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Abstract. For a fixed positive integerk, consider the collection of all affine hyperplanes inn-space given by
xi − xj = m, wherei, j ∈ [n], i 6= j , andm ∈ {0, 1, . . . , k}. Let Ln,k be the set of all nonempty affine subspaces
(including the empty space) which can be obtained by intersecting some subset of these affine hyperplanes. Now
give Ln,k a lattice structure by ordering its elements by reverse inclusion. The symmetric groupSn acts naturally
on Ln,k by permuting the coordinates of the space, and this action extends to an action on the top homology of
Ln,k. It is easy to show by computing the character of this action that the top homology is isomorphic as an
Sn-module to a direct sum of copies of the regular representation,CSn. In this paper, we construct an explicit
basis for the top homology ofLn,k, where the basis elements are indexed by all labelled, rooted,(k+ 1)-ary trees
on n-vertices in which the root has no 0-child. This construction gives an explicitSn-equivariant isomorphism
between the top homology ofLn,k and a direct sum of copies ofCSn.
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1. Introduction

The partition lattice,5n, has been an object of much study in the past few decades. The
symmetric groupSn acts naturally on5n by permuting the elements of [n] = {1, . . . ,n}and
thereby permuting the partitions. This action extends to an action ofSn on the homology
of5n. Since5n is Cohen-Macaulay, the main point of interest here is the action on the top
homology of5n. In 1981, Hanlon [5] computed the M¨obius function of the sublattice of
5n fixed by a permutation inSn. This result brings to mind the well known fact (see [11]),
sometimes referred to as the Lefschetz Fixed Point Theorem, that the characterφ of the
action of a finite groupG on the top homology of a Cohen-Macaulay posetP with 0̂ and1̂ is
given byφ(g) = (−1)rµPg([0̂, 1̂]), wherer is the rank of̂1, andPg is the poset of elements
fixed byg. In 1982, Stanley [11] combined this fact with Hanlon’s result to show that the
top homology of5n is isomorphic (up to tensoring with the alternating representation) to
a representation INDn, found by taking the one-dimensional representation of the cyclic
groupCn given by a primitiventh root of unity, and inducing it fromCn toSn. Much earlier,
Klyachko [7] proved that INDn has the same character as that of the Free Lie Algebra,
Lie[a1 · · ·an]. (For a thorough introduction to the Free Lie Algebra, see [3].) These results
together show that the action ofSn on the top homology of5n is similar to the action of
Sn on the Free Lie Algebra.
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Joyal [6] was the first to give a direct proof, using the theory of species, of the correspon-
dence between these two representations. Finally, in 1989, Barcelo [1] demonstrated an
explicit bijection between a basis for the top homology of5n and a basis of Lie[a1 · · ·an]
which preserves the action ofSn. In this paper, we will give a result similar to Barcelo’s
for a wider class of intersection lattices. (See [8] for an introduction to intersection lat-
tices and [12] for a survey of recent results about the characteristic polynomials of special
classes of intersection lattices.) In general, an intersection latticeL is defined by giving a
set of affine hyperplanes inn-space, called ahyperplane arrangement, and lettingL be the
set of subspaces which can be obtained by intersecting some subset of affine hyperplanes
in the hyperplane arrangement, with these subspaces ordered by reverse inclusion. By a
result of Wachs and Walker [13], any such intersection lattice is Cohen-Macaulay, and so as
long as there is some action ofSn on L, the Lefschetz Fixed Point Theorem is applicable.
Notice that the partition lattice is simply the intersection lattice defined by the hyperplane
arrangement{xi − xj = 0 : i, j ∈ [n], i 6= j }. We will focus on a more general class of
intersection latticesLn,k defined as follows.

Definition 1.1 Let n andk be positive integers. ThenLn,k is the intersection lattice given
by the hyperplane arrangement{xi − xj =m : i, j ∈ [n], i 6= j,m∈ {0, 1, . . . , k}}.

The symmetric groupSn acts onLn,k in a straightforward manner. Any permutation
ω ∈Sn defines an invertible transformation of [n]-space by permuting the coordinates. This
transformation sends every affine subspace in the intersection lattice to another subspace
in the lattice. Notice that the arrangement contains affine hyperplanes which are parallel
to each other, and thusLn,k has a top element1̂ corresponding to the empty subspace. The
existence of this top element makes the structure ofLn,k significantly more complicated
than that of5n. (For example,Ln,k is not geometric, and so Bj¨orner’s result [2] about
the homology of geometric lattices no longer applies.) Ironically, while it is more difficult
to construct a basis for the top homology ofLn,k, it turns out that the top homology is
isomorphic to a representation much more basic than the Free Lie Algebra, namely a direct
sum of copies of the regular representation,CSn. We will prove this fact first by a simple
computation of the character of the representation, and then by an explicit basis construction.

We will use the typical notation for the homology ofLn,k. LetCr (Ln,k) be the space gen-
erated overC by all r -chains(0̂− c1− · · · − cr − 1̂), and let the boundary mapδr : Cr →
Cr−1 act linearly by sending(0̂− c1− · · · − cr − 1̂) to

∑r
i=1(−1)i (0̂− c1− · · · − ĉi − · · ·

− cr − 1̂). Let Hr (Ln,k)=Ker(δr )/Im(δr+1). The top homology,Hn−1(Ln,k), is simply the
subspace ofCn−1(Ln,k), the space generated by all maximal chains inLn,k, which is mapped
to zero by the boundary map.

2. Action of the symmetric group on the top homology ofLn,k

In this section, we will show using characters thatHn−1(Ln,k) is isomorphic as anSn-
module to a direct sum ofR copies ofCSn, whereR = 1

n (
(k+1)n−2

n−1 ). The computation
relies heavily on the structure of the coatoms of the lattice.
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A coatom ofLn,k is any one-dimensional affine subspace ofn-space obtained by inter-
secting a subset of hyperplanes in the hyperplane arrangement. A coatomg can be thought
of as a mapg : [n] → N such thatg−1(0) 6= ∅ and such that for alli ≥ k, g−1(i ) 6= ∅
implies that at least one ofg−1(i −1), . . . , g−1(i −k) is nonempty. Such a map corresponds
to the affine subspace in whichxi − xj = g(i )− g( j ) for all i, j ∈ [n]. For example, the
mapg for which

g(1) = 0, g(2) = 2, g(3) = 0, g(4) = 2, g(5) = 2, g(6) = 1

represents the coatom given by the relations

x1 = x3 = x6− 1= x2− 2= x4− 2= x5− 2.

We are now ready to show thatLn,k is isomorphic as anSn-module to a direct sum ofR
copies ofCSn.

Theorem 2.1 Letψ be the character of Hn−1(Ln,k) as anSn-module. Thenψ(id) =
(kn)(kn+ 1) · · · ((k+ 1)n− 2), andψ(ω) = 0 for all ω 6= id.

Proof: SinceLn,k is Cohen-Macaulay, the characterψ(ω) of any permutationω ∈ Sn

is equal to(−1)nµLωn,k [0̂, 1̂], whereLωn,k is the sublattice ofLn,k fixed byω, andµLωn,k is
its Möbius function. Assume first thatω 6= id. Thenω contains a cycle(a1,a2, . . . ,ar )

of length greater than 1. Any coatomg of Ln,k is sent byω to another coatomωg, with
ωg(i ) = g(ω−1(i )) for i ∈ [n]. A coatomg is fixed byω only if g(a1) = g(a2) = · · · =
g(ar ). Let V be the subspace given byxa1 = xa2 = · · · = xar . ThenV > 0̂ (since0̂
represents the wholen-dimensional space), and any coatom fixed byg is greater than or
equal toV . Therefore, the meet of any subset of coatoms fixed byωmust be greater than̂0.
By Weisner’s Theorem (see [9]),

µLωn,k [0̂, 1̂] =
∑
A⊂C∧

A=0̂

(−1)|A|,

whereC is the set of coatoms ofLωn,k. Notice that any element ofLn,k which is fixed byω
is covered by a coatomg in whichg(i ) = g( j ) if i and j lie in the same cycle inω. Hence,
every element ofLωn,k lies below a coatom ofLn,k which is fixed byω. Thus,C can also be
described as the set of coatoms ofLn,k which are fixed byω. Since

∧
C > 0̂, there are no

subsetsA satisfying
∧

A = 0̂. Henceψ(ω) = 0 whenω 6= id.
It remains to compute the character ofψ(ω) whenω = id. This can be done by finding

(−1)nµLn,k [0̂, 1̂]. In [4], Gill shows that the characteristic polynomial ofLn,k\1̂ is∑
x∈Ln,k\1̂

µ[0̂, x]tdim(x) = t (t − kn− 1)(t − kn− 2) · · · (t − (k+ 1)n+ 1).
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We can find the value ofµLn,k [0̂, 1̂] by settingt equal to 1 in the characteristic polynomial
and multiplying the result by(−1). Thus whenω = id,

ψ(ω) = (−1)nµLωn,k [0̂, 1̂] = (−1)nµLn,k [0̂, 1̂]

= (kn)(kn+ 1) · · · ((k+ 1)n− 2).

This concludes the proof of the theorem. 2

Recall that the characterφ of CSn is given by

φ(ω) =
{

0: ω 6= id,

n!: ω = id.

Since a group representation is uniquely determined by its character, and sinceψ is R
timesφ, we may conclude thatHn−1(Ln,k) is isomorphic as anSn-module to the direct
sum ofR copies ofCSn.

3. Index set for a basis of the top homology

The index set for the basis ofHn−1(Ln,k) will be defined in terms of rooted(k + 1)-ary
trees.

Definition 3.1 A (k+1)-ary rooted treeis a tree in which each vertex has at most(k+1)
children,where the children of each vertex are connected to the vertex by edges with distinct
labels from the set{0, 1, . . . , k}. An edge labelledi will be called ani -edge. The parent
of such an edge will be called ani -parent, and the child of such an edge will be called an
i -child.

The basis elements ofHn−1(Ln,k) will be indexed by(k + 1)-ary rooted trees on the
vertex set [n] such that the root has no 0-child. Before showing how to construct the basis,
we will prove that this index set has the desired order,(kn)(kn+ 1) · · · ((k+ 1)n− 2).

Theorem 3.2 The number of(k + 1)-ary rooted trees on the vertex set[n] in which the
root has no0-child is equal to(kn)(kn+ 1) · · · ((k+ 1)n− 2).

Proof: Let G(x) = ∑∞
i=1 bi xi , wherebi is the number of unlabelled rooted(k + 1)-

ary trees oni vertices. The generating functionG(x) satisfies the equationG(x) = x(1+
G(x))k+1, or G(x)

(1+G(x))k+1 = x. ThusG(x) is the left compositional inverse of the formal power
seriesF(x) = x

(1+x)k+1 . The number of unlabelled rooted(k+ 1)-ary trees onn vertices in
which the root has no 0-child is given by [xn−1](1+ G(x))k, or

∑k
i=0(

k
i )[x

n−1](G(x))i .
By Lagrange inversion [14, p. 128],

[xn−1](G(x))i = i

n− 1
[xn−i−1]

(
x

F(x)

)n−1
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= i

n− 1
[xn−i−1](1+ x)(k+1)(n−1)

= i

n− 1

(
(k+ 1)(n− 1)

n− i − 1

)
.

Therefore,
∑k

i=0(
k
i )[x

n−1](G(x))i is equal to

k∑
i=0

(
k

i

)(
kn− k+ n− 1

n− i − 1

)
i

n− 1
= k

n− 1

k∑
i=0

(
k− 1

i − 1

)(
kn− k+ n− 1

n− i − 1

)

= k

n− 1

(
kn+ n− 2

n− 2

)
= k(kn+ n− 2)!

(n− 1)(n− 2)!(kn)!

= (kn+ n− 2)!

n!(kn− 1)!
.

Thus, the number of labelled rooted(k + 1)-ary trees onn vertices in which the root has
no 0-child is equal ton!(kn+n−2)!

n!(kn−1)! = (kn)(kn+ 1) · · · ((k+ 1)n− 2). 2

4. The homology beneath a coatom

In this section, we will study the intervals [0̂, g] of Ln,k, whereg is a coatom ofLn,k. Let
Gg be the labelled graph onn vertices with edge set{(i, j ) : |g(i )− g( j )| ≤ k}. The edges
of Gg correspond to the atoms ofLn,k which lie belowg. In other words, the edge(i, j )
(with g(i ) ≥ g( j )) corresponds to the hyperplanexi − xj = g(i )− g( j ).

Any subgraphS of Gg defines a unique element in the interval [0̂, g] by taking the
intersection of the hyperplanes corresponding to the edges ofS. Thus, an elementx of
Ln,k\1̂ may be denoted by a pair(g, S), whereg is any coatom ofLn,k lying abovex, and
S is an appropriate subgraph ofGg. If S is any labelled graph onn vertices, defineπ(S) to
be the partition of [n] for which i and j lie in the same part ofπ(S) if and only if vertices
i and j are path connected inS. In other words, let the parts ofπ(S) be the vertex sets of
the connected components ofS. Notice that(g, S) is equal to(g′, S′) in Ln,k\1̂ if and only
if π(S) = π(S′) andg(i )− g( j ) = g′(i )− g′( j ) for all i, j in the same part ofπ(S).

For any coatomg, we will denote the maximal chains of [0̂, g] in the following manner.
Let (e1, . . . ,en−1) be a sequence of edges inGg which form a spanning tree ofGg. For
eachi = 0, 1, . . . , (n − 1), let Si be the subgraph ofGg containing edgese1, e2, . . . ,ei .
Now the chain

(0̂− (g, S1)− (g, S2)− · · · − (g, Sn−2)− g)

is a maximal chain of [̂0, g], sinceπ(S0) 6= π(S1) 6= · · · 6= π(Sn−1). We will write this
chain as{g, e1e2 · · ·en−1}. It is clear that any maximal chain of [0̂, g] can be written in this
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way. We will also define an element{g, ρ[e1e2 · · ·en−1]} of Cn−2([0̂, g]) as

{g, ρ[e1e2 · · ·en−1]} =
∑

ω∈Sn−1

(−1)sgn(ω)
{
g, eω1eω2 · · ·eωn−1

}
.

By Björner’s work [2] on the homology of geometric lattices,{g, ρ[e1e2 · · ·en−1]} is an
element ofHn−2([0̂, g]), the top homology of the interval [0̂, g]. (It is also possible to
show, using a result about supersolvable lattices [10, Proposition 2.8], that these elements
generate all ofHn−2([0̂, g]). However, we will not need that fact here.)

For any chain{g, e1e2 · · ·en−1}, let {g, e1e2 · · ·en−1}1 be the corresponding maximal
chain of Ln,k given by appending the element1̂ to the end of{g, e1e2 · · ·en−1}. Let
{g, e1e2 · · ·en−1}− be the chain{g, e1e2 · · ·en−1}1 with the coatomg removed. In other
words, let

{g, e1e2 · · ·en−1}1 = (0̂− (g, S1)− (g, S2)− · · · − (g, Sn−2)− g− 1̂),

and let

{g, e1e2 · · ·en−1}− = (0̂− (g, S1)− (g, S2)− · · · − (g, Sn−2)− 1̂).

Now define{g, ρ[e1e2 · · ·en−1]}1 and{g, ρ[e1e2 · · ·en−1]}− as

{g, ρ[e1e2 · · ·en−1]}1 =
∑

ω∈Sn−1

(−1)sgn(ω)
{
g, eω1eω2 · · ·eωn−1

}1
,

and

{g, ρ[e1e2 · · ·en−1]}− =
∑

ω∈Sn−1

(−1)sgn(ω)
{
g, eω1eω2 · · ·eωn−1

}−
.

Unfortunately, it is not the case that{g, ρ[e1e2 · · ·en−1]}1 is an element ofHn−1(Ln,k).
However, the boundary map does act nicely on{g, ρ[e1e2 · · ·en−1]}1, and we get

δn−1({g, ρ[e1e2 · · ·en−1]}1) = (−1)n−1{g, ρ[e1e2 · · ·en−1]}−.

Thus, roughly speaking, the boundary map acts on{g, ρ[e1e2 · · ·en−1]}1 by simply removing
the coatom from each maximal chain.

5. A sublattice ofLn,k

Consider a sequence(a1, . . . ,ar ) of distinct elements of [n] with length at least 2. Let
K{a1,...,ar } be the graph with vertex set [n] and edge set{(i, j ) : i, j ∈ {a1, . . . ,ar }}. We
may define a sublatticeL (a1,...,ar ) of Ln,k to be the set of distinct elements(g, S) ∈ Ln,k

such thatg is a coatom ofLn,k and S is a subgraph ofGg ∩ K{a1,...,ar }. Let L1
(a1,...,ar )

=
L (a1,...,ar ) ∪ 1̂. Notice thatL1

(a1,...,ar )
is isomorphic toLr,k, sinceL1

(a1,...,ar )
is basically just
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the intersection lattice of the subarrangement consisting of hyperplanesxi − xj = m where
i, j ∈ {a1, . . . ,ar }. The maximal chains ofL(a1,...,ar ) can be defined in the same manner as
the maximal chains ofLn,k. Letg be any coatom ofLn,k such that the verticesa1, . . . ,ar are
path connected inGg ∩ K{a1,...,ar }. Finally, let(e1, e2, . . . ,er−1) be any sequence of edges
forming a tree inGg ∩ K{a1,...,ar }. For eachi = 0, 1, . . . , (r − 1), let Si be the subgraph of
Gg ∩ K{a1,...,ar } containing edgese1, e2, . . . ,ei . Now the chain

{g, e1 · · ·er−1} = (0̂− (g, S1)− (g, S2)− · · · − (g, Sr−2)− (g, Sr−1))

is a maximal chain ofL (a1,...,ar ). Let

{g, ρ[e1 · · ·er−1]} =
∑

ω∈Sr−1

(−1)sgn(ω)
{
g, eω1 · · ·eωr−1

}
.

Define{g, e1 · · ·er−1}1 to be the maximal chain ofL1
(a1,...,ar )

attained by adjoining the ele-
ment1̂ to the end of{g, e1 · · ·er−1}, and let{g, e1 · · ·er−1}− be the chain{g, e1 · · ·er−1}1
with the element(g, Sr−1) removed. Now define{g, ρ[e1 · · ·er−1]}1 and{g, ρ[e1 · · ·er−1]}−
as we did before.

We will now construct an important element ofCr−1(L1
(a1,...,ar )

).

Definition 5.1 If q is any integer from 1 tok, let X(a1, . . . ,ar ;q) be the element of
Cr−1(L1

(a1,...,ar )
) defined by

X(a1, . . . ,ar ;q) =
r∑

i=1

(−1)i+1{gi , ρ[ f1 f2 · · · f̂i · · · fr ]}1,

wheregi is any coatom ofLn,k for which

gi (aj ) =
{

0: 1≤ j ≤ i ≤ r,

q: 1≤ i < j ≤ r,

and wherefi is the edge(ai ,ai+1) if 1 ≤ i < r or the edge(ar ,a1) if i = r .

It turns out thatX(a1, . . . ,ar ;q) is in fact an element of the top homology ofL1
(a1,...,ar )

,
as we see in the following theorem.

Theorem 5.2 The element X(a1, . . . ,ar ;q) is contained in Hr−1(L1
(a1,...,ar )

).

Proof: Applying the boundary mapδr−1 to X(a1, . . . ,ar ;q) gives
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δr−1(X(a1, . . . ,ar ;q))

= δr−1

(
r∑

i=1

(−1)i+1{gi , ρ[ f1 f2 · · · f̂i · · · fr ]}1
)

=
r∑

i=1

(−1)i+1+(r−1){gi , ρ[ f1 f2 · · · f̂i · · · fr ]}−

=
r∑

i=1

∑
ω∈Sr
ωr=i

(−1)sgn(ω)
{
gi , fω1 fω2 · · · fωr−1

}−

=
r∑

i=1

r∑
j=1
j 6=i

∑
ω∈Sr
ωr−1= j
ωr=i

(−1)sgn(ω)
{
gi , fω1 fω2 · · · fωr−2 f j

}−

=
∑

1≤i< j≤r

∑
ω∈Sr
ωr−1= j
ωr=i

(−1)sgn(ω)
[{

gi , fω1 fω2 · · · fωr−2 f j
}−

− {gj , fω1 fω2 · · · fωr−2 fi
}−]

.

Notice that{gi , fω1 fω2 · · · fωr−2 fω j }− is equal to{gj , fω1 fω2 · · · fωr−2 fωi }− sincegi (b)
− gi (c)= gj (b)− gj (c) for any b, c∈ {a1,a2, . . . ,ai ,aj+1, . . . ,ar } and any b, c
∈ {ai+1, . . . ,aj }. Therefore, the above sum is equal to 0, and it follows thatX(a1, . . . ,ar ;q)
∈ Hr−1(L1

(a1,...,ar )
). 2

6. Gluing together the homologies

Let A1, . . . , Ar be a collection of sequences of elements in [n] such that the entries within
each sequence are distinct. When it will not cause confusion, we will also useAi to represent
the set of elements inAi . We will refer to A1, . . . , Ar as acompatible collection of sets
if the graphK A1 ∪ · · · ∪ K Ar is a connected graph such that any vertex which appears in
more than one set is a cut-point of the graph.

If A1, . . . , Ar are sequences forming a compatible collection of sets, with|Ai | = si for
1≤ i ≤ r , we may define a multilinear map

Cs1−1
(
L1

A1

) ∗ · · · ∗ Csr−1
(
L1

Ar

)→ Cn−1(Ln,k)

in the following manner. Fori = 1, . . . , r , let (ei,1, . . . ,ei,si−1) be a sequence of edges in
K Ai forming a tree, and letMi = {gi , ei,1 · · ·ei,si−1}1 be a maximal chain inL1

Ai
. By the

compatibility ofA1, . . . , Ar , the edgesei, j must form a spanning tree ofK[n] . Furthermore,
there must be a unique coatomg of Ln,k which is compatible with all of thegi ’s in the
sense thatg(p)− g(q)= gi (p)− gi (q) for any p,q∈ Ai . Let D be the set of all sequences
f = ( f1, . . . , fn−1) of distinct edges inGg such that each edgeei, j appears exactly once,
and such thatei, j appears beforeei,l for 1 ≤ j < l ≤ si − 1. In other words, let
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D be the set of all shuffles of the sequences of edges inM1, . . . ,Mr . Finally, define
sgn( f ) to be the sign off if f is considered as a permutation of the identity shuffle
(e1,1, . . . ,e1,s1−1, . . . ,er,1, . . . ,er,sr−1). Now define the gluing operation∗ on maximal
chains as

M1 ∗ · · · ∗ Mr =
∑
f ∈D

(−1)sgn( f ){g, f1 · · · fn−1}1,

and extend the operation linearly.
The gluing operation has several interesting properties. It is easy to see that{

g1, ρ
[
e1,1 . . .e1,s1−1

]}1 ∗ · · · ∗ {gr , ρ
[
er,1 . . .er,sr−1

]}1

= {
g, ρ

[
e1,1 . . .e1,s1−1 . . .er,1 . . .er,sr−1

]}1
.

Another important property is given in the following theorem.

Theorem 6.1 If Y1
i ∈ Hsi−1(L1

Ai
) for i = 1, . . . , r, then Y1

1 ∗ · · · ∗ Y1
r ∈ Hn−1(Ln,k).

Proof: Let A = (a1, . . . ,as)be any sequence of distinct elements of [n]. Fix a coatomgof
Ln,k, and letes, . . . ,en−1 be edges inGg such thatK(a1,...,as) ∪ {es, . . . ,en−1} is a connected
graph. Choose any(s−1)-element subsetB of [n−1]. LetY ∈ Hs−1(L1

(a1,...,as)
) be written

asY =∑m cm{gm, em,1 · · ·em,s−1}1, where thecm’s are constants inC. Now consider the
elementZY ∈ Cn−1(Ln,k) defined as

ZY =
∑

m

cm{g′m, fm,1 · · · fm,n−1}1,

whereg′m is the unique coatom ofLn,k compatible withg andgm, and( fm,1, . . . , fm,n−1)

is the sequence which contains edgesem,1, . . . ,em,s−1 in that order in positionsB and
which contains the edgeses, . . . ,en−1 in that order in positions [n− 1]\B. Let Sm, j be the
subgraph ofGg′m containing edgesfm,1, . . . , fm, j . It is easy to check that ifδs−1(Y) = 0
thenδB(ZY) = 0, where

δB(ZY)=
∑

m

∑
j∈B

cm(−1) j (0̂− (g′m, Sm,1)− · · · − (ĝ′m, Sm, j)− · · · − (g′m, Sm,n−1)− 1̂).

Now notice that ifY1
i ∈ Hsi−1(L1

Ai
) for i = 1, . . . , r , thenδn−1(Y1

1 ∗ · · · ∗ Y1
r ) can be

written as a linear combination of elements of the formδB(ZY) with δ(Y) = 0. Hence
δn−1(Y1

1 ∗ · · · ∗ Y1
r ) = 0, and soY1

1 ∗ · · · ∗ Y1
r ∈ Hn−1(Ln,k). 2

7. Construction of the basis elements

We are now ready to construct a basis forHn−1(Ln,k). The basis elements will be denoted
XT , whereT is any rooted(k + 1)-ary tree on the vertices [n] in which the root has no
0-child. For each vertexv, let gT (v) be the sum of the edge labels on the path from the
root of T to v. (The mapgT represents a coatom ofLn,k and will play an important role in
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proving the linear independence of theXT ’s.) Let {P1, . . . , Pr } be the set of all maximal
pathsPi = ai,0− ai,1− · · · − ai,si in T with si ≥ 1 which satisfy the condition thatai, j is a
0-child ofai, j−1 for j = 2, . . . , si , andai,1 is aqi -child of ai,0 for some positive integerqi .
Order the pathsP1, . . . , Pr in such a way that for any 1≤ i < j ≤ r , gT (ai,0) ≥ gT (aj,0),
and if gT (ai,0) = gT (aj,0) thenqi > qj . (Ties may be broken in any canonical way, say
lexicographically on the sequence of edge labels from the root ofT to ai,0 or aj,0.) It is
clear that the vertex sets ofP1, . . . , Pr form a compatible collection of sets. Thus we may
defineXT as

XT = X
(
a1,0,a1,s1,a1,s1−1, . . . ,a1,1;q1

) ∗ · · · ∗ X
(
ar,0,ar,sr ,ar,sr−1, . . . ,ar,1;qr

)
.

By Theorems 5.2 and 6.1,XT ∈ Hn−1(Ln,k). In the next two sections, we will prove that
the XT ’s do actually form a basis ofHn−1(Ln,k).

8. A special term in the basis element

In the expansion ofXT , there appears an important elementQT of Cn−1(Ln,k) defined as
follows.

Definition 8.1 Let e1, . . . ,en−1 be the edges ofT given in the order

(a1,0,a1,1), (a1,1,a1,2), . . . ,
(
a1,s1−1,a1,s1

)
, . . . , (at,0,at,1), . . . ,

(
at,st−1,at,st

)
,

whereai,0, . . . ,ai,si are the vertices along the pathPi defined in the construction ofXT ,
with P1, . . . , Pt ordered as in the construction. Then

QT = {gT , ρ[e1 · · ·en−1]}.

We will now impose a partial order on the coatoms ofLn,k.

Definition 8.2 Let>c be the partial order on the coatoms ofLn,k for whichg ≥c g′ if and
only if g(i )≥ g′(i ) for all i ∈ [n].

The elementsQT satisfy a very important property, given in the next theorem.

Theorem 8.3 The element XT + (−1)t QT of Cn−1(Ln,k) can be expressed as a sum of
maximal chains containing only coatoms strictly less than gT with respect to>c, for some
integer t.

Proof: The expansion ofXT looks like

XT = X
(
a1,0,a1,s1,a1,s1−1, . . . ,a1,1;q1

) ∗ · · · ∗ X
(
ar,0,ar,sr , sr,sr−1, . . . ,ar,1;qr

)
=

s1∑
j1=0

(−1) j1
{
g1, j1, ρ

[
f1,0 f1,1 · · · f̂1, j1 · · · f1,s1

]}1 ∗ · · ·

∗
sr∑

jr=0

(−1) jr
{
gr, jr , ρ

[
fr,0 fr,1 · · · f̂r, jr · · · fr,sr

]}1
,
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where fi, j is the edge(ai,si− j ,ai,si− j+1) if 1 ≤ j ≤ si or the edge(ai,0,a1,si ) if j = 0, and
wheregi, j is any coatom for which

gi, j (ai,l ) =
{

0: l = 0 or l > si − j,

qi : 1≤ l ≤ si − j .

By one of the properties of the∗ operator, the expansion can be expressed as∑
( j1,..., jr )

(−1) j1+···+ jr
{
gj1,..., jr , ρ

[
f1,1 · · · f̂1, j1 · · · f1,s1 · · · fr,1 · · · f̂r, jr · · · fr,sr

]}1
,

where the sum is over all sequences( j1, . . . , jr ) with 0 ≤ ji ≤ si , and wheregj1,..., jr is
the unique coatom ofLn,k compatible withg1, j1, . . . , gr, jr . We will show by induction that
gj1,..., jr ≤c gT , with equality holding only for the sequence(0, 0, . . . ,0). Let ( j1, . . . , jr )
be a fixed sequence, and for simplicity letg = g1, j1, . . . , gr, jr . Let v be the root ofT .
Obviously 0≤ g(v) − g(v) ≤ gT (v) − gT (v). Now, let p be any vertex ofT other
than v, and assume that 0≤ g(q) − g(v) ≤ gT (q) − gT (v) for any vertexq whose
path-length from the root oft is less thanp’s. Since p 6= v, there must be some path
Pi = ai,0−ai,1− · · ·−ai,l − · · ·−ai,s1 in the construction ofXT such thatai,0 6= ai,l = p.
Then 0≤ g(ai,0) − g(v) ≤ gT (ai,0) − gT (v) by the inductive assumption. Furthermore,
gT (p)− gT (ai,0) = qi , whereas

g(p)− g(ai,0) =
{

0: l = 0 or l > si − j,

qi : 1≤ l ≤ si − j .

Therefore, 0≤ g(p) − g(v) ≤ gT (p) − gT (v). It follows by induction that 0≤ g(p) −
g(v) ≤ gT (p) − gT (v) for all verticesp of T . Hence,g(v) = gT (v) = 0, since 0 is the
minimal element of any coatomg : [n] → N. Therefore,g(p) ≤ gT (p) for all verticesp.
In other words,g ≤c gT . It is clear from the proof that equality holds if and only if
j1 = j2 = · · · = jr = 0. But when( j1, . . . , jr ) = (0, . . . ,0), we have

(−1) j1+···+ jr
{
gj1... jr , ρ

[
f1,0 · · · f̂1, j1 · · · f1,s1 · · · fr,0 · · · f̂r, jr · · · fr,sr

]}1

= {
gT , ρ

[
f1,1 · · · f1,s1 · · · fr,1 · · · fr,sr

]}1

= (−1)t {gT , ρ[e1 · · ·en−1]}1

= (−1)t QT ,

wheret is the sign of the permutation which takes( f1,1, . . . , f1,s1, . . . , fr,1, . . . , fr,sr ) to
(e1, . . . ,en−1). It follows that XT + (−1)t QT can be written as a sum of maximal chains
only involving coatoms strictly less thangT with respect to>c. 2

We may conclude that in order to prove that theXT ’s form a basis ofH(Ln,k), it suffices
to prove that theQT ’s are linearly independent inCn−1(Ln,k).
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9. Proof that the special terms are linearly independent

We would like to show that theQT ’s form a linearly independent set inCn−1(Ln,k). We
will do this by finding a maximal chain in the expansion ofQT which cannot appear in the
expansion ofQT ′ for any treeT ′ other thanT .

Theorem 9.1 Let T and T′ be labelled, rooted, (k + 1)-ary trees in which the roots
have no0-children. Let e1, . . . ,en−1 be the edges of T ordered as in the definition of
QT. Let e′1, . . . ,e

′
n−1 be the edges of T′ in any order. Suppose that{gT , e1 . . .en−1}1 =

{gT ′ , e′1 . . .e
′
n−1}1. Then ei = e′i for all i , and hence T= T ′.

Proof: Recall that the sequence of edges(e1, . . . ,en−1) defines a sequence of graphs
(S0, S1, . . . , Sn−1) whereSi is the graph onn labelled vertices with edgese1, . . . ,ei . We
may think of the connected components ofSi as rooted subtrees ofT , where the rootv of
a component is the vertex of the component with the shortest path to the root ofT , and
where the edge labels of the connected components are the same as the corresponding edge
labels ofT . Notice thatgT (v) ≤ gT (p) for all verticesp in that component. Also recall
that this sequence of graphs defines a sequence of partitionsπ0, π1, . . . , πn−1 of [n], where
each part ofπi corresponds to the vertices of a connected component ofSi . Similarly,
e′1, . . . ,e

′
n−1 defines a sequence(S′0, S′1, . . . , S′n−1) of subgraphs ofT ′ and a sequence

(π ′0, π
′
1, . . . , π

′
n−1) of partitions of [n]. Since {gT , e1 · · ·en−1}1 = {g′T , e′1 · · ·e′n−1}1, it

must be true thatgT = g′T andπi = π ′i for any i .
Several special properties of the sequenceπ0, . . . , πn−1 follow from the order of the

edgese1, . . . ,en−1.

Lemma 9.2 For any part A of a partitionπi , let τ(A) = min{gT (p) : p ∈ A}. If
|{gT (p) : p ∈ A}| ≥ 2, let σ(A) be the second smallest element of{gT (p) : p ∈ A},
i.e., σ (A) = min({gT (p) : p ∈ A}\τ(A)). Thenπ0, . . . , πn−1 satisfy the following three
properties:
1. If parts A and B ofπi−1 are joined to getπi , then τ(A) 6= τ(B). Without loss of

generality, assume thatτ(A) < τ(B). Thenσ(A) ≥ τ(B).
2. If A is any part of a partitionπi , then there is a unique element m(A) of A such that

gT (m(A)) = τ(A).
3. If A is any part of a partitionπi and if A has more than one element, thenσ(A) is defined
(by property(2)), and there is a unique element z(A) of A such that gT (z(A)) = σ(A)
and such that z(A) is not the parent of a0-edge in{e1, . . . ,ei }.

Proof: These properties can be shown by induction oni . They are clearly true fori = 1
sincee1 is an edge with label greater than 0. Now assume that they are true fori − 1. Let
ei = (p, v) wherev is the child ofp. Let D be the maximal subtree ofSi−1 containingp,
and letF be the maximal subtree ofSi−1 containingv. Let A = π(D) and B = π(F).
Since all vertices ofF except for the root have a parent inF , v must be the root ofF .

Consider the pathP = a0 − a1 − · · · − p− v − · · · − as, where(a0,a1) is anr -edge
with r > 0, and all other edges are 0-edges. Since the edges ofP appear in order in
e1, . . . ,en−1, a0 must be a vertex ofD. Furthermore, for any edge ine1, . . . ,ei−1 with
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parentc and childd, gT (c) ≥ gT (a0) andgT (d) > gT (a0). Hencea0 does not appear as a
child in any edge ine1, . . . ,ei , and soa0 must be the root ofD. Finally, notice that all edges
in D with parenta0 (except possibly(a0,a1) itself) have label strictly greater thanr , by
the way the paths ofT were ordered. Hence,τ(A) = gT (a0) < gT (a1) = gT (v) = τ(B),
andσ(A) ≥ gT (a1) = gT (v) = τ(B). Thus, property (1) holds fori . Property (2) follows
by the inductive assumption and by property (1) fori . Property (1) also implies that
(gT |A∪B)

−1(σ (A∪ B)) = {a1,a2, . . . , v}. Thus,v is the unique element ofA∪ B such that
gT (v) = σ(A∪ B) and such thatv does not appear as the parent of a 0-edge in{e1, . . . ,ei }.
This proves property (3) fori . 2

Now we will prove by induction thatei = e′i for i = 1, . . . ,n − 1. Clearlye1 = e′1
sinceπ1 = π ′1 implies thatS1 = S′1, whereS1 and S′1 contain only the edgese1 ande′1,
respectively. Now suppose thatej = e′j for j = 1, . . . , i − 1. ThenSi−1 = S′i−1. Let D
andF be the subtrees ofSi−1 which are joined by edgeei to obtainSi , and letA = π(D)
andB = π(F). Sinceπ ′i−1 = πi−1 andπ ′i = πi , A andB are also parts ofπ ′i−1, andπ ′i is
obtained by joiningA andB. ThusS′i is obtained by joining the subtreesD andF of S′i−1
by edgee′i .

The only vertex inD without a parent inD is the root,m(A). Similarly, m(B) is the
only vertex inF without a parent inF . Thuse′i must have eitherm(A) or m(B) as a child.
By property (1), we may assume thatτ(A) < τ(B). Thus,m(B) must be the child of
e′i . If D contains only one vertex, thenm(A) must be the parent ofe′i . Otherwise,σ(A)
is defined because of property (2), andσ(A) ≥ τ(B) by property (1). Ifσ(A) > τ(B),
thengT ′(p) > gT ′(m(B)) for all p ∈ A except form(A), by property (2), and som(A)
must be the parent ofe′i . If σ(A) = τ(B) thenm(A) already has a child inD with label
gT ′(m(B)) − gT ′(m(A)), and som(A) cannot be the parent ofm(B). In this case,m(B)
must be the 0-child of some elementp of A with gT ′(p) = σ(A). But by property (3),
there is only one choice for the parent, namelyz(A).

We see thate′i is uniquely determined bye1, . . . ,ei−1, π ′i , and the properties of the
sequence of partitions. Sinceei satisfies all of the same conditions ase′i , it follows that
ei = e′i . By induction,ei = e′i for all i = 1, . . . ,n− 1. Therefore,T = T ′. 2

We have just shown that there is a maximal chain in the expansion ofQT which does not
appear in the expansion ofQT ′ for any treeT ′ other thanT . Therefore, theQT ’s form a
linearly independent set inCn−1(Ln,k).

10. Bijection between the set{XT} and a basis of⊕CSn

By Theorem 3.2, Theorem 9.1, and the comments at the end of Sections 8 and 9, the set
{XT } forms a basis ofHn−1(Ln,k). It is now a simple matter to show thatHn−1(Ln,k) is
isomorphic as anSn-module to a direct sum of copies ofCSn. Let G be anyunlabelled
(k+1)-ary rooted tree for which the root has no 0-child, and letB(G) be the set of allXT ’s
such thatG is the underlying graph ofT . It is clear from the construction of theXT ’s that
ωXT = XωT for anyω ∈Sn, whereωT is the tree obtained by permuting the vertex labels
of T by ω. Hence, the linear span of the elements ofB(G) is a submodule ofHn−1(Ln,k)
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isomorphic toCSn. Furthermore,Hn−1(Ln,k) is isomorphic to⊕G B(G), where the sum
is over all possible unlabelled treesG. Therefore,Hn−1(Ln,k) is isomorphic to a direct sum
of copies ofCSn.
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