ofV, is order isomorphic th \y (and hence is a geometric lattice). This theorem
is almost a direct corollary of Tits’ theorem stated above. While the proof of Theorem 3.1
primarily uses this well-known basic tool, it appears the factfyatindL y are isomorphic

is not well known. In fact, while there is a huge body of literature devoted to the study of
Lw, we are unable to even find the definition7f; in the literature. (Frequent reference
can be found to the lattice consisting of all parabolic subgroups of the foymvhereT

is a subset of some fixefl. This lattice is isomorphic to the Boolean lattice of subsets
of Sand is a proper sublattice &y.) This isomorphism is crucial for the results of this
paper because our main technique for resolving questions alputill be to resolve the
corresponding question abdBiy.

We start with the definitions of the functions which will turn out to be the lattice iso-
morphism and its inverse betweéry andPy. The notation for these functions varies
somewhat in the literature. We chose to use the notation from Galois theory because of th
very close parallel between this result and the fundamental theorem of Galois theory.

Definition 3.1 Let (W, S, m) be a Coxeter group, and lgt denote the cogeometric
representation ofW, S, m).
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(a) LetH be a subset ofV. Define
Fix(H) = {¢ € V*: p*(h)p = ¢ forall h € H}.
(b) LetX c V*. Define
Gal(X) = {w € W: p*(w)(¢) = ¢ forall ¢ € X}.
We now give the proof of the basic tool we will use in this paper.

Theorem 3.1 Galis an (order and rank preservingisomorphism from ly to Py with
inverseFix.

Proof: First we observe that Fc) € Ly if G is a parabolic subgroup. We see this
as follows. LetG = (wTw™!) whereT is a subset ofS for somew € W. Then
FiX(G) = [MNer(wt)*, S0 FIXG) € Lw. Also, since{wt:t € T} is independenty

is a linear isomorphism, an@ C S is independent), the dimension ff, 1 (wt)* is
dim(V*) — |T|, which shows the rank of Fi3) is |T|. By definition,|T| is also rankG),

so Fix is rank preserving as well.

Next we observe that G&X) is a parabolic subgroup X is in Lyy. To see this, leU
denote the Tit's cone iN* (see Definition 2.5). Le€ = X NU. Notice that the interior of
Cin Xis non-empty, so that spé@) = X. Hence, GalX) = Gal(C) (using the fact thgb*
is alinear action). But Theorem 2.1, (in whi€his of the formC, ) says that G&C) = W, ,
which is a parabolic subgroup &¥. Moreover, ifC = C;, then rankX) = |I|. Also,
rankW,) = |l |, thus Gal is rank preserving.

Now, since it is always true that Rigal(X)) > X and GalFix(G)) D> G, the rank
preserving properties of these maps show that@al( X)) = X and GalFix(G)) = G,
which completes the result. O

Observe that in the finite case Xf € Ly and if @ is a root system fow then® N X+
is a root system for GéK).

In the next section we show how this “Galois” correspondence can be viewed as
generalization of the well known correspondence betwlegnand the partition lattice.
Indeed whenW is the symmetric groujs,, with its usual action by permutation matrices
onR", the corresponding reflection lattice is isomorphic to the partition lattice, the lattice
consisting of all partitions of the s¢1, ..., n} ordered by refinement. We will, in fact,
show that whenW is of type A,, B, or D,,, Theorem 3.1 can be interpreted as giving
a correspondence betwe& and certain sublattices of the partition lattice on the set
[n,A]={1,...,n,1,...,A}L

4. Orbits of parabolic subgroups as partitions

It is a well known fact that the lattice of the braid arrangem@nt; is isomorphic to
the partition latticer,. Observe that to a partitiom = (4, ..., nx) of the set fi] there



LATTICES OF PARABOLIC SUBGROUPS 13

corresponds the parabolic subgroup
Si, X Sp, X -+ X Sy

where S, is the group of permutations of the set Clearly, the orbit decomposition

of this parabolic subgroup is given by the partition Thus, one can also interpret the
partition lattice as the lattice of orbits of all parabolic subgroup§pef It is this latter
observation that we wish to generalize to the arrangements ofByad D,. For this
entire section, leW stand forS,, B, or D,. Consider the usual action & on the set
[n,A] = {1,...,n,1,...,A}. Note that, ifo(i) = j fori,j € [n,n] theno(i) = |,
wherem = m. Let G be any subgroup o¥V. Its set of orbitsO(G) = {Oa,, ..., Oy}
wherea; € [n,n], form a partition of the setr, A]. We claim that the latticePy of
parabolic subgroups & is isomorphic to the pos&? (P ) of partitions of the setr, ],
corresponding to the orbits of the parabolic subgroup&/pbrdered by refinement. Even
though this correspondence seems very natural we have not encountered it explicitly in th
literature. Thus, we will give a detailed listing of the basic lemmas which will be useful in
proving Theorem 4.1, without burdening the reader with their detailed proofs.

First, we make some observations. Orbits appegairs, that is, ifO, = {ay, ..., a},
with a € [n, A] is an orbit of W, then®, = O3 = {&, ..., &} is also an orbit. Note that
whenG = S, ¢ S the orbitsare®; = (1,...,m}, O; = {1,..., M}, Omy1 = (M + 1},
Opmz={m+1},...,0n = {n} andOs = {n}. In general, for any subgroup of S,, the
orbits will always be of the forn®p, = {by, ..., bk} whereb; € [nJandOp = {bs, ..., by}
with bj € [A]. Clearly the situation foW = By, or D, is different. Indeed, in both cases
the orbits ared; = {1,1,...,2,2,...,m M}, Omi1 = {M+ 1}, Org = {M+ 1}, etc.
SinceO; = Oz we say that); is aself-barredpart. Next observe that i is a non-trivial
irreducible parabolic subgroup ®¥ thenH is itself of type A, By or Dy,. From these
observations one can easily conclude the following:

Lemma 4.1 Let H be a non-trivial parabolic subgroup of W.

(i) If H is irreducible then H has either exactly one non-singleton ofkihich is self-
barred), or exactly2 non-singleton orbits that form a pair

(i) If H = Hy® Hy, then the non-singleton orbits ofjtdre disjoint from the non-singleton
orbits of H.

Corollary 4.1 Let H and K be two parabolic subgroups of Wet H=H; @& --- ® H,
and K: K; & --- @ Ks where H and K; are irreducible for all i's. Assume that the orbit
decomposition of H and K are equale.,, O(H) = O(K). Then r= s and there exist a
permutationr € § such thatO(H;) = O(K,)), foralli’s.

LetO: Py — O(Pw) be the map that takes a parabolic subgroyab its set of orbits;
that is, to a partition off, n]. In the next lemma we describe the possible partitions of
[n, A] occurring in the pose®(Py). Leti, j € [n], then three possible types of reflections
(), Gp(n, (i) will be denoted byij), (i J) and(ii), respectively.

Lemma 4.2 Letr € O(Pw); thenz has at most one self-barred part
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Proof:

Case 1W = §,. If H is a parabolic subgroup &, thenH is of the form: H = H; &
.-+ @ Hy whereH; are of typeA, forall 1 <i < k. Thusz containsno self-barred
parts. Moreover, ift € O(Ps,) thenx is of the form

/3 :i]_,...,ikli]_,...,ikl"'|ik+m,...,in|ik+m,...,in (4.1)

wherei; € [n] andij € [A] for all j’s. )
Case 2W = D,.. Note first that inD, there are no reflections of the for@). Thus,
there are no self-barred parts of cardinality 2. The orbits corresponding to the paraboll

subgroup generated by areflectiop) are: 11/ --- i [i]|---|n|A. Onthe other hand,
there can be self-barred part of cardinalitd. For exampleH = ((i}), @, )is a
parabolic subgroup ob, andO(H) = 1j1|--- | ---[iji]|---|n|A. To see thatitis

not possible to have more than one self-barred part one needs only to realize that
H = H;®- - - @ Hg is a parabolic subgroup &,, then there is at most one component
Hi which is of typeDy, ; the other components are of tyge, . The components of
type An, yield the parts occurring ipairs while the component of typBr, yields the
self-barred part.

Case 3W = B,. Since(ii)is areflection oB,, there are self-barred parts of cardinality 2
among the partitions @(Pg,) andifH = H1&- - - @ Hy is a parabolic subgroup &,
then atmost one componétitis of typeBy, while all other components are of typé, .
Thus, again parts appear in pairs except for at most one part which is self-barred. Ol
serve thaB, has reflection subgroups of typg,, but those araotparabolic subgroups
of Bp. O

Our next goal is to show that the m&p: Py — O(Py) is one to one. Ifr € O(Py)
has a self-barred pafty, &, ..., an, an} (and say for the simplicity of the arguments
that all the other parts are singleton) then there are two possible parabolic subgroups yiel
ingm, mainlyH; = ((a1, @), ..., (@m-1, @m), (@m-1, 8m)) =~ DmandH; = ((a, a), .. .,
(&m-1, @m), (@m, @m)) =~ Bm. But as we mentioned earligr; is parabolic inD,, but not
in By, thus in this situation onc#/ is fixed the pre-image of is uniquely determined. It
turns out that this example captures the whole complexity of the problem, and we can no
state:

Lemma 4.3 LetO: Py — O(Pw) be the map that assigns to every parabolic subgroup
of W its orbit decompositiorQ is a one-to-one map

Proof (Sketch): LetO(G) = O(H) whereG andH are two irreducible parabolic sub-
groups ofW. Then Lemma 4.1 and Corollary 4.1 imply that= H. If G andH are not
irreducible, Lemma 4.2 yields the desired result. O

We now describe the join of two partitiomsandz’ in O(Py). Take the usual join in
the partition lattice and combine the self-barred parts into a single (thus self-barred) patr
This definition of join inO(Py) does correspond to the join of parabolic subgroudd,in
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The meet of two partitions id(Py) is the same as the meet in the partition lattice.
One also easily sees that the rank functio®iiPy ) is given by the following rule. Lek
be the number of non-self-barred partsio& O(Py); then the rank ofr isr (7) = n— g
Recall that ifH is a parabolic subgroup & with simple system, the rank ofH in Py

isr(H) = |A].

Lemma 4.4 Let H € Ry, and letO(H) be the corresponding partition dh, ii] in
O(Pw). Thenr(H) =r(O(H)).

Proof (Sketch): Astraightforward proof by induction onrafld) yields the desired result.
Indeed, ifH is of rank one, the number of non-self-barred part®iH) = 2(n — 1), so
r(O(H)) =n— 22 = 1. To complete the proof, observe thasifs a reflection of
W such thats # H thenr(H v (s)) = r(H) + 1. A study of the different cases, v g
whereg; is an atom ofD\y (anda; # 7) reveals that if the number of non-self-barred parts
of = was equal tk, then the number of non-self-barred partsof’ g = k — 2. Thus
r(O(H,s)) =n-— ("%2) =(n-— ‘5‘) + 1 and the proof follows. O

The above lemmas allow us to conclude that

Theorem 4.1 Let Ry be the lattice of all parabolic subgroups of W ordered by inclusion

and letO(Py) be the lattice of orbits of all the elements af; Brdered by refinementy

and Oy are isomorphic. Moreover

(a) O(Ps,) consists of all partitionsr of [n, A] of the form given in Eq4.1).

(b) O(Pg,) is the poset of all partitions with at most one self-barred part and with all parts
occurring in pairs.

(c) O(Pp,) is the poset of all partitions with at most one self-barred part of cardinalidy
and with all parts occurring in pairs.

Notice that one could establish the isomorphism betwgrandO(Py) as a partially
ordered set and then use this correspondence to derive the form of meet, join and ran
within O(Py).

An interesting corollary is the following criteria for parabolic subgroups.aéimissible
partition of [n, A] is a partition with paired parts together with at most one self-barred part.

Corollary 4.7 If H is a reflection subgroup of W with orbit decomposition yielding a
non-admissible partition di, fA] then H is not a parabolic subgroup of W

Given thatD,, is a reflection subgroup @, which is not parabolic, the converse is not
true.

5. Supersolvable lattices

An interesting problem concerning the lattideg is to determine if they are supersolvable
when W is irreducible. For an overview and references regarding this subject see [1].
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As we mentioned in the introduction it is not easy, in general, to determine if a lattice is
supersolvable. Whenthe reflection groupis eithe B, (the group of signed permutations),
orD, (the dihedral group), itis known that the corresponding lattices are supersolvable. Bl
the supersolvability of.\y for the other reflection groups does not seem to be mentioned
in the literature. Through personal communications with G. Ziegler and H. Terao it was
suggested that none of the others were supersolvable for finite reflection groups. In th
section, we give an elegant combinatorial proof (using the lattice of parabolic subgroups), ¢
the fact that the only supersolvable lattiteg, whenW is finite, are the ones corresponding

to eitherD, or the reflection groups of typA, and B,. Moreover, we are also able to
prove, using more involved arguments, that the only infinite irredudior which Ly

is supersolvable i®.,. Let us first recall the definition of supersolvability. Letbe a
geometric lattice of finite rank(L) = n. An elemenim € L is calledmodular([8] if

rm+rm)=r(mvm)+rimam)

for everym’ € L. Let 0 be the minimal element df and1 be its maximal element.
A geometric latticel is said to besupersolvablg9] if it has a maximal chain

O=mp<m<---<myp=1

of modular elements, (called avi-chain ofL). Let A be the set of atoms df, and let
~ be an equivalence relation @gn

Definition 5.1
(1) Definegp (~) to be

p (~) = {S| SC AandScontains at most one element from each equivalence
class of ~}.

Note that when~ is equality, theno (~) = o (A), the power set ofA.
(2) Let< be atotal order oM\. We say that th&lBCbases oL, NBC(L), with respect to
< are obtainable by the haridsf ~ if

NBC(L) = p (™).

First we restrict our attention to finite reflection groups. In the next theorem we use the
classification of all the real finite reflection groups, together with their Coxeter diagrams
and lists of degrees. See for example [6, pp. 32, 59].

Theorem5.1 LetW be anirreducible real finite reflection grau@ be the collection of all

its reflecting hyperplanesnd Ly its corresponding latticeThe following are equivalent

() Lw is supersolvable.

(b) There is a total order< and an equivalence relatiorr on A so that the NBCLy)
bases with respect ta are obtainable from the hands of.
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(c) There is a label of the Coxeter diagram of ther than2) which is a degree of W
(d) W is either of type A By orisDy.

Proof:

¢ = d An inspection of the list of the Coxeter diagrams [6, p. 32] and of the degrees
[6, p. 59] will verify this fact.

d = a This is known (see for example [7]).

a = b Thisis also a known theorem due to Bjorner and Ziegler in [3, Theorem 2.8].

b = ¢ This result is new and requires a proof. We will use the fact fhgtand Ly
are isomorphic lattices. Assume that we have a total okdemnd an equivalence
relation~ on the set of atom# so that theNBCbases of cardinality 2 with respect
to < are obtainable by the handsef Leta € A, and R] denote the equivalence
class ofa. We first note that[a]| + 1 is a degree o¥V for all a € A. Indeed, our
Definition 5.1 implies that the generating function for the set oNC bases is

[Ja+ialn

where{a;} form a set of representatives for the equivalence classes @&ut, as
we mentioned in the preliminaries this generating function factors out as

H(1+ mit) = H(1+ (d — Dt)

wherem; (resp.d;) are the exponents (resp. degreesy\bfNext we show that
[a] = {b e A {a, b}is abroken circuitU {a} (5.2)

To this end, first assume thiate [a] andb # a. Since,a ~ b then{a, b} ¢ p (~),
thus{a, b} is not anNBC basis. This means th&, b} is itself a broken circuit
since{a, b} is independent and singleton sets are never broken circuits. Hence, we
have shown

[a] € {be A {a, b}is abroken circuitU {a}.

Next letb € A such that{a, b} is a broken circuit. Hencéa, b} is not anNBC
basis, which meanig, b} ¢ o (~). But this implies thaa ~ b. Thus showing:

[a] 2 {b e A {a, b}is abroken circuitu {a}

and consequently E@5.1). Now, leta; be the smallest atom . We have that

{ag, b} (b € A) is always arNBCbasis. Henced;] = {a;}, which corresponds to

the degree 2 which appears in the list of degrees for each of the real finite reflectior
groupsW. Next, leta, be the smallest atom iA — {a;}. For whichb € Ais {ay, b}
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a broken circuit? Clearlyiay, b} is a broken circuit if and only ifa, ap, b} is a
dependent set. Butthisis so only wHer: a; v a; andbis neithem; nora,. Using

the identification betweepy andLw we letH = a; v a, be the corresponding
parabolic subgroup dV. Viewed this way we realize th&it < H if and only ifb

is a subgroup generated by a single reflection. There are as many such subgrou
as there are reflections K. Hence,

Hag}l =|{be A|b<as vayandb # g orag}| +1
= |{h € H | his areflectiof — 1.

But H is a rank 2 reflection group, so it is a dihedral group of otdeior some
positive integek. There are exactlig such reflections iH, so

Hag}l =k —1.

Moreoverk is also the order of the product of any two generating reflectio in
But the orders of such products are labels on the Coxeter diagrsv(e$ing here
the fact thatH is a parabolic subgroup &¥). Hence,

Haz}l +1=k

must be one of the labels of the diagram\iéf On the other hand, we saw earlier
that|[az]| + 1 is also a degree &W. Since the degree 2 occurs only once in the list
of degrees ofV (for any W), k cannot be 2, and the theorem is complete. O

Now we return to the case in whidlW is allowed to be infinite. We now start with a
definition which will be convenient for our analysis.

Definition 5.1 Let (W, S, m) be a Coxeter group. Defima(W) to be the unordered list
of integeram(s, §') for all s, s’ € Swith s £ s'. We will use g, ..., ng] to represent such
a list. So, for example, [2, 3] = [2, 3, 2] # [2, 3].

The following result is the crucial idea which enables us to deal with the infinite case.

Lemmab5.1 LetW be aninfinite Coxeter group for which every proper parabolic subgroup
is finite Let H be a modular element iRy. Then H has either ranR, rank 1 or is W.

Proof: AssumeH is a modular parabolic subgroup which does not have rank either 0, 1
orn = rank'W). Let j = rank(H). Let H’ be any parabolic subgroup with raitk’) =
n — j + 1. Such a subgroup exists singe- 1 implies thain — j + 1 < n. Since bothH
andH’ have rank strictly less tham they are finite groups by assumption.

First, we claim thatforany € W, there mustbe areflectionkhn wH'w~2. Tosee this,
assume that there is@so thatH N wH’w~! contains no reflection. NowH'w= € Py,
and henced A wH'w~t is a parabolic subgroup. Becauder wH'w=tc HNwH w1,
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we haveH A wH'w™ also contains no reflections. Since every parabolic subgroup is a
reflection group, we havel A wH’w1 is trivial. Now, sinceH is a modular element, we
have

r(HVH) =r(H)+r(H)—r(HAH)=n+1

which provides our desired contradiction.
Next, for every two (not necessarily distinct) reflectieng H ando’ € H’, define the
set

Aso ={weW:wow =o'}

We claim every elemenb of W is in someA, ,. To see this, let be a reflection in
wHwINH. Soo € H ande = wo'w~! with ¢’ a reflection inH’, which shows
w € A, , forthiso ando’. Now, there are only a finite number of the sé{s, because
H and H’ are both finite. This means one of the séts,, must be infinite sinc&V is
infinite. Let

Z@o)={weW:wow =0},
and letw’ € A, ., whereA, , is infinite. Then the functiorf : A, ,, — Z(o) defined by
f (w) = w™tw’ is one-to-one, which mear® (o) is infinite. Now, letv be any eigenvector
of o with eigenvalue-1. We have thatv(v) also must be an eigenvector with eigenvalue
—1foro if w € Z(o). This meansv(v) = A, v. SinceW preserves the inner produBt
and sincev has positive length ifB, we have that.2 = 1 for everyw € W. The function
w — A, is, therefore, a group homomorphism ifth —1}. Hence, its kernelK, is a
subgroup ofZ (o) of finite index, and hence is infinite. Blt is the stability subgroup of
W atv. Now Theorem 3.1 says that any stability subgroup is a parabolic subgroup. Since
K is an infinite parabolic subgroup, it must be alMf This shows that commutes with
every element ofV. Hence,W = (o) ® W’ whereW’ is the subgroup generated by all
reflections distinct frona in a simple system of reflections containingBut W' is a proper
parabolic subgroup, and hence finite. This gives us\thé finite, and we have produced
the desired contradiction. O

Corollary 5.1 Assume W is an infinite Coxeter group with ¢ m(W). ThenPyy is not
supersolvable

Proof: LetH be aninfinite parabolic subgroup with smallest rankP\lfis supersolvable,
thenPy will be supersolvable because itis the lower order ideaHpin Py. Every proper
parabolic subgroup dfl is finite, so we can apply Lemma5.1. Singe¢ m(W), we have
that rankH) > 3. Thus, no rank 2 element iRy can be modular by the lemma, which
means thaPy cannot be supersolvable. O

To complete the study of infinite Coxeter groups, we rely upon a detailed analysis of
the rank 3 Coxeter groups for whi@hy is supersolvable. Once this is known, the general
infinite case becomes easy to resolve.
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Theorem 5.2 Let W be arank Coxeter groupPy is supersolvable if and only if V)
is one of the following lists

[2,2,n],[2,3,3] or [2, 3, 4]

where n is an integer strictly larger thahor n = co.

Proof: The lists in the theorem represent the Coxeter grdips Z,, Az and Bs, res-
pectively. SincePp,, Pa, andPg, are each supersolvable for all the implication ="
is true. (Note thafyp, is supersolvable for alt, includingn = oo, since every rank two
lattice is always supersolvable.)

We now show %", AssumePyy is supersolvable. First, we observe that either 2or
are inm(W). Indeed, ifW is finite, then 2 must be im(W) by [6, p. 137]; ifW is infinite,
thenoo must be irm(W) by Corollary 5.1. Next we perform a calculation. L& {s, t, u}
wheres andu are chosen in the following way. If 2 is im(W), let m(s, u) = 2. If not,
let m(s, u) = co. Let p denote the geometric representationdf Define the following
matrices:

-1 0 0 1 a O 1 0 b
A=|a 1 0|, B=|0 -1 0], C=|0 1 c
b 0 1 0 c 1 0 0 -1

whereA = p(s)!, B = p(t)! andC = p(u)'. Hence, we have

a = 2cogr/m(s,t)),
b = 2cogx/m(s, u)),
Cc = 2cogxw/m(t, u)).

LetH = (A, B) andH’ = (A, C). We will find a conjugate oH which has trivial meet
with H’. This will mean that neitheH nor H” are modular elements iRy. Next, notice
that our argument will still apply whe andC are interchanged. Hence, we can also
conclude thatC, B) and (C, A) are not modular as well. Since every rank 2 parabolic
subgroup is conjugate to one of these three subgréypd’ or (C, B), we will then have
shown that there are no rank 2 modular element®jn which shows thafPy is not
supersolvable.

In order to find the desired conjugateldfwhich will have trivial meet withH’, observe
that every member ol fixese; = (0,0, 1)!. So every element ab Hw ™! will fix the
vectorwes.

Case 1m(s,u) = 2 and scb = 0. If H' andwH w1 have nontrivial meet, themH w1
contains a reflection off’. Sincem(s, u) is 2, s andu are the only reflections iil’,
so eithers oru must be inH” andwHw™1. The fixed point sets of these reflections are
X1 = sparey, es},
Xz = sparey, &},
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respectively. Thus, ifvHw ™A H’ # 0, thenwe; must be in one of these two sets.
First, letw = BC so that

wes = (ac, —c¢, ¢ — 1)L,
Since [2 2, n]is listed in the theorem, we need only deal with the case in wii¢iV)
has only one 2. Hence,andc are not zero, and we havee; ¢ X; andwes ¢ X, as
long asc # 1. Thus, it remains to check the case for whick: 1. In this situation,
we look at

BABCg = (a° —2a, —1—a% a’ — 1)'.

If a = 1, thenm(W) = [2, 3, 3], which is listed in the theorem. H = 2%2, then

m(W) = [2, 3, 4], which is also listed. Hence we must only consides 2'/2. Since

the roots ofa® — 2a are 0 andt2%/2, we have thaBABCg is in neitherX; nor Xo.
Case 2m(s, u) = oo; thatis,b = 2. Recall from our notation that if 2 m(W), then we

hadm(s, u) = 2. Hence, sincen(s, u) # 2, we may assume 2 m(W).

We start by identifying the union of the fixed point sets of all the reflectioms’iwhich

is D.. Define, for each integer, the subspac¥, by

Xn ={(X,y,2)":x(1—n) = z(n)}.

LetY = |, Xn. Y is the desired union of fixed point spaces, but we only needvthat

contains every fixed point space for what follows. To see this, it is convenient to use

the following alternative description of the elementsraf(x, y, 2)! € Y if and only if
either

@ x=z=0
or
(b) x4+ z # 0 andx/(x + 2) is an integer.

Using this criterion, it is easy to check that botrandC leaveY invariant so that’
leavesY invariant. MoreoverY contains both FigA) and FiXC). HenceY contains
any vector fixed by any reflection iH’.

With this information, we proceed as we did in the case wihen 0. Letv = BCe.
We will show thatv is not in the fixed point set of any reflection Y. Assume this is not
true; namely, that € Y. Observe thaa, c > 1 since 2¢ m(W). Hencex = 2 4 acis not
zero, so we may conclude that

(2+ac)/(c2+ac+1) =n (5.1)

is an integer. Using that £ a, ¢ < 2, we find that

(24 ac)/(c*+ac+1) < 6/3. (5.2)
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Sincen is a strictly positive integer, we have either that 1 orn = 2. If n = 2, then both
a andc must be 1, for otherwise (5.2) would be a strict inequality. Replagaiagdc by 1
in Eq. (5.1) would then say that= 1, giving a contradiction. Ih = 1, thenc = 1.
We now deal with the case= 1 in the same way as we dealt with it before. Consider

BABCeg = (a4 2a%> —2a— 2, —a® — 2a+ 1,a° + 4a + 3).
If this vector is inY, then
n=@+2a?—-2a—2)/@+3a%>+2a+1)

is an integer. Note that is always less than 1. When> 1, we havea > 22 so thatn is
positive, giving a contradiction. Whem= 1, thenn = —1/7 also giving a contradiction,
and the proof is now complete. O

Corollary5.2 LetW be aconnected Coxeter group withe m(W). Py is supersolvable
if and only ifrankW) = 2.

Proof: If rank(W) = 2, Py is a rank 2 lattice which is therefore supersolvable. Assume
W is not of rank 2. Then rankV) > 3 sinceco € m(W) implies W is not of rank 1.
Assumes, s’ € Swith m(s, s') = co. There is ars” with H = (s, s/, s”) connected since
W is connected. Becaudd is connectedm(H) cannot be [22, oc]. This is the only

list in Theorem 5.2 which contain, soPy is not supersolvable. HencBy is also not
supersolvable. O

Theorem 5.3 Let W be a connected Coxeter grolipPy, is supersolvablethen either
W = D, or W is finite Hence Py is supersolvable if and only if W is of type, Ar B,
for some ne N, or W isDy, the dihedral groupfor n € N U {oo}.

Proof: Combine Corollaries 5.1 and 5.2 with Theorem 5.1. O

6. Non-broken circuit bases

In this section we assunW is finite. As we saw earlier, thdBCbases play a fundamental
role in many aspects of the theory of reflection groups, and the elemeNB@(fL )
are in one to one correspondence with the elementd/o5o now if we consider the
lattice of parabolic subgroupg,, what can be said about iNBCbases? Are they easy to
characterize? In this section we identify some off&Cbases ofPy, and show that when
translated into thé.\y lattice they remailNBCbases. Unfortunately, this characterization
does not yield aINBCbasis. For this entire section we fix a total order®h Let H, be

an atom ofLy. Then there will be a unique positive rapte H.-. Thus, the total ordering
on R", when restricted to the roots &%, gives rise to a total ordering on the atoms of
Lw. Using this total ordering one can defiNBC bases foiL,. Also, for any reflection
subgroupW, € W, we may use this total ordering &" to induce a total ordering on the
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root space oWV, . This ordering defines a unique system of simple root3fpr denoted
by Ay

Theorem 6.1 Let W be a parabolic subgroup of Wrhen
NBCy, = {at|a € A}
is an NBC basis for |y.

Proof: SinceW, is parabolic, we have that; C A, whereA is a simple system of roots
for W. LetT be a subset diIBGy, . We first show thaf is not a broken circuit. Note that
T is of the form

T={at|aeT}

whereT’ € A} € A. Hence(T’) is a parabolic subgroup. First note that sircés an
independent set of vectorsIRf', so isT’. This means that iy, T is an independent set
of atoms. Next, leH,, be any atom oty so that{H,,} U T is a dependent set. We must
show thatH,,, is larger or equal to some atom ®f Now since{H,,} U T is dependent, we
have thatr, is a linear combination of elements ®f. Thus,a, € (Fix((T’)))*. But by
the remark following Theorem 3.1, the root system for@G&i((T"))) is (Fix((T)))* N &
(where @ is the root system fowW). Since by definitiony, € ®, we have thaty, is a
root of GalFix((T’))). By means of the Gal correspondence and using the fac{Thgais
parabolic, this means that, is a root of(T’). So,

Op = Z )\,tO{t

teT’

where thei; are positive real numbers. Sineg # 0, one of thek; is not equal to OWe
consider two cases. First, assume that exactly one agflsayh.,, is different than Oln this
casexy = Fay,. But bothay, anday, are positive sey, = ay,. HenceH,, = oy = o € T

as desired. Next, assume that two or more ofithare different than OLet o, be such
thatocé is the smallest atom iff. Let ar, be such thadytf is as large as possible subject to
the condition thak;, # 0. Thenay — oy, hasi, as the coefficient of, in its expansion
in terms ofey, . Sincely, is strictly positive, and since the total order on the atomis\gfis
given in terms of the lexicographic order takingas an ordered basis, we have tiagt- oy,

is strictly greater than.OThis shows that,, is strictly greater that,, . Hence,T is not

a broken circuit, and the proof is complete. |

Note

1. By analogy to previous work of the first author, the equivalence classes# called the hands of .
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