Determination of msd(Ln)
M. van de Vel
DOI: 10.1023/A:1018642412884
Abstract
The median stabilization degree (msd, for short) of a median algebra measures the largest possible number of steps needed to generate a subalgebra with an arbitrary set of generators. With computer assistance, we found that msd of the lattice {- 1, 0, 1 }4 equals 2. This value is of critical importance to determine msd of {- 1, 0, 1}n for all n 5 and to determine msd of the free median algebra (r) for almost all r 5.
Pages: 161–171
Keywords: distributive lattice; free median algebra; graphic cube; median operator; median stabilization degree
Full Text: PDF
References
1. H.-J. Bandelt,“Generating median graphs from Boolean matrices,” Mathematisches Seminar, Universit\ddot at Hamburg (preprint).
2. H.-J. Bandelt and M. van de Vel, “The median stabilization degree of a median algebra,” Report WS-405, Vrije Universiteit Amsterdam, 1992.
3. V. Chepoi, “A multifacility location problem on median spaces,” Discrete Math. Appl. 64 (1), 1-29.
4. M. van de Vel, “Theory of convex structures,” North-Holland Math. Library, Vol. 50, Elsevier Science Publishers, Amsterdam, 1993, p. 540+xv.
5. M. van de Vel and E. Verheul, “Medians and Steiner trees,” Report WS-412, Vrije Universiteit Amsterdam, 1993.
2. H.-J. Bandelt and M. van de Vel, “The median stabilization degree of a median algebra,” Report WS-405, Vrije Universiteit Amsterdam, 1992.
3. V. Chepoi, “A multifacility location problem on median spaces,” Discrete Math. Appl. 64 (1), 1-29.
4. M. van de Vel, “Theory of convex structures,” North-Holland Math. Library, Vol. 50, Elsevier Science Publishers, Amsterdam, 1993, p. 540+xv.
5. M. van de Vel and E. Verheul, “Medians and Steiner trees,” Report WS-412, Vrije Universiteit Amsterdam, 1993.