ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

The Median Stabilization Degree of a Median Algebra

H.-J. Bandelt and M. van de Vel
Mathematics Seminar, Universit\ddot at Hamburg, D 2000 Hamburg 13, Bundesrepublik Deutschland

DOI: 10.1023/A:1018689708341

Abstract

The median stabilization degree (msd, for short) of a median algebra measures the largest possible number of steps needed to generate a subalgebra with an arbitrary set of generators. We determine the value of msd of a graphic n-cube Qn and we derive an estimation of msd for the natural median operator of Rn which is sharp up to one or two units. Interestingly, msd of Qn and of Rn grows like log1.5n. Finally, we characterize median algebras and median graphs of msd le 1 in terms of forbidden subspaces.

Pages: 115–127

Keywords: convex structure; graphic cube; median algebra; median stabilization degree; superextension

Full Text: PDF

References

1. H.-J. Bandelt and J. Hedlíková, “Median algebras,” Discrete Math. 45 (1983), 1-30.
2. H.-J. Bandelt and M. van de Vel, “Superextensions and the depth of median graphs,” J. Combinatorial Theory Series A 57 (1991), 187-202.
3. G. Birkhoff and S.A. Kiss, “A ternary operator in distributive lattices,” Bull. Amer. Math. Soc. 53 (1947), 749-752.
4. J. Eckhoff, “Der Satz von Radon in konvexen Produktstrukturen II,” Monatsh. Math. 73 (1969), 17-30.
5. E. Evans, “Median lattices and convex subalgebras,” Universal Algebra, Colloq. Math. Soc. János Bolyai 29, North-Holland, 1982, pp. 225-240.
6. C.F. Mills and W.H. Mills, “The calculation of λ(8),” 1980, preprint.
7. M. Sholander, “Trees, lattices, order, and betweenness,” Proc. Amer. Math. Soc. 3 (1952), 369-381.
8. M. Sholander, “Medians, lattices and trees,” Proc. Amer. Math. Soc. 5 (1954), 808-812.
9. M. van de Vel, “Matching binary convexities,” Top. Appl. 16 (1983), 207-235.
10. M. van de Vel, Theory of Convex Structures, North-Holland Math. Library, Vol. 50, Elsevier Science Publishers, Amsterdam, (1993), 540+xv pp.
11. A. Verbeek, Superextensions of Topological Spaces, Math. Centre Tracts, Vol. 41, Mathematisch Centrum, Amsterdam, 1972, 155 pp.
12. E.R. Verheul, Multimedians in Metric and Normed Spaces, CWI Tract, Vol. 91, Centrum voor Wiskunde en Informatika, Amsterdam, The Netherlands, 1993.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition