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Abstract. For a fixed positive integek, consider the collection of all affine hyperplanesispace given by

Xi —Xj =m,wherei, j € [n],i # j,andm e {0, 1, ..., k}. LetLk be the set of all nonempty affine subspaces
(including the empty space) which can be obtained by intersecting some subset of these affine hyperplanes. No
give L k a lattice structure by ordering its elements by reverse inclusion. The symmetric@xpapts naturally

on Lnk by permuting the coordinates of the space, and this action extends to an action on the top homology o
Lnk. Itis easy to show by computing the character of this action that the top homology is isomorphic as an
Sp-module to a direct sum of copies of the regular representafl@y,. In this paper, we construct an explicit
basis for the top homology df,, , where the basis elements are indexed by all labelled, roked])-ary trees

on n-vertices in which the root has no 0-child. This construction gives an exg@igiequivariant isomorphism
between the top homology &f, xk and a direct sum of copies &f&y,.
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1. Introduction

The partition lattice[1,,, has been an object of much study in the past few decades. The
symmetric grougs, acts naturally ofil,, by permuting the elements af] = {1, ..., n}and
thereby permuting the partitions. This action extends to an acti@ioén the homology

of IT,. Sincell, is Cohen-Macaulay, the main point of interest here is the action on the top
homology ofI1,. In 1981, Hanlon [5] computed the dbius function of the sublattice of

I, fixed by a permutation ig,,. This result brings to mind the well known fact (see [11]),
sometimes referred to as the Lefschetz Fixed Point Theorem, that the charadtdre
action of a finite groufs on the top homology of a Cohen-Macaulay paBetith 0 andi is

given byg (g) = (—1)" upe ([0, 1]), wherer is the rank ofl, andP? is the poset of elements
fixed byg. In 1982, Stanley [11] combined this fact with Hanlon’s result to show that the
top homology off1, is isomorphic (up to tensoring with the alternating representation) to
a representation IND, found by taking the one-dimensional representation of the cyclic
groupC, given by a primitiventh root of unity, and inducing it fror,, to &,. Much earlier,
Klyachko [7] proved that INDn has the same character as that of the Free Lie Algebra,
Lie[a; - - - ay]. (For a thorough introduction to the Free Lie Algebra, see [3].) These results
together show that the action &, on the top homology of1j is similar to the action of

S, on the Free Lie Algebra.
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Joyal [6] was the first to give a direct proof, using the theory of species, of the correspon
dence between these two representations. Finally, in 1989, Barcelo [1] demonstrated
explicit bijection between a basis for the top homologyfand a basis of Lie]; - - - a,]
which preserves the action &,. In this paper, we will give a result similar to Barcelo’s
for a wider class of intersection lattices. (See [8] for an introduction to intersection lat-
tices and [12] for a survey of recent results about the characteristic polynomials of speci
classes of intersection lattices.) In general, an intersection ldttisedefined by giving a
set of affine hyperplanes imspace, called hyperplane arrangemerand lettingL be the
set of subspaces which can be obtained by intersecting some subset of affine hyperplar
in the hyperplane arrangement, with these subspaces ordered by reverse inclusion. B
result of Wachs and Walker [13], any such intersection lattice is Cohen-Macaulay, and so
long as there is some action &f, on L, the Lefschetz Fixed Point Theorem is applicable.
Notice that the partition lattice is simply the intersection lattice defined by the hyperplane
arrangementx; — x; = 0:i, j € [n],i # j}. We will focus on a more general class of
intersection lattices , x defined as follows.

Definition 1.1 Letn andk be positive integers. Thdn,  is the intersection lattice given
by the hyperplane arrangemert —x; =m:i, je[n],i #j,me{0,1,..., k}}.

The symmetric grous, acts onLp in a straightforward manner. Any permutation
o € &, definesaninvertible transformation ol{space by permuting the coordinates. This
transformation sends every affine subspace in the intersection lattice to another subspz
in the lattice. Notice that the arrangement contains affine hyperplanes which are parall
to each other, and thus, x has a top elemerit corresponding to the empty subspace. The
existence of this top element makes the structure of significantly more complicated
than that ofl1,. (For examplelLk is not geometric, and so 8jiier’s result [2] about
the homology of geometric lattices no longer applies.) Ironically, while it is more difficult
to construct a basis for the top homology lof x, it turns out that the top homology is
isomorphic to a representation much more basic than the Free Lie Algebra, namely a dire
sum of copies of the regular representati®&,. We will prove this fact first by a simple
computation of the character of the representation, and then by an explicit basis constructic
We will use the typical notation for the homologylo,ﬁ k- LetC, (Ln k) be the space gen-
erated ove(C by all r-chains(f)— CL— " —C — 1) and let the boundary maSp C —
C;_; actlinearly by sendin(f) —C1— —C — 1) to Z, 1(= 1) (0 Ci— - —G& —
—C — i). LetH,(Lhx) = Ker(é,)/lm(8,+1). The top homologyHn—1(Lnk), IS simply the
subspace dE,_1(Ln k), the space generated by all maximal chairlsir, which is mapped
to zero by the boundary map.

2. Action of the symmetric group on the top homology oLk

In this section, we will show using characters tlhaLl(Ln k) is isomorphic as ai®,-
module to a direct sum dR copies ofC&S,, whereR = (“‘*1)n 2). The computation
relies heavily on the structure of the coatoms of the Iattlce
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A coatom ofL, k is any one-dimensional affine subspaceefpace obtained by inter-
secting a subset of hyperplanes in the hyperplane arrangement. A cpatomie thought
of as a mapy:[n] — N such thatg~(0) # ¢ and such that for all > k, g=2(i) # ¢
implies that at leastone gf *(i — 1), ..., g~(i —k) is nonempty. Such a map corresponds
to the affine subspace in whieh — x; = g(i) — g(j) foralli, j € [n]. For example, the
mapg for which

g =0 9@=2 9B3=0 9gdh=2 g9gOB=2 9gO6=1
represents the coatom given by the relations
XI=X3=Xe—1l=Xo—2=X4—2=X5— 2.

We are now ready to show thht, i is isomorphic as a®,-module to a direct sum dr
copies ofC&,,.

Theorem 2.1 Let vy be the character of F.1(L,k) as an&,-module. Thens(id) =
(kny(kn+1)---((k+1)n—2), andy(w) = Oforall w #id.

Proof: Sincel,k is Cohen-Macaulay, the charactg(w) of any permutationn € S,
is equal to(—1)" KLe, [0 1] whereLy, is the sublattice ot , x fixed by v, andMLo is
its Mobius funct|on Assume first thai # id. Thenw contains a cycl€ay, ay, ..., ar)
of length greater than 1. Any coatognof Lk is sent byw to another coatom)g, with
wg(i) = g(w (i) fori € [n]. A coatomg is fixed byw only if g(a;) = g(a) = =
g(a&). LetV be the subspace given by, = Xz, = -+ = X;,. ThenV > 0 (smceO
represents the whole-dimensional space), and any coatom fixedghig greater than or
equal toV. Therefore, the meet of any subset of coatoms fixe@d byust be greater thah
By Weisner's Theorem (see [9]),

pig [0.31= 37 D,
AcC
N A=0

whereC is the set of coatoms dfy; . Notice that any element dfy, x which is fixed byw
is covered by a coatomgin which g(l) =g(j)ifi andj lie in the same cycle im. Hence,
every element oL, lies below a coatom df , x which is fixed byw. Thus,C can also be
described as the set of coatomd.gfy which are fixed byv. Since/A\ C > O, there are no
subsetsA satisfying/\ A = 0. Hencey (w) = 0 whenw # id.

It remains to compute the characterypfw) whenw = id. This can be done by finding
(=D, [0, 1]. In[4], Gill shows that the characteristic polynomiallofx\1 is

> pf0 XM = tt —kn— D)t —kn—2)--- (t — (k+ Dn + 1).
Xel—n.k\i
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We can find the value qiLn_k[ﬁ, 1] by settingt equal to 1 in the characteristic polynomial
and multiplying the result by—1). Thus wherw = id,

¥ (@) = (=D iy, [0.1] = (=1)"ur,, [0, 1]
= (knmnkn+121)---((k+1n—2).

This concludes the proof of the theorem. O

Recall that the characterof CS,, is given by

B 0: w#id,
¢(‘°)_{n!: w=id.

Since a group representation is uniquely determined by its character, and/siscB
times¢, we may conclude thatl,_1(Lnhk) is isomorphic as ai&,-module to the direct
sum of R copies ofCS,.

3. Index set for a basis of the top homology

The index set for the basis ¢t,_1(Ln k) will be defined in terms of rootetk + 1)-ary
trees.

Definition 3.1 A (k+ 1)-ary rooted treds a tree in which each vertex has at mgst- 1)
children where the children of each vertex are connected to the vertex by edges with distinc
labels from the sef0, 1, ..., k}. An edge labelled will be called ani-edge The parent

of such an edge will be called afparent, and the child of such an edge will be called an
i-child.

The basis elements dfl,_1(Ln k) will be indexed by(k + 1)-ary rooted trees on the
vertex setfi] such that the root has no 0-child. Before showing how to construct the basis
we will prove that this index set has the desired ordam)(kn+ 1) --- (k + L)n — 2).

Theorem 3.2 The number otk + 1)-ary rooted trees on the vertex 4&f in which the
root has nd0-child is equal to(kn)(kn+ 1) - - - ((k + 1)n — 2).

Proof: LetG(x) = Y. 2, b x', whereb; is the number of unlabelled roote# + 1)-
ary trees on vertices. The generating functi@(x) satisfies the equatioB(x) = x(1 +
G(x))k*1, or(lJrg%kT X. ThusG(x) is the left compositional inverse of the formal power
seriesF (x) = <1+—><)'<T The number of unlabelled roote&l + 1)- ary trees om vertices in
which the root has no 0-child is given bxT1](1 + G(x))X, or ZI —o(; )[xn HG))'.

By Lagrange inversion [14, p. 128],

n—-1
X" (GX) = X ! 1]<F(X))
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i .
— [Xn—|—1](1+ X)(k+1)(n—1)
n—1

i <(k+1)(n_1)>
T n-1 n—i—-1 /)

Therefore,Z:‘zo('i‘)[x“*l](G(x))i is equal to
Xk:(k)(kn—k+n—1> ik k(k—l)(kn—k+n—1>
= \i n—i—-1 /n-1 n-1&\i-1 n—i—1

_ k (kn+n-2
T n-1 n—2

k(kn+n — 2)!
= (= 1)(n—2)!(kn)!
(kn+n—2)!
T nikn—1!
Thus, the number of labelled rootekl + 1)-ary trees om vertices in which the root has
no O-child is equal td"rﬂ‘(fgifﬁ“ = (knkn+1)---((k+1n—2). 0

4. The homology beneath a coatom

In this section, we will study the interval®,[g] of Lnk, Whereg is a coatom oL, k. Let
Gy be the labelled graph amvertices with edge s€ti, j) :1g9(i) — g(j)| < k}. The edges
of G4 correspond to the atoms &f, x which lie belowg. In other words, the edgé, j)
(with g(i) > g(j)) corresponds to the hyperplare— x; = g(i) — 9(j).

Any subgraphS of Gg4 defines a unique element in the interval @] by taking the
intersection of the hyperplanes corresponding to the edg&s dtus, an element of
Ln,k\i may be denoted by a paig, S), whereg is any coatom of_p, « lying abovex, and
Sis an appropriate subgraph@§. If Sis any labelled graph onvertices, definer (S) to
be the partition ofifi] for whichi andj lie in the same part ot (S) if and only if vertices
i andj are path connected i& In other words, let the parts af(S) be the vertex sets of
the connected components®&fNotice that(g, S) is equal to(g’, S) in Ln,k\i if and only
if 7(S) =n(S)andg(@i) —g(j) =g (i) — d(j) foralli, j inthe same part ot (S).

For any coatony, we will denote the maximal chains dj,[g] in the following manner.
Let (e, ..., en—1) be a sequence of edges@y which form a spanning tree @y. For
eachi =0,1,...,(n—1), let § be the subgraph dq containing edges;, &, ..., &.
Now the chain

0-(@S)— (0~ —(7 S2 -9

is @ maximal chain ofq, g], sincen(S) # n(S) # -+ # (S-1). We will write this
chain aqg, e1e; - - - €,_1}. Itis clear that any maximal chain dd,[g] can be written in this
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way. We will also define an elemefd, p[e1&: - - - €,_1]} of Cn,z([(), g)) as

(g.0la& - eall= Y (—D9"{g e, e, 6.}

weSH_1

By Bjorner’s work [2] on the homology of geometric latticdsg, p[€1€ - - - €n_1]} iS an
element oan,g([C), g, the top homology of the intervaf)[g]. (It is also possible to
show, using a result about supersolvable lattices [10, Proposition 2.8], that these elemet
generate all OHn_z([f), g]). However, we will not need that fact here.)

For any chain{g, e;&; - - - e,_1}, let {g, e1& - - - e,_1}* be the corresponding maximal
chain of L,k given by appending the elemeftto the end of{g, e1&---ey_1}. Let
{0, €18 - --en_1}~ be the chaing, e;e - - - &,_1}* with the coatomg removed. In other
words, let

gee e 1'=0-0N-0@D——@ S 2—-9g-1),
and let
(e 1 =0-99- 0%~ —(@ S2 - 1.

Now define{g, p[eie; - - - en_1]}* and{g, p[e1& - - - &-1]}~ @s

g olee e dit= > (-D¥{g e,6, €.}

weESH_1

and

{g’ p[elezen—l]}7 = Z (_1)59!’(&)){9’ ewlewzn'ewn—l}7'

weSp_1

Unfortunately, it is not the case th@, p[ei1e; - - - €,_1]}* is an element oH,_1(Ly k).
However, the boundary map does act nicelf{gno[e;&; - - - e,_1]}*, and we get

dn-1(10, plere - - - ena]}h) = (=D Yg, plerer - - - ena]} -

Thus, roughly speaking, the boundary map actspp[e:e; - - - €,-1]}* by simply removing
the coatom from each maximal chain.

5. Asublattice ofLy

Consider a sequendey, .. ., a ) of distinct elements ofr] with length at least 2. Let
Kia....a) be the graph with vertex setand edge set(, j) : i, € {as, ..., al}. We
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the intersection lattice of the subarrangement consisting of hyperptareg = mwhere
i,j €{as,...,a}. The maximal chains df ... 4 can be defined in the same manner as

.....

the maximal chains df, . Letg be any coatom df , x such that the vertices, .. ., g are
path connected iy N Ky, 4)- Finally, let(e;, e, ..., &_1) be any sequence of edges
forming a tree inGg N Ka,,...a). Foreach =0,1,..., (r —1), let§ be the subgraph of
Gg N Kia,....a} CONtaining edgesy, e, . .., &. Now the chain

{g.e e }=0-05-0 - -9 52— 51
is a maximal chain of. 5, . 5. Let

(goler-eall= Y (—D{g.e,- e, ,}

weS;_1

Deflne{g e ---&_1)}! to be the maximal chain dI(l ,,,,, a) attained by adjomlng the ele-

ment1 to the end ofg. e ---&_1}, and let{g, ;- - - &_1}~ be the chair{g, e; - - - & _1}*
withthe elementg, S_1) removed Now defingg, p[e: - - - &_1]}tand{g, p[e;---&_1]}~
as we did before.

We will now construct an important element®f_y (L}

Definition 5.1 If g is any integer from 1 tk, let X(ag, ..., a; q) be the element of
Cro1(L{y,.. 4, defined by

X(@, . ,a:@) =Y (=D Mg, plfifa-- £ ]
i=1

whereg; is any coatom ot  for which

l<j<ic=r,

0: <
gi(aj):iq: l<i<j<r
and wheref; is the edgda;, a; 1) if 1 <i <r orthe edgda,, a;) ifi =r.

It turns out thatX(ay, . .., &; Q) is in fact an element of the top homology lojfal
as we see in the following theorem.

Theorem 5.2 The element Xa, ..., &; q) is contained in IrLl(L(lal

Proof:  Applying the boundary maf} _1 to X(ay, ..., &; Q) gives
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S_1(X(@g, ..., a3 Q)

arl(D—l)i“{gi,p[fl foro fiooe f,nl)

i=1

YD G plfrfpee- £ B)

i=1

r

= Z Z (=D G, f fay -+ Fup oy}

i=1 wesy
wr=i

oo
= Z Z Z (_1)sgr(w){gi N VR PR PP }_

i=1 J=l WES
J# w(ru:lzzlj
= Z Z (D O[{gi, for oy T i)
l<i<j<r w“ff;'j _ {gj, fw1 fw2 - pr2 fi }_]

wor =i

Notice that{gi, f., fo, - fu,_, fo;}7 is equal to{g;, fu, fo, - fo,_, fu }~ sinceg;(b)
—0i(©)=gj(b)—gj(c) for any b,ce{a;, a,...,a&,aj41,...,&} and any b,c
€{a1, ..., a;}. Therefore, the above sumisequalto 0, and it follows¥@t, . . ., a; q)

1
c Hr_]_(l_<al yyyy a()). O

6. Gluing together the homologies

Let Ay, ..., A be a collection of sequences of elementsisiuch that the entries within
each sequence are distinct. When it will not cause confusion, we will alsi tiseepresent
the set of elements i;. We will refer to Ay, ..., A, as acompatible collection of sets
if the graphK », U --- U K, is a connected graph such that any vertex which appears in
more than one set is a cut-point of the graph.

If Ag,..., A are sequences forming a compatible collection of sets, With= s for
1 <i <r,we may define a multilinear map

Ce-1(Lp,) # - % Cs_1(Ln) = Caa(Lni

in the following manner. For=1,...,r,let(e1,..., & 5-1) be a sequence of edges in
K forming a tree, and leb; = {gi.€1---& 5-1}' be a maximal chain i . By the
compatibility of A, ..., Ar, the edges ; must form a spanning tree &fj,;. Furthermore,

there must be a unique coatayof Lk which is compatible with all of theg;’s in the
sense thag(p) — g(q) =g (p) — gi(q) forany p, g € A;. Let D be the set of all sequences
f = (fy, ..., fo_1) of distinct edges irG4 such that each edg®; appears exactly once,
and such that ; appears before, for 1 < j < | < s — 1. In other words, let
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D be the set of all shuffles of the sequences of edgdslin..., M;. Finally, define
sgn(f) to be the sign off if f is considered as a permutation of the identity shuffle

(er1,...,€1-1,---,&1,...,65-1). Now define the gluing operatioh on maximal
chains as
My o My = ) (=) g, fr--- fa 1},
feD

and extend the operation linearly.
The gluing operation has several interesting properties. It is easy to see that

{gl» P[el,l-nel,srl]}l H ek {gr, P[er,l---er,sfl]}l

= {g,p[el,l...el,sl,l...er,l...er,s,l]}l.

Another important property is given in the following theorem.
Theorem 6.1 If Y;' € Hy_1(L3)fori =1,....r . then ¥ s -+ % Y € Hy_1(Lnw)-

Proof: LetA = (a,...,as)beanysequence of distinct elementadf Fix a coatony of
Lok andletes, ..., e,—1 be edges Gy such thaKa,, . a) U {6, ..., €4_1} is a connected
graph. Choose ani — 1)-element subsd® of [n —1]. LetY € Hs_l(L(l511 .... a)) be written
asY =) ., Cmn{Om, €m1- - ems_1}}, Where thecy,’s are constants ift. Now consider the

elementZy € Cy_1(Lnk) defined as

Zy = Z Cm{g;n, fm,l te fm,n—l}17
m

whereg/, is the unique coatom df, x compatible withg andgm, and(fm 1, ..., fmn-1)
is the sequence which contains edggs, ..., eéns-1 in that order in positiond8 and
which contains the edges, . . ., ,_1 in that order in positions{— 1]\ B. Let Sy ; be the
subgraph ofGy containing edgesm 1, ..., fmj. Itis easy to check that ifs_1(Y) = 0
thendg(Zy) = 0, where

88(Z)=Y_ 3 Cm(~1) O (G Sn) =+ — @y Snj) — - — (Tys Smn-1) — -

m jeB

Now notice that ifY! Hs_l(Lk) fori =1,....r, thend,_1(Y{ * --- x Y1) can be
written as a linear combination of elements of the fafgiZy) with §(Y) = 0. Hence
8n_1(Y11 ook le) =0, and SOYl1 ERERE le € Hn_1(Lnk). O

7. Construction of the basis elements

We are now ready to construct a basis fgy_1(L, ). The basis elements will be denoted
Xt, whereT is any rootedk + 1)-ary tree on the vertices1] in which the root has no
0-child. For each vertex, let gr (v) be the sum of the edge labels on the path from the
root of T to v. (The mapgr represents a coatom bf, x and will play an important role in



56 KERR

proving the linear independence of thg’s.) Let{P;,..., P} be the set of all maximal
pathsP = &g 0—a1—---—a s in T withs > 1 which satisfy the condition that ; is a
O-child ofa j_i for j = 2,...,s, anda 1 is ag;-child of & o for some positive integeg; .
Order the path$, ..., P insuch away thatforany ¥ i < j <r, gr(a0) > 9gr(a;,0),
and if gr (& 0) = gr(aj,0) theng > q;. (Ties may be broken in any canonical way, say
lexicographically on the sequence of edge labels from the rodt i &; o or a;.) Itis
clear that the vertex sets &4, ..., P, form a compatible collection of sets. Thus we may
defineXt as

X1 = X(ay0, 81s, 81,51, - -+ 81,23 1) * -+ % X(@r,0, Brg s Brg -1, - &1 O ).

By Theorems 5.2 and 6.Xt € H,_1(Ln k). In the next two sections, we will prove that
the X+’s do actually form a basis dfln_1(Ln k).

8. A special term in the basis element

In the expansion oK, there appears an important elemést of C,_1(Ln ) defined as
follows.

Definition 8.1 Letey, ..., e,_1 be the edges df given in the order

(a0, @1,1), (@11, 81,2), - -, (Aus—1. B1s)s -5 @0, @1, - - -, (Brg—1. Ars)s
wherea o, ..., & 5 are the vertices along the pakh defined in the construction ofr,
with Py, ..., P, ordered as in the construction. Then

Qr = {ogr.p[e1---€n_1]}.
We will now impose a partial order on the coatomd_gf.

Definition 8.2 Let > be the partial order on the coatomslgfy for whichg > g’ if and
onlyif g(i)>g'(i) foralli € [n].

The element®) satisfy a very important property, given in the next theorem.
Theorem 8.3 The element X+ (—1)'Qt of C,_1(Lnx) can be expressed as a sum of
maximal chains containing only coatoms strictly less thamth respect to>, for some
integer t.

Proof: The expansion oKt looks like

X1 = X(ay0, 1, A1.5-1. - - - A1,15 01) * -+ % X (0, B+ Sug—1s -+ 8,13 O

st ) .
= Z(_l)h{gl,h’p[fl,ofl,l"' faj - flysl]}l*"'
j1=0

N

S .
* Z(_j—)Jr {gr,jrv P[fr,o fr,1 s fr,jr s fr,s]}l,
jr=0
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wheref; j is the edg€a; 5—j, ai s—j+1) if 1 < ] <s orthe edgda o, a15) if j =0, and
whereg; ; is any coatom for which

0: I=0orl>s—]j,

Gi@D= 0 1<

By one of the properties of theoperator, the expansion can be expressed as

Z (Dl g p[ e fog - frg e fraee £ oo fr’s]}l’

where the sum is over all sequendgs. ..., jr) with 0 < j; < s, and whereg;, _j, Is
the unique coatom df, x compatible withg j,, ..., o, . We will show by induction that
Ojv....ir <c 9r, with equality holding only for the sequen¢® O, ..., 0). Let (ja, ..., jr)

be a fixed sequence, and for simplicity et= g1 j,. ..., 0r,j,. Letv be the root ofT.
Obviously 0 < g(v) — g(v) < gr(v) — gr(v). Now, let p be any vertex ofT other
thanv, and assume that & g(q) — g(v) < gr(q) — gr(v) for any vertexq whose
path-length from the root df is less thanp's. Sincep # v, there must be some path
P=ao—a1—-—a,—- - —ag inthe construction oKt such that o # & = p.
Then 0< g(a0) — 9(v) < Or(&.0) — 97 (v) by the inductive assumption. Furthermore,
gr(p) — 91 (ai,0) = G, Whereas

(0 (@i0) = 0. I=0orl >5—j,
IR =@ = g 1<1<5 -]

Therefore, 0< g(p) — g(v) < gr(p) — gr(v). It follows by induction that O< g(p) —
g(v) < gr(p) — gr(v) for all verticesp of T. Hence,g(v) = gr(v) = 0, since 0 is the
minimal element of any coatogp: [n] — N. Thereforeg(p) < gr(p) for all verticesp.

In other words,g <. gr. It is clear from the proof that equality holds if and only if
ji1=j2="---=jr =0. Butwhen(j,..., j;) = (,..., 0), we have

A~

(=Dl g [ froe e fujy e fus oo froee frj oo fr,s]}l
= {or. p[fia- fug - fra--- frqs]}l
= (=D'{gr, pler - - en-al}*

= (-1'Qr,
wheret is the sign of the permutation which takeék i, ..., fig,..., fra,..., frg) tO
(e, ..., e_1). Itfollows thatXt + (—1)!Qt can be written as a sum of maximal chains
only involving coatoms strictly less thagy with respect to>.. m|

We may conclude that in order to prove that ¥g's form a basis oH (L, i), it suffices
to prove that theQ+’s are linearly independent i@,_1(Ln k).
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9. Proof that the special terms are linearly independent

We would like to show that th€+’s form a linearly independent set {&,_1(Ln k). We
will do this by finding a maximal chain in the expansion@f which cannot appear in the
expansion ofQt for any treeT’ other thanT .

Theorem 9.1 Let T and T be labelled rooted (k + 1)-ary trees in which the roots
have noO-children. Let g, ..., e,_1 be the edges of T ordered as in the definition of
Q. Letd,..., € _; be the edges of Tin any order. Suppose thdgr,e;...en_1}' =
{gr,€,...€,_,}1. Thene =€ foralli, and hence T= T'.

Proof: Recall that the sequence of edges, ..., e,_1) defines a sequence of graphs
(S, S, ..., Si-1) whereS§ is the graph om labelled vertices with edges, ..., g. We
may think of the connected componentsSfas rooted subtrees af, where the root of
a component is the vertex of the component with the shortest path to the rdotamid
where the edge labels of the connected components are the same as the corresponding ¢
labels of T. Notice thatgr(v) < gr(p) for all verticesp in that component. Also recall
that this sequence of graphs defines a sequence of partitions, . . ., 7,_1 of [n], where
each part ofr; corresponds to the vertices of a connected componeft. oSimilarly,
€....,€_, defines a sequenas,, S, ..., §,_;) of subgraphs ofl” and a sequence
(7w, 70}, ..., 7}, _;) of partitions of p]. Since{gr,ei---e_1}* = {g;. € ---€, ;)% it
must be true thagr = g} andw; = #; for anyi.

Several special properties of the sequenge. .., m,_; follow from the order of the
edgesy, ..., €.

Lemma 9.2 For any part A of a partitionr;, let t(A) = min{gr(p):p € A}. If

Har(p):p € A}l > 2, let o(A) be the second smallest element{gf (p):p € A},

i.e, 0(A) = min({gr(p): p € A}\t(A)). Thenny, ..., 7,1 satisfy the following three

properties

1. If parts A and B ofr;_; are joined to getr;, thent(A) # ©(B). Without loss of
generality assume that (A) < 7(B). Theno (A) > ©(B).

2. If Ais any part of a partition;, then there is a unique elemeni( &) of A such that
gr(M(A)) = t(A).

3. If Ais any part of a partitionr; and if A has more than one elemegttiteno (A) is defined
(by property(2)), and there is a unique element&) of A such that g(z(A)) = o (A)
and such that ¢A) is not the parent of &edge in{ey, ..., g}.

Proof: These properties can be shown by induction .ofhey are clearly true far= 1
sincee; is an edge with label greater than 0. Now assume that they are true-for Let
e = (p, v) wherev is the child ofp. Let D be the maximal subtree & _; containingp,
and letF be the maximal subtree &_; containingv. Let A = n(D) andB = = (F).
Since all vertices of except for the root have a parenth) v must be the root oF.
Consider the patf® =ag—a; —--- — p—v —--- — a5, Where(ap, a;) is anr-edge
with r > 0, and all other edges are 0-edges. Since the edg&agpear in order in
€1, ..., 61, 8 must be a vertex oD. Furthermore, for any edge m®, ..., g_; with
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parentc and childd, gr(c) > gr(ap) andgr(d) > gr(ag). Henceag does not appear as a
childinany edge iry, ..., g, and say must be the root ob. Finally, notice that all edges
in D with parentag (except possiblyag, a;) itself) have label strictly greater than by
the way the paths of were ordered. Hence(A) = gr(ag) < gr(a1) = gr(v) = 7(B),
ando (A) > gr(a1) = gr(v) = t(B). Thus, property (1) holds far. Property (2) follows
by the inductive assumption and by property (1) for Property (1) also implies that
(o7 auB) Yo (AUB)) = {ay, @y, ..., v}. Thus,vis the unique element gkU B such that
gr(v) = 6 (AU B) and such that does not appear as the parent of a 0-eddeiin . ., g}.
This proves property (3) fdr. |

Now we will prove by induction thag = € fori = 1,...,n— 1. Clearlye; = ¢
sincer; = m; implies thatS, = S}, where§, and S| contain only the edgesg; and€,,
respectively. Now suppose thgt= €| for j =1,...,i — 1. Then§_, = §_;. LetD
andF be the subtrees & _; which are joined by edge to obtaing, and letA = = (D)
andB = 7 (F). Sincern]_, = mj_1 andn{ = 7;, AandB are also parts ot/_,, andr is
obtained by joiningA andB. Thus§ is obtained by joining the subtre@andF of §_;
by edges .

The only vertex inD without a parent irD is the root,m(A). Similarly, m(B) is the
only vertex inF without a parent irF. Thuse must have eithem(A) or m(B) as a child.
By property (1), we may assume thatA) < t(B). Thus,m(B) must be the child of
€. If D contains only one vertex, than(A) must be the parent &. Otherwiseo (A)
is defined because of property (2), an@A) > 7(B) by property (1). Ifoe (A) > (B),
thengr (p) > gr(m(B)) for all p € A except form(A), by property (2), and s(A)
must be the parent &. If o(A) = 7(B) thenm(A) already has a child ilD with label
gr (m(B)) — g1 (M(A)), and som(A) cannot be the parent ofi(B). In this casem(B)
must be the 0-child of some elememtof A with gr/(p) = o(A). But by property (3),
there is only one choice for the parent, namalp).

We see that is uniquely determined b, ..., e_1, 7/, and the properties of the
sequence of partitions. Sineg satisfies all of the same conditions eisit follows that
e = €. By induction,e = € foralli =1,...,n— 1. Therefore] =T'. O

We have just shown that there is a maximal chain in the expansi@s efhich does not
appear in the expansion @ for any treeT’ other thanT. Therefore, theQt’s form a
linearly independent set i@,_1(Ln k).

10. Bijection between the se{Xt} and a basis ofpC&S,

By Theorem 3.2, Theorem 9.1, and the comments at the end of Sections 8 and 9, the s
{Xr} forms a basis oHn_1(Lnk). Itis now a simple matter to show théd,_1(Lnk) is
isomorphic as a6 ,-module to a direct sum of copies 8%&,,. Let G be anyunlabelled

(k+ 1)-ary rooted tree for which the root has no 0-child, andaéE) be the set of alKt'’s

such thatG is the underlying graph of . It is clear from the construction of thér’s that

wXt = X,1 foranyw € &y, wherewT is the tree obtained by permuting the vertex labels
of T by w. Hence, the linear span of the elementd8¢6) is a submodule oH,_1 (L k)
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isomorphic toC&,,. FurthermoreH,_1(Lnk) is isomorphic todg B(G), where the sum
is over all possible unlabelled tre€s ThereforeHn_1(Ln ) is isomorphic to a direct sum
of copies ofCS,,.
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