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Abstract. A variant of the chip-firing game on a graph is defined. It is shown that the set of configurations that
are stable and recurrent for this game can be given the structure of an abelian group, and that the order of the gro
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1. Introduction

A chip-firing gameon a graplG starts with a pile of tokens (chips) at each vertex. At each
step of the game a vertexis ‘fired’, that is, chips move fromv to the adjacent vertices,
one chip going along each edge incident withA vertexv can be fired if and only if the
number of chips currently held atis at leasdedv), the degree ob.

Let s be aconfigurationof the game. By this we mean thais a function defined on the
vertices such tha(v) is the number of chips at vertax Suppose tha$ is a non-empty
finite sequence of (not necessarily distinct) vertice&ofsuch that starting frors, the
vertices can be fired in the order §f If v occursx(v) times, we shall refer ta as the
representative vectdor S. The configuratiors’ after the sequence of firingsis given by

S (v) = s(v) — x(v) degw) + > x(W)v(v, w).
w#v

This is because each timeis fired it losesdedq(v) chips, and each time a vertex£ v is
fired v gainsv(v, w) chips, wherev(v, w) is the number of edges joiningandw. The
relationship betwees ands’ can be written more concisely if we define thaplacian
matrix Q as follows:

—v(,w), fv£w;

(Quw = deqv), ifv=w.

In terms ofQ the relationship betweenands’ is

s =s— Qx.
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In this paper we shall study a variant of the chip-firing game in which just one vgrtex
is allowed to go into debt—indeed we shall require that it is always in debt. It may help to
think of the game as being played wibllars, rather than chips, arglas the government,
which will issue more dollars if and only if the ‘economy’ gets stuck. In other wogds,
is fired if and only if no other firing is possible. There is no loss in assuming that, taking
into account the debt af, the total number of dollars is zero. Thus, in this variant, a
configuratiors is an integer-valued function satisfying

s =0 (w#q), s@=-) s <0
v#£q

We define astableconfiguration to be one for which

0<s(v) <degv) (v#0q),

and we say that a sequence of firinggidegal if and only if each occurrence of a vertex

v #( follows a configuratiort with t(v) > degv) and each occurrence gf follows a
stable configuration. In the literature this game is often described in terms of ‘snowfall’
and ‘avalanches’, but we shall call it tdellar game

A configuratiorr for the dollar game on a graph is said tarbeurrentif there is ag-legal
sequence for which leads to the same configuration. We defiregitical configuration
to be one which is both stable and recurrent. Note that not all stable configurations at
critical—for example, the configuration with zero dollars at every vertex is stable but not
recurrent (except in a few special cases).

The first result of this paper is that the set of critical configuration&aran be given
the structure of an abelian grolf(G). Then it is shown that the order of the(G) is «,
the number of spanning trees@f These results are implicit in some earlier papers on the
subject; see, for example, Gabrielov [10, 11], and the outline of his approach in [12].

The general theory of finite abelian groups tells us that there is a direct sum decompositic
of K(G), and that the associat@twariant factorsare indeed invariants @. Using a quite
different approach it has been shown [1, 9] that the invariant factors are finer invariants the
k, and so there is some interest in computing them. We shall show that the dollar garnr
provides a calculus for analysing the structuréafs), and that it can be used effectively
to compute the invariant factors in certain cases. For example, we shall prove that for
wheel graphw,, with n odd, K (W,) is the direct sum of two cyclic groups of ordi
wherel,, is nth Lucas number. We shall also prove that, wigis a strongly regular graph,
the groupK (G) has a subgroup of a specific kind.

2. The incidence matrix and the Laplacian

The most appropriate setting for this theory is a fimitaltigraph without loopswith an
arbitraryorientation A multigraph without loop$s consists of a se¥ of vertices, a seE
of edges, and an incidence functionE — V@, whereV @ is the set of unordered pairs of
vertices. An orientation o& = (V, E, i) is afunctionh: E — V such thah(e) €i (e), for
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all edge. In other words(e) is one of the vertices incident with which we shall refer to
asitshead Thetail of e, denoted by (e), is defined by the condition thede) = {h(e), t (e)}.
When we speak of a ‘graph’ we shall mean a finite multigraph without loops which has been
given a fixed, but arbitrary, orientation. All the important results turn out to be independent
of the orientation—it is a technical device used in the construction of some of the matrices
needed in the proofs. We shall usually pass over this point without comment. We shall alsc
assume thab is connected.

Letn=|V|andm=|E|, and define an x m matrix D = (d,¢), theincidence matriof
G, as follows:

1, ifv=h(e):;
de =4 -1, ifv=t(e);
0, ifvdi(e.

Denote byD! the transpose db. A simple calculation shows th&@ D! is the Laplacian
matrix Q defined in Section 1.

Suppose that is a numerical function defined on, regarded as a column vector.dof
is such thatD'a = 0 then, sincgD'w)(e) =a(h(e)) — a(t(e)), it follows thata takes the
same value of the head and tail of any edge. If (as we assume throughisutpnnected,
then for any two vertices andw there is a walk starting atand ending ai. It follows that
a(v) = a(w). In other wordsg is constant. Conversely, if is constant then it satisfies
D'a = 0. In other words, the kernel of the matriX consists of scalar multiples of the
functionu given byu(v) = 1 forallu e V.

Consider now the kernel d. Clearly, if D'« =0 thenQa = DD'« =0. Conversely,
if Qu = 0thena'Qu = ||D'a||? = 0, and soD'a = 0. Thus, the kernel of) is also
consists of the constant functions, that is, the multiplas. of

3. Theory of the dollar game

The theory of chip-firing games [6, 7] is based on a ‘confluence’ property: if we start with
a given configuratiors then there may be many different sequences which are possible
starting froms, but it turns out that (in a sense) they all lead to the same ‘outcome’. We
shall outline the theory as it applies to the dollar game, using direct counting arguments
instead of the more abstract ones given in earlier papers.

Let us say that a sequenges properif it does not contairg.

Lemma 3.1 Given a configuration sthere is an upper bound on the length of a proper
sequencd which is g-legal for s.

Proof: Throughout the firing ofS the total number of dollars held at vertices# q
cannot exceed its initial value, and in particular there is an upper bound on the number o
dollars held at any one of these vertices.

SupposeS can be arbitrarily long, so that, since the number of vertices is finite, there is a
vertexw which can be fired as often as we please. Staégconnected there is a path from
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g to w, and we may suppose that it is a geodesic: in particular, the penultimate séisex
closer tog thanw is. Sincew can be fired as often as we pleagé(as a neighbour ob)

can receive an unbounded number of extra dollars. However, the number of dollars held
w’ is bounded, s’ must be fired as often as we please. Repeating this argument we obtai
a sequence of vertices, w’, w”, ..., each of which is closer tq than its predecessor, and
each of which can be fired as often as we please. This contradicts the assumptipn tha
does not occur, and so there must be a bound on the length of O

Lemma 3.2 Let s be a configuration of the dollar-firing game on a connected graph G.
Then there is a critical configuration ¢ which can be reached by a g-legal sequence of firing
starting from s.

Proof: By Lemma 3.1, if we start froms and fire the vertices other thann anyg-legal
sequence, then we must eventually reach a configuration where no vertex gxeepbe
fired—that is, a stable configuration. If we then fifeand repeat the process, we reach
another stable configuration. This procedure can be repeated as often as we please, whe
the number of stable configurations is finite. So at least one of them must recur, and this
a critical configuration. O

We shall prove that there is only one critical configuration satisfying Lemma 3.2. The
following construction is central to the argument.

Let X be a sequence of vertices apdbe a vector such that(v) > 0 for everyv € V.
Construct a sequenceY as follows: delete an occurrence of any vertefkom X’ if it is
not preceded by at leagtv) occurrences of in X'. In other words, if there are more than
y(v) occurrences ob the firsty(v) of them are deleted, and if there are fewer tlyan)
occurrences, all of them are deleted.

The following results, Lemma 3.3, Theorem 3.4, and Corollary 3.5, deal with proper
sequences (that is, the firing gfis not involved). Sincey plays no part, we shall use the
word legal rather tharg-legal throughout this discussion.

Lemma 3.3 LetX and) be proper sequencgsith representative vectors x angwhich
are legal for the configuration s. Then the sequefice: (), XY) is also legal for sand
its representative vector z is given by

z(v) = max{x(v), y(v)}.

Proof. Clearly, itis enough to show that th&? is legal for the configuratios, = s— Qy.
Assume thatt’V is legal fors, up to the point where a vertex# q is about to be fired for
theith time in XY, and that the configuration at that poink¥ Letk be the configuration
which occurs immediately before the corresponding occurrenaeiofX’, which is the
(y(v) + i)th. Letxg andxg be the representative vectors of the initial segment¥ aihd
XY up to these points, so that

k=s—Qx, k' =(s—Qy) —Qx =s-Qz
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wherezg =y + xg’. Evaluating abv we have

k() = 8(v) — Xo(v) degv) + D Xo(w)v(w, v),
wWHV

K/ (v) = S(v) — 20(v) degv) + ) Zo(w)v(w, v).
w#v

Sincev is about to be fired for theth time in XY we havezy(v) = y(v) + (i — 1) and
similarly xo(v) = (y(v) +1i) — 1. Hencexg(v) = Zp(v).

More generally, ifw does occur inXY, suppose that it has occurr¢dimes inxX’Y up to
this point, so thatg(w) = y(w) + j. If j = 0thenxy(w) < y(w), andzg(w) = y(w), SO
Xo(w) < Zp(w). If j > 0thenxg(w) = y(w) + j = Zp(w). In both casegy(w) < zp(w).
The same result holds i does not occur ifk’Y, because in that case the definitions imply
thatzo(w) = y(w) > X(w) > Xo(w).

Sincexp(v) = Zp(v) andzg(w) > Xo(w)(w # v), the expressions fde¥ (v) andk(v)
show thatkY(v) > k(v). But we are given that the firing af in X is legal, that is,
k(v) > degv). HencekY(v) > degv) and the corresponding firing ofin X is also legal.

It remains to check the formula far If x(v) > y(v) then the firsty(v) occurrences of
are deleted fronk’ to form XY. Sov occursx(v) — y(v) times inXY, and the number of
times it occursinZ = (Y, XY) is

y() + X(v) = y(v)) = X(v).

On the other hand, &(v) < y(v) thenv does not occur it’Y, and hence it occurg(v)
timesinZ. O

Theorem 3.4 Suppose that’ and) are proper sequences as in Lem®8&, and that
they produce configurationg and $, respectively. Then there is a configuratignaghich
can be derived from both &ind $ by legal sequences.

Proof: Lemma 3.3 tells us that” is legal fors, = s — Qy, and similarly)* is legal for
s, = s—Qx. Furthermore, the sequend@s XY) and(X', J*) have the same representative
vectorz, and hence they lead to the same configuraggon m|

Corollary 3.5 LetX and) be asin Theorer.4 Then
(i) if sp is stable,.Z = (), XY) also leads to §
(i) if s; and s are both stable thens=s,.

Proof:

(i) Lemma 3.3 shows that* is legal fors; = s— Qx. Butif s; is stable, no vertex # q
can be fired. Hencé* must be empty, and its construction implies tkat) > y(v)
for all v. In this caseZ = (), XY) has representative vectoe= x, and so it produces
s; also.
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(i) If s,is also stable, a parallel argument shows th@) > x(v) for all v. Sox = y and
8 =% O

Theorem 3.4 is the confluence property of the dollar game for proper sequences. Usir
Corollary 3.5 the result can be extended to gengflalgal sequences, as follows.

Consider the structure of a general sequetioghich isg-legal fors. It begins with a
(possibly empty) sequen&®y, of firings ofq followed by a proper sequenég, after which
g must fired again, and so on. The sequence can therefore be split into segments

QOs Xla le cet Qa—l, Xav

where eacli; is proper, and eacf); is a sequence afs. Let) be anotheg-legal sequence
for s, with decomposition

Q/Ov ylv é]_s"'a i)717 yb'

The g-legality condition means that the initial segmemdds and Q; are the same. If

a = b = 1 there are no other firings @f, and Lemma 3.3 establishes the confluence
property. Ifa > b = 1, Corollary 3.5(i) shows that following/; by lel leads to the
same (stable) configuration as the one which follovys Hence the outcome @f can be
obtained by starting with). If a > b > 1, it follows from Corollary 3.5(ii) that the two
sequences produce the same stable configuratiarsthe completion oft; and), for

i < b. Starting fromt, and applying the previous argument gives the required result.

Lemma 3.6 If the configuration c is recurrent then there is a g-legal sequéider c
which has representative vectorthe all-1 vector.

Proof: Sincec is recurrent there is g-legal sequenc&® for ¢ which produces. Its
representative vectorsatisfiex — Qr = c. In Section 2 we observed that the kernelpf
consists of the constant functions,rsis a multipleiu of the all-1 vectow. By the proof
of Lemma 3.3 the sequend® is g-legal forc — Qu = c; and its representative vector
is (A — Du. Repeating this process— 1 times in all we obtain a sequentewith the
required properties. O

Lemma 3.7 Suppose that c is a critical configuration and that there is a g-legal sequence
S for ¢ which produces a critical configuration d. Then=dc.

Proof: Leti/ be asin Lemma 3.6. By Corollary 3.5(f), SY) producesd, which means
thatS" is also ay-legal sequence leading framtod. Thus, ifx andx“ are the representative
vectors forS andSY, we haved = ¢ — Qx = ¢ — QxY. It follows thatx — x" is in the
kernel of Q, sox — x" is a multiple ofu which, by the construction a$", must beu. In
other words, we can replaceby SY, and in this process one occurrence of each vertex is
deleted. Repeating the argument we can redutethe empty sequence, Sanust contain
every vertex the same number of times, which implies thatc. O
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Theorem 3.8 Let s be a configuration of the dollar game on a connected graph G. Then
there is a unique critical configuration which can be reached by a g-legal sequence of firings
starting from s.

Proof: We have already shown (Lemma 3.2) that at least one such critical configuration
exists. Supposg andc; are two of them. By confluence there is a configuration which can
be reached from botty andc,. Using Lemma 3.2 again, there is a critical configuration

d with this property. But Lemma 3.7 implies thet = d andc, = d, hencec; = ¢, as
required. ]

4. The group of critical configurations

Let C%(G; Z) andC(G; Z) denote the abelian groups of integer-valued functions defined
onV andE, respectively. Interpreting the elements of these spaces as column vectors, th
incidence matrixD and its transposB! can be regarded as homomorphisms

D:CY¥G;Z2) —» C%G;Z), and D':C%G:Z) - CYG:;2).
We can also regar@ = DD! as a homomorphist&8°(G; Z) — C°G; Z). Denote by
o : C%G; Z) — Z the homomorphism defined ay(f) = Y, f (v).

Lemma 4.1 Theimage of Q is a normal subgroup of the kernet of

Proof: We observe first that D = 0, which follows directly from the fact that the
matrix D has just two non-zero entries in each column, 1 aid Suppose that € Im Q,
sayx = Qy = DD'y. Theno(x) = 6 DD'y = 6 D(D'y) = 0, that is,x € Kero. Thus
the image ofQ is a subgroup of Ket, and since the groups are abelian, it is a normal
subgroup. ]

Denote byK (G) the set of critical configurations on a graphand for each configuration
slety(s) € K(G) be the unique critical configuration determined by Theorem 3.8.

Theorem 4.2 The set KG) of critical configurations on a connected graph G is in
bijective correspondence with the abelian grd(gr o /Im Q.

Proof: We show first that every coset]in Ker o/Im Q contains a configuration. Given
f € Kero letl be the configuration defined on vertiaes: q by

LU — dequ) — 1 if f(u) >0,
W= degu) —1— f(u) if f(u) <0,

and such thdtq) = — Z#q I (u). Itfollows from Lemma 3.1 that there is a finite sequence
of firings which reduceé to a stable configuratioris If this sequence has representative
vectorx, we havek =1 — Qx. Letz= f +1 —k;thenz= f + Qxso[z] =[f], and

z(u) = f(u) +1(u) — k(u) > degu) — 1 —k(u) > 0.
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Hencez is a configuration representing the given coddt [
Next, we show that there is a well-defined function

h:Kerog/ImQ — K(G),

given byh(a) = y(s), wheres is any configuration in the coset Suppose thag; ands;
are configurations such tha] = [$] = «. Inthat cases; — s, = Q¢, ¢ € CO(G, Z).
We can writep = f; — f, where f1(v) and fy(v) are non-negative for all. Letsy =
s1—Qfi =% - Qfa.

Suppose thay (s;) = ci, and thatS; is ag-legal sequence fag; which produces;.
Sincec; is recurrent we can choosg so that any vertex occurs at least; (v) times. Now
the proof of Lemma 3.3 shows that the sequeﬂffeis g-legal forsy, and by construction
it is obtained fromS; by deleting exactlyf; (v) occurrences of, for each vertex. Hence
Slfl applied tosy produces;. It follows thaty (sp) = ¢1 = y(s1). The same argument
shows that/ (s9) = y(s2). Henceh is well-defined.

To show thaht is a surjection, we simply observe that givera K (G), we haveh[c] =
y(c) = ¢. To showh is an injection, suppose thals;] = h[s;]. Theny(s;) = y(s2) = ¢,
say, where the configuratiancan be reached starting frospand froms,. Thus, there are
vectorsx; andx; such thas; — Qx; = cands, — Qx = ¢. Hences; — s, = Q(X1 — X2),
and so §] = [2]. O

There is an abelian group structure on keim Q, defined by §] +[s] =[s1 + S2].
It follows that K(G) is an abelian group under the operati@nwhereh[s;] e h[s;] =
h[s; + 2], that is,y (s1) e ¥ () = y(s1 + ). Equivalently, for any two critical configura-
tionsc; andc,, we have

CreCy = y(CL+C).

We shall refer taK (G) as thecritical group of G.

For example, consider the complete gragh A configuration is determined by a vector
(s(a), s(b), s(c)) denoting the numbers of dollars at the vertiee®, ¢ other thang. A
configuration is stable if and only if & s(v) < 2 forv = a, b, ¢, and so there aré’3= 27
stable configurations. However, only 16 of them are recurrent. The zero elementis (2, 2, :
and the critical group is the direct sum of two cyclic groups of order 4, whose generator
may be taken as (1, 1, 2) and (2, 1, 1). (These results are a special case of the analysis gi
in Section 9 for the family of wheel graphs, sinkg is the wheel graphV.)

5. Flows, cuts, and the orthogonal projection

The aim of the next three sections is to prove that the critical gkoUpB) is isomorphic
to several other groups associated withand that its order i, the number of spanning
trees ofG. It will be necessary to outline parts of the algebraic theory of graphs, some of
which is ‘classical’ and some of which is recent. More details can be found in [3].

The dollar game naturally involves the set of integer-valued functions defined on the
vertices of a graph, but, as we shall see in Section 6, it is convenient to regard this set .
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being imbedded in the vector spacereél-valuedfunctions. We shall denote the vector
spaces of real-valued functions defined on the vertices and edges of a graftGyR)
andC!(G; R), respectively.

In this context the matrice® andD! define linear mappings between the vector spaces.
A function f in the subspac& = KerD is called aflow on G. There is a standard
inner product(x, y) = ) . Xx(€)y(e) on CY(G; R), and we defineB to be the orthogonal
complement ofZ with respect to this inner product. According to the general theory of
vector spaces, there is a direct-sum decomposition

CYG:R)=Z® B =KerD® (KerD)".

The dimensions of the summands are determined by theorems of elementary linear algebr
given the fact (Section 2), that the kerneldf is one-dimensional. It turns out that

dmZ=m-n+1, dmB=n-1.
LetU be a non-empty proper subset\f Define a functiorby in C(G; R) by the rule

1, if the intersection of (e) andU is h(e) only;
by(e) = { —1, iftheintersection of (e) andU ist(e) only;
0, otherwise

The set of edges which have exactly one verteldiis called acutin G, andby (e) # 0
precisely where belongs to this cut. Thuly is the ‘characteristic function’ of the cut
defined byU, except that there are signs according to the orientation.

Note that the cut corresponding to a single vet@onsists of the edges incident with
andb, (considered as column vector) is simply the transpose ofurofivD. The equation

by =) b,

veU

expresedy as a linear combination of rows @. If z € Z we haveDz = 0, that is,
(b,,z) =0forallv € V. Consequentlyby, z) = 0, soby isin B.

Let T be a spanning tree i8, that is, a subsel of E which forms a connected acyclic
subgraph containing every vertex®f We know thatT| = n—1. If f € T the removal of
f from T leaves two components, one containir{d ) and the other( f). We shall denote
these components bBly;" and T, respectively. Let) (T, f) denote the set of vertices of
T;", so that the associated cut contaih@nd some other edges which are noflinwe
call this thefundamental cutletermined byl and f. The number of fundamental cuts
associated witil isn — 1, and for each one of them we have an element

b=byrn

of the cut space. If’ € T thenb(f’) = 1whenf’ = f andb(f’) = 0whenf’ # f. It
follows that the set of functionisyt.+) (f € T) is linearly independent. Since diBi=
n — 1 we immediately deduce:
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Lemma 5.1 For a given spanning tree Tthe set3y of functions b1y (f € T)is a
basis for B.

Let g be a given vertex and 162, denote the set of functioris, determined by the rows
of D, excepting the one for which= g. ThenDy is also a basis foB.

Lemmab5.2 Letqand T be a given vertex and spanning tree of G.
(i) The change of basis matrix which expresBg# terms of3t is D(q, T), the submatrix
of D formed by the intersection of the rows corresponding to all vertices except g anc
the columns corresponding to edges in T.
(i) The inverse of g, T) is the matrix Y= (ye,) given by

1, ifveTs andge Tg;
Yeo = {4 —1 ifve T, andq e T}
0, otherwise.

(i) detD(q, T)==+1.
Proof:

(i) Suppose that

by = avburs (v#Q).

feT

Evaluating both sides on an edge T we have

by(€) = D aurbu(r.1)(€) = aye.

feT

It follows thata,e = b, (€) = d,e, as claimed.
(ii) The definition ofU (T, e) implies that

bure = Y by

ueTeJr

The equatior) _, _,, b, = 0 allows us to rewrite the displayed equation as a sum over
v # g, in which the coefficients turn out to g, as given.

(i) It follows from (ii) that detY detD(qg, T) = 1. Both matrices have integer entries, so
their determinants are integers and the result follows. O

The orthogonal decompositid@'(G; R) = Z & B implies that anyc € C1(G; R) can
be uniquely expressed in the foen= z + b, with z € Z, b € B, so that(z, b) = 0. There
is an explicit formula for the uniqub corresponding to a giveo, or (equivalently) the
orthogonal projectiorP : C* — B.
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Given a spanning tre€, define amrm x m matrix Nt as follows: if f isnotinT then
column f of Ny is zero, while if f isin T, itis byt ). Explicitly, the entriemes of Ny
are given by:

0, if fgT,;

Nef = .
bU(T,f)(e), if feT.

Theorem 5.3 Let« be the number of spanning trees of(8metimes called the tree-
numbe}. Then[3, Proposition6.3]

P = (1/x) Z Nt
T
is the orthogonal projection E— B. Thatis Pz=0(z< Z) and Pb=b (b € B).

6. Lattices, determinants, and the tree number

For brevity, we shall use the subscripto denote a set of integer-valued functions defined
on the edges of a graph. Thus, we der®t¢G; Z), the abelian group of all integer-valued
functions defined on the edges, By. SinceC, is naturally imbedded in the vector space
C(G; R), we shall often speak of it aslattice. Similarly, we define

Z,=72nC;, B =BnNC,,

so thatZ, and B, are lattices (abelian groups) naturally imbedded in the vector spaces
andB.

A fundamental observation is that the direct sdme B, is a proper sublattice o, ;
that is, not every integer-valued function on the edges can be decomposed into an integ
flow and an integer cut. Specifically:

Theorem 6.1 A function ce C, isin Z, & B, ifand only if Pcis in B, where P is the
orthogonal projection &(G; R) — B. Equivalentlyif we let R denote the restriction to
C, of P, then the function

C Im P,
% 9
Z, @ B B,

which takes the cosét] (with respect to Z ® B)) to the cosefP ] (with respect to B),
is an isomorphism.

Proof: The first statement follows from the identity= (c — Pc) + Pc.

The only non-trivial part of the second statement is to show that the function is an
injection. This is simply another way of saying thati ] is the zero coset, theg]is the
zero coset, which follows directly from the first statement. O
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Thedual of the latticeB, in the vector spac8 is the lattice(B, )* defined by
(B ={xeB|{x,byezforallbe B}.

A fundamental result of Bacher et al. [1] is that the dual lat{iBg)* is the image of
P,. Together with Theorem 6.1 this implies that the map#> [Pc] defines a group
isomorphism

Ci/(Z ®B)) — B/B.

A parallel argument establishes the existence of an isomorphism be@y¢én, @ B, )

andZ’} /Z,, afinite abelian group which, in other contexts, is known ag#webiangroup.
In the theory of integer lattices thieterminanbf a lattice A, written as detA, is defined
to be the index ofA in its dualA*. Thus the index o, @ B, in C, is given by

C

= detB, = detZ,.
‘ Z & B ’ ! !

In order to compute the determinant of the lattiggsand B, we need a standard result.

Let A be any lattice in a euclidean space, andiet {e, e, ..., €.} be aZ-basis forA.

Then the determinant of is equal to the determinant of tii&am matrix Hof A, that is,

detH, where(H);j = (&, €)).
It can be shown that this is independent of the chd&drasis.

Theorem 6.2 If G is a connected graplthe common value afetZ, anddetB, is «, the
number of spanning trees of G.

Proof: In Section 5 we noted that bothy andD, are bases for the vector spaBelt is
easy to see thdd; is also aZ-basis forB,, as follows. Giverb € B,, we can use the fact
that Bt is a vector space basis f@to write

b= Zﬂbe(T,f) whereﬁf e R.

feT

Evaluating both sides on any edge T, we getb(e) = e, sinceeis in the cutU (T, e)
but not inU (T, f) whenf # e. Sinceb(e) is an integer, S0 i8e.

We also showed (Lemma 5.2) that the change of basis Berto D is unimodular. It
follows thatDy is also aZ-basis forB; .

The Gram matrix forDg is DD! with the row and column correspondingdadeleted,
which is justQq, the Laplacian matrixQ with that row and column deleted. It is a classic
result (see, for example, [2, p. 39]), that the determinar@gfs the tree number. O
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7. The Picard group

Recall thato : C%(G; Z) — Z is defined by (f) = 3" f(v). The following result is a
strengthening of Lemma 4.1.

Lemma 7.1 If G is a connected graplihe image of D. C, — C%G; Z) is equal to the
kernel ofo.

Proof: We have already noted thaD = 0, so that ImD CKero.

Conversely, suppose théte Kero, thatis,) ", f(v) = 0. Forv e V leté, € C%G:; 2)
be the function defined bg§,(w) = 0 if w # v, andd,(v) = 1, and fore € E define
3¢ € C; similarly. Clearly, ifeis an edge whose vertices a@ndb, §; — 6, = D(%6e),
where the sign depends on the orientation.

Choosing any vertex, and remembering that( f) = 0, we have

f=> s =Y f)E -8

veV VFEX

Thereisapath i fromx tov, consisting (say) of the vertices and edges vg, €1, v, .. .,
vr_1, &, vy = v. Consequently,

8o — 8x = (8y, — 8y y) + -+ (80, — 8up) = D(£8¢ ) + - - + D(£5¢,).
This equations shows thét — 8 is in the image oD, and it follows thatf e ImD. O
Lemma 7.2 If G is a connected graphhe image of b: C%(G; Z) — C, is B,.
Proof: Supposey = D'x, wherex € C%(G; Z). For anyz € Z we haveDz = 0 and so
(y,z) = (D'x,2) = (x, Dz) = (x,0) = 0.

Hencey is in B, and clearly it takes integer values, ¥ in B;.

Conversely, recall from the proof of Theorem 6.2 tfi@tis aZ-basis forB,. Conse-
quently, giveny € B, we havey = Y a,b,, wherea, € Z. If we definea € C°(G; Z)
in the obvious way (withyq = 0), the equation is equivalent o= D'«, from which it
follows thaty is in Im D!. O

In Algebraic Geometry the image group(C,) is known as the group dlivisors of
degree0 of G. Its subgroupD(B,) is known as the group gdrincipal divisorsof G, and
thePicard group Pic(G) is defined to be the quotie(C,)/D(B).

The preceding Lemmas provide a more familiar interpretatioRicfG). According to
Lemma 7.1D(C)) is the kernel ob. According to Lemma 7.28, is the image oD?!, so
D(B)) is the image oDD! = Q. Thus

D(C)) Kero
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and Theorem 4.2 asserts tita¢(G) is naturally isomorphic to the critical grod(G). On

the other hand, it can be shown [1, 3] that the function which takes a dosgir{ Pic(G)

to the cosetlPc] in (B))*/B, is an isomorphism. (Recall the result, mentioned above, that
Im P, = (B}).) ThusPic(G) is a group of ordex. Putting all this together we have:

Theorem 7.3 If G is a connected graph the critical group (&) has orderx, the tree
number of G.

8. Structure of the critical group

In the preceding sections it has been shown that the critical gka@) associated with a
connected grapfs is isomorphic to a number of ‘classical’ abelian groups of okdehe
tree number 0G. These groups are associated with the group of ‘indecomposable’ integra
cochainsC,/(Z, @ B,), and one of them, the Picard groiic(G) = D(C,)/D(B,), is
precisely the group we used in Section 4 to define a group structure on the set of critic:
configurations.

The classification theorem for finite abelian groups asserts<li@&) has a direct sum
decomposition

KG) =Z/MZ)®Z/n2)& - & (Z/n2),

where the integens; are known agvariant factors and they satisfy; | nj 1, (1 <i <r).
Since|K (G)| =«, it follows that

NNy --- Ny = k.

The invariant factors can be used to distinguish pairs of non-isomorphic graphs which hay
the samer (see Section 10), and so there is considerable interest in their properties. Th
standard method of computing them is to use a presentation of the group, and the definiti
of the Picard grouic(G) asD(C,)/D(B,) provides just that.

Theorem 8.1 Given a connected graph,@enerators and relations for P{G) can be
chosen so that the matrix of relations is the reduced Laplacian matgix Q

Proof: Choose a verteg in G. The proof of Lemma 7.1 shows that the set of functions
$y = 8y — 8q(v # q) is aZ-basis forD(C) ).

On the other hand, in the proof of Theorem 6.2 we observed thatasis forB, is Dy,
the set of rows, = D'$, of D for whichv # q. Sinceby is aZ-linear combination of
the members oDy, it follows trivially that the set of functions, — b = D'(8, — §q) =
D'¢,(v # q) is aZ-basis forB, .

The quotient grou(C;)/D(B,) is generated by the images of thez,. SinceB, is
generated by the functiord!z,, the ‘relations groupD(B)) is generated by the functions
D(D'¢,). In other words, in the quotient group the following relations hold:

D(D'¢,) =0, thatis,Q¢, =0 (v # Q).
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Since the rank 0Q isn — 1, one relation is redundant, let us say the one given bygow
Q. Also since there is no generaigrwe may omit columm of Q. ThusQq is a relations
matrix for the Picard group. m|

The standard technique for obtaining the invariant factors of a finitely-generated abeliar
group from a presentation is to reduce the matrix of relatighso Smith normal form
Sm(M). Algorithmically, this is done by applying row and column operations to obtain
a diagonal matrix, whose diagonal entries are the invariant factors. Formally, we require
matricesR; andR, in GL(r, Z) such that

RIMR, = SI’T(M) = diag(nl, Ny, ..., N).

For example, the reduced Laplaci@y for K, is the(n — 1) x (n — 1) matrixnl — J
(whereJ is the all-1 matrix). PartitiorQq as follows:

<n—1 —ut
—u nl=J3)

whereu is the all-1 column vector and J are now(n — 2) x (n — 2) matrices. Let

1t 1 —ut
R, = , R= .
u | +J 0 1

Then detR; =detR, =1 soR; andR; are inGL(n — 1, Z). Furthermore,

RQR_(l 0)
t~a™=\o ni1 /)

It follows that the invariant factors @@, are 1 andh (n — 2 times), and so the critical group
K (Kp) is the direct product af — 2 copies oZ /nZ. Sincex is the product of the invariant
factors, this is a refinement of Cayley’s formuleK,) = n"2.

One feature of the dollar game is that it provides an alternative calculus of determining
the invariant factors. Calculations with critical configurations can be regarded as the basit
algorithmic steps underlying the matrix operations required to find the Smith normal form.
We shall give some examples of this alternative calculus in the following sections.

9. Analysis of the wheel graphs

The wheel graph W hasn + 1 vertices, which we shall denote lgyand the integers
modulon. The vertexg is adjacent to all other vertices, and those vertices formithef
the wheel, a cycle in whichis adjacent td — 1 andi + 1. Note thatW; = Kj.

The wheel graphs form what has been called [Eaursive family This means that, in
particular, the tree-numbers of the family are determined by a linear recursion. In this case
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kn = k(W) = |[K(W,)| satisfies
Knt3 = dkni2 — dkng1 + kn,

with the initial conditionsc; = 5, k3 = 16, k4 = 45, and the resulting formula is:

. (3+2J§>“ N (3—2J§)“ .

The first few values of, are as follows.

2 3 4 5 6 7 8 9 10 11
5 16 45 121 320 841 2205 5776 15125 39602

Let (f,) and(l,) be the sequences of Fibonacci numbers and Lucas numbers, respectivel
These sequences are defined by the initial conditigns 1, f; = 1 andlyg = 2,1; = 1,
respectively, and the recursion = X,_1 + Xn_2. There are many relationships between
these numbers, the basic one bding: f, + f,_>.

For our purposes the significant fact is that the numhkgrare given in terms of the
Fibonacci and Lucas numbers by

Ih x In, if nis odd
=154 fo_1 x fn_1, if Nniseven
We shall show that these factorisationggbre closely related to the structure of the critical
groupK (Wy).

We begin with the case whemis odd. Leth = 2r + 1 and denote the vertices on the rim
of W, by the residue classes, —(r — 1),...,—1,0,+1,+2, ..., +r (modn). Define a
configurationb on W, as follows:

b(v) 1, ifv=dr;
Y= 12 otherwise.

Lemma 9.1 The configuration b is critical and has ordgrih the abelian group KW,).

Proof: Clearlybis stable. It is easy to check that the sequence of vertices
q,0,—-1,+1,—-2,42,...,—r, 4+,

isg-legal forb, and since each vertex is fired once the resulting configuration Qu = b.

Sobis recurrent, and therefore critical.

For any positive integerrlett - b denoteb e b e - -- e b, the e-sum oft copies ofb in
K (W,). Equivalentlyt - b is the unique critical configuratiop(b + b + - - - + b), where
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the+ sign represents vector addition. We shall obtain explicit expressions bbwhent
is a Fibonacci number; specifically we shall show thatjfer1,2,...,r,

1, ifo==£@r —i+1;
2, otherwise.

(fai2-b)(v) = {

1, fv=xr—-j)andj=0,1,...,i —1;

(fa - D)) = {2, otherwise.

Wheni = 1 the expressions fofy - b and f; - b both reduce to that fds, which is correct
since fo = f; = 1. Assume that the formulae hold whén= k, and suppose that
2<k+1<r.Thenfyi-2 = fox = fx_1+ fx_2. Hence

fa-b= (fx_1-b)e(fx2-b)=y(fx1-b+ fx2-b).
Using the induction hypothesis we have
2, ifv==%( —k+1);

(foke1-b+ fo-b)=13, ifv==% — j)andj =01...,k—2
2, otherwise.

It can be checked that the following sequencg-iegal for this configuration and results
in the stated formula fofy - b.

0,-1,+1,-2,+2,...,—r,+r,0,-1,+1, -2, +2,...,—(r — k), r — k.

Similarly, the expression fof1 - b can be verified. Hence we have verified the formulae
for f; -bwhenj =0,1,...,2r — 1.

Using the same methods, the following expressionsffprb and f, 1 - b can be ob-
tained.

0, ifv=0;
2, otherwise.

1, ifv=0;
2, otherwise.

(far - b)(v) = { (fory1-b)(v) = {

Sincen = 2r + 1, we havd, = f, + f,_o = fx11+ fa_1. Using the formulae obtained
above, the configuration= fy,,-b+ fx_1-bhass(v) = 3 for each vertex # q. Firing
each vertex excep once, we get the configuratign(s) = o, whereo(v) = 2 (v # Q).
Clearlyo is the zero element df (W,), and so

lh-b=fri1-befyr 1-b=y(fxi1-b+ fx_1-b)=y(s)=0. ]

For any vertexw =# q let b,, be the configuration defined ty, (v) = b(v — w). In
other wordsb,, is obtained fronb by rotating the rim of the wheel through steps. We
haveby = b, and for convenience we write, ; = b;. Eachb,, is an element of orddy, in
K(Wh).
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Theorem 9.2 When n is odd the group ®&\},) is the direct sum
KWh) = (Z/1n2) & (Z/1n2),
where the cyclic groups of ordey hre generated bydoand b.
Proof: Letngandmr; denote the permutations of the rim vertices defined as follows:

70(0) =0, mo(+i) = —i,mo(—=i)=+i (=1,2,...,r);
mQ) =1 m(r)=—r -1, m(=r —-1) =-r,
) = —( =2, m(=( —2) =+, (=12....1).

Every multiple ofbg is symmetrical with respect tay, that is,(« - bp) (v) = (« - bp) (;rov).

On the other hand, every multiple bf is symmetrical with respect to;. Sincery and

1 generate a group which acts transitively on the rim, the only configurations which are
symmetrical with respect to both permutations are those in which every rim vertex has th
same number of dollars. So,df- by = g - by, both configurations are in fact the critical
configuration in which each rim vertex has two dollars, which is the zero elem&nif).

It follows that the subgroup generated lpyandb; is the direct sum of the cyclic groups
generated by andb;. This has ordelﬁ, which we know to be the order & (W,), and

so the result follows. O

It is easy to express the configuratidns(w # 0, +1) in terms ofbg andb;. A simple
computation shows théit 1 e b; = y(b_1+ by) = 3- by, and in general for any we have

bw—l L4 bw+1 =3 bw-

This observation is relevant to the observation made at the end of Section 8, that calculatio
with critical configurations are in effect equivalent to finding the Smith normal form of the
reduced Laplacian. The reduced Lapladigof a wheel graph consists of a main diagonal
of 3's, with —1's in adjacent positions, and by Theorem 8.1 this is a matrix of relations for
K (Wh).

We now turn to the case whernis even. Define configurations

MJ—{L if | —0;
= 2, otherwise.

1, ifj=024,..,n—2

c(j) =
W {2, otherwise.

By methods like those used for the odd case, we can verifyKh#,) is generated by
configurationsby and b;, whereby = b andb; is obtained fromb by a unit rotation.
However, in this caséy andb; are not independent generators. It can be checked that
fn_1-bp = cand f,_; - by = —c, where—c is obtained front by switching the values
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1 and 2. Furthermore 5¢c = 0. Hence both generators have orddf 5, but the cyclic
groups they generate intersect in a group of order 5, generated by

The direct sum decomposition and invariant factor&a@f\;,) in the even case can be
determined from the foregoing observations. It should be noted that the Fibonacci numbe
fn_1 is divisible by 5 if and only ifn is a multiple of 5, and this affects the form of the
invariant factorisation when is multiple of 10.

10. Strongly regular graphs

A connected graph istrongly regularwith parametersk; a, c) if: (i) it is regular, with
degreek > 2; (ii) any two adjacent vertices have the same nungber 0 of common
neighbours; (iii) any two non-adjacent vertices have the same numbet of common
neighbours.

Strongly regular graphs are a subset of the claskstéince-regulagraphs. The general
case will be studied in another paper [4], but it is convenient to emphasise the relationshij
by using a more general form of parametrisation. Denotd(byw) the distance between
two verticesv andw, and letb; be the number of vertices such thatd(x, v) = 1 and
d(x, w) = 2, given thatd(v, w) = 1. Similarly, denote by, the number of verticex
such thad(x, p) = 1 andd(x, q) = 1, given thatd(p, q) = 2. Thenb; =k —a — 1 and
c; = ¢. Theintersection arrayof a strongly regular graph is defined to ke bs; 1, c,}.

It is known that the tree number of a strongly regular graph is determined by its
intersection array. This follows from the fact that for any connected graph, we have the
formula[2, p. 40]

Kk =n"tpuips - ot

whereus, o, ..., un—1 are the non-zero eigenvalues of the Laplacian mafrixFor a
regular graph of degrde Q = kIl — A, whereA is the adjacency matrix. If, in addition,
the graph is strongly regular the spectrumfas completely determined by the intersection
array [2, 8].

However, the invariant factors are not determined by the intersection array. For example
there are two strongly regular graphs with intersection aféag; 1, 2}, the lattice graph
L (4) and the Shrikhande gra@hr. For both graphs = 2%%, but the invariant factorisations
of x are different [1]:

Kk(L(4) =832 «(Shn=2.8.16" 32"

(The Smith normal forms for the Laplacian matricesla#d) and Shr are also given in

[9].) This observation shows that the structure of the critical grii®) can be used to
distinguish graphs in cases where other algebraic invariants, such as those derived from t
spectrum, fail. In the case of a strongly regular graph, the parameters do not determine th
structure ofK (G) but, as we shall now explain, they do determine a subgroup of it. Given
a strongly regular grap@ and a specified vertex, let us say that a configurati@of the

dollar game orG is layeredif s(v) depends only od(q, v). Thus, a layered configuration
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is defined by an ordered pais;, ), wheres; is the value ofs(v) for any vertexv at
distancej fromq. LetF; (j = 0, 1, 2) denote the operation of firing all vertices at distance

j from q once (in any order). Note thaf, denotes the firing od only, and clearlyF; or

F» can be applied to a layered configurat®ifiand only ifs; > k or s, > k, respectively.

The application of these operations to a layered configuration results in another layere
configuration, and the following rules are easily verified:

F
(51, %) = (51 + 1, %);
].'
(S1,.%) = (51— by — 1, %+ C);

T
(S1, %) = (81 + by, 2 — ).
Lemma 10.1 The layered configuration & (s;, S) is critical if and only if
ss=k—1 and k—-c<s<k-1

Proof: Suppose thas satisfies the conditions. Then cleadys stable. Consider what
happens when we attempt to fire the vertices in the sequBfcE,, F».

Sinces is stable the condition for firing (that is, 7o) holds. After 7, the new confi-
gurations’ hass; = k, so thatF; can be applied. Aftef; we have a configuratiosi’ with
s, = $ + Cp, and the given conditions imply that 4+ ¢, > k, soF» can be applied. So
the sequence ig-legal, and the final result sagain. This shows thatis recurrent, and
consequently critical.

Conversely, supposeis critical. Sinces is stable the conditios; < k — 1 certainly
holds forj = 1, 2. Thus, it is sufficient to prove that$f < k — 1 ors, < k — ¢, thensiis
not recurrent.

If s; < k—1then we can us&y k — 1 — s; times to obtain a configuratiaik — 1, s,).

If s, > k — ¢, then this configuration is critical and we stop.sif < k — ¢, the sequence
Fo, F1isg-legal and results in the configuratith— 1 —b;, s, + ¢;). By firing Fob; times
again we obtaink — 1, s, + ¢). If s, + ¢, is in the critical range then we stop. If not,
by repeating this process we can increase the second componefftfigass in all, until
s, + fc, is in the critical range, and then restore the vaduel of the first component. This
is a configuratiors* which, by the first part, is critical and which can be reached fsdy
aqg-legal sequence of firings. It follows from Theorem 3.8 thét not critical. O

We now investigate the effect of ta®@peration on the set of basic critical configurations
specified in Lemma 10.1, which we denote by

(iy=(k-=2,i) i=k—-cp....,k=1.

We can calculatéi) e {j) as follows. Considefi) + (j) = (2k — 2,i + j). The operation
JF1 can be applied to this configuration and result$dk — 3 — by, i + j + ¢;); now the
operationF, can be applied and results @k — 3,i + j). Let R denoteF; followed by
F». Repeating the foregoing argument, we can afpllt — 1) times in all, until we reach
(k—1,i +j). Ifi +] < k-1, this is the critical configuratioti + j). If i + j > k, then
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F, is legal and results in the configuratigh— 1 4 by, i + j — ¢2). Now we can apply
R by times, which yieldgk — 1,1 + | — ¢,). Either this is critical, otF; is legal and we
can repeat the process.

The conclusion is that the critical configuratitin e (j) = y (i) + (j)) is (h), whereh
is the (unique) integer in the range- ¢, < h < k— 1 which is congruent to+ j modc,.
This rule also shows that the zero elemenkKafs) is (0,), whereo; is the unique multiple
ofc;intherangek — ¢, <0, <k — 1.

We can express these results algebraically as follows. Given a congruence itlass
Z/coZ, letr, denote the unique representativer ofthich satisfiek — ¢, < rp < k — 1.
Then the map fronZ /c,Z to K(G) defined byr — (r,) is a monomorphism. Thus we
have proved the following result.

Theorem10.2 Let G be strongly regular graph with intersection arrgky by; 1, c;}. Then
the layered critical configurations form a cyclic subgroup of&), of order 6.

For the vast majority of strongly regular graptys > 1, and the subgroup of ordes,
although relatively small, is nevertheless significant. ConsidePébey graphof orderq
whereq is a prime power of the formed+ 1. This is strongly regular with intersection
array

{2¢c,c;1,¢}, and |K(G)| =« =q* 1.

Sinceq andc are coprime, the arithmetical facts imply a direct summand of atfebut

they do not force a subgroup of oraerFor example, wheq = 49 andc = 12 the summand

of order 124 must, in the light of Theorem 10.2, contain elements of order 12, although
this is not forced by the numerical information.
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