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Abstract. We propose a homological approach to two conjectures descended from the Erd˝os-Ko-Rado Theorem,
one due to Chv´atal and the other to Frankl and F¨uredi. We apply the method to reprove, and in one case improve,
results of these authors related to their conjectures.
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1. Introduction

The purpose of this paper is to propose a homological approach to two problems descended
from the Erdős-Ko-Rado theorem [3], namely a conjecture of Chv´atal [1], and another of
Frankl and F¨uredi [4]. Our interest in these questions was prompted by [4], to which we
refer for a more thorough discussion (and from which we borrow most of our terminology).

In what followsF will be a collection ofk-element subsets of some finite setX of
cardinalityn. (Such a collection is often called ak-graph ork-uniform hypergraph.)

In our context ad-simplexis a collectionF1, . . . , Fd+1 of sets such that

d+1⋂
i=1

Fi = ∅, (1)

but

∩{Fi : 1≤ i ≤ d + 1, i 6= j } 6= ∅ for each j ∈ [d + 1].

(We use [s] for {1, . . . , s}.)
A simplex isspecial if |⋂i∈J Fi | = d + 1 − |J| for all J ⊆ [d + 1] with |J| ≥ 2

(equivalently, if|⋃i< j (Fi ∩ Fj )| = d + 1).

We writes(n, k, d) (resp.s∗(n, k, d)) for the maximum size of anF ⊆ ([n]
k

)
containing

nod-simplex (resp. speciald-simplex).
Then the Erd˝os-Ko-Rado theorem (actually only the best-known case thereof) says that

s(n, k, 1) = (n−1
k−1

)
for everyn ≥ 2k. Chvátal [1] proposed extending this to
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Conjecture 1.1 s(n, k, d) = (n−1
k−1

)
whenever d< k ≤ dn

d+1.

(Note that ifk > dn
d+1 then one cannot even have (1).)

Chvátal proved his conjecture fork = d + 1. Frankl and F¨uredi [4] proved it for
every (fixed)k, d andn > n0(k, d), and showed that in this case one has equality only if
F = {F ∈ (X

k

)
: x ∈ F}, for somex ∈ X.

Here we give (in Section 3) an alternate, homological proof of Chv´atal’s result. We do
not so far see how to push our approach to the general case, but hope it may eventually lead
to more complete results.

For special simplices Frankl and F¨uredi [4] proved

Theorem 1.2 Let k≥ d + 3 or d = 2 and n> n0(k). If F ⊆ (X
k

)
contains no special

d-simplex, then|F | ≤ (n−1
k−1

)
, with equality iffF = {F ∈ (X

k

)
: x ∈ F} for some x∈ X.

They conjectured that this is actually true wheneverk ≥ d + 1, and in the casek = d + 1
proposed the more precise

Conjecture 1.3 If n ≥ 2k andF ⊆ (X
k

)
contains no special(k − 1)-simplex, then

|F | ≤ (n−1
k−1

)
.

As far as we can see, the natural generalization also seems plausible:

Conjecture 1.4 If n ≥ (d + 1)(k− d + 1) andF ⊆ (X
k

)
contains no special d-simplex

then|F | ≤ (n−1
k−1

)
.

Our second result is a proof (again homological) of Conjecture 1.3 fork = 3.

Theorem 1.5 If n ≥ 6, F ⊆ (X
3

)
, andF contains no special triangle, then|F | ≤ (n−1

2

)
.

This case (d = 2, k = 3) of Theorem 1.2 is proved in [4] providedn ≥ 75; so we do add
something here, though again we feel the approach is more interesting than the result.

For information on equality in Theorem 1.5 see the end of Section 4.

2. Homological background

Write 〈F〉 for the hereditary closure ofF : 〈F〉 = {A ⊆ X : ∃F ∈ F, A ⊆ F}.
The (binary)chain complexbelonging toF ⊆ (X

k

)
is Ck(F)

∂k−→ Ck−1
∂k−1−→ · · ·, where

Ci is the set of all formalZ2-sums ofi -sets in〈F〉, and theboundary maps∂i : Ci → Ci−1

are the linear maps defined by

∂i Y =
∑
{Z : Z ⊂ Y, |Z| = i − 1} ∀Y ∈ 〈F〉, |Y| = i .

We will similarly write C(G) = Cl (G) for anyG ⊆ (X
l

)
. For background see [5].

Now ∂i−1 ∂i = 0, so that, lettingZi = ker∂i , (the i -dimensionalcycles), and Bi =
Im ∂i+1, (thei -dimensionalboundaries), we haveBi ⊆ Zi .
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It is often convenient to represent∂l :
(X

l

)→ ( X
l−1

)
by the incidence matrixI (l , l − 1) =

In(l , l − 1). (That is, the matrix indexed by
(X

l

) × ( X
l−1

)
whose(A, B)-entry is 1{A⊇B}.

To apply this matrix tof ∈ C(G) (G again a subset of
(X

l

)
) we interpret f in the natural

way as a vector inZ(
X
l )

2 with fA = 0 if A 6∈ G.) We write rkG for dim∂l (C(G)), the rank
of the submatrix consisting of the rows ofI (l , l − 1) indexed byG.

Our approach is motivated by the observation that the canonical familiesF = {F ∈(X
k

)
: F 3 x} are acyclic, that is,Zk(F) = (0), and that for any acyclicF we have

|F | = dimCk(F ) = dim Bk−1(F ) ≤ dim Bk−1

((
X

k

))
=
(

n− 1

k− 1

)
. (2)

Thus we can always assume that the family in question does contain cycles—that is, subsets
G for which∂k(

∑
F∈G F) = 0—and we expect that this assumption should imply even better

bounds.

3. Proof of Chvátal’s theorem

We assumen = |X| ≥ k + 2 and thatF ⊆ (X
k

)
contains no(k − 1)-simplex (henceforth

justsimplex), and must show

|F | ≤
(

n− 1

k− 1

)
. (3)

As noted above, we may supposeF is not acyclic.

Claim 3.1 Each minimal cycle ofF is
(Y

k

)
for some Y∈ ( X

k+1

)
.

Proof: LetG be a cycle ofF andF ∈ G, and suppose
( F

k−1

) = {A1, . . . , Ak}. SinceG is a
cycle, it contains, for eachi ∈ [k], someFi with Fi∩F = Ai . But since{F1, . . . , Fk} is not a
simplex, we must have

⋂k
i=1 Fi = {x} for somex 6∈ F , and then{F, F1, . . . , Fk} =

(F∪{x}
k

)
is a cycle contained inG. 2

Suppose then that the cycles ofF are
(Yi

k

)
, i ∈ [s]. SinceF contains no simplex

we have

Claim 3.2 For all i ∈ [s] and F ∈ F, either F⊆ Yi or |F ∩Yi | ≤ k− 2. In particular,
for each1≤ i < j ≤ s, |Yi ∩ Yj | ≤ k− 2.

Let

F ′ = F
∖ s⋃

i=1

(
Yi

k

)
, E′ =

(
X

k− 1

)∖ s⋃
i=1

(
Yi

k− 1

)
,

F ′′ =
s⋃

i=1

(
Yi

k

)
, E′′ =

s⋃
i=1

(
Yi

k− 1

)
.
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ThenF ′ is acyclic and by Claim 3.2,∂kC(F ′) ⊆ C(E′) (i.e., no member ofF ′ contains a
member ofE′′), whence

|F ′| = dimC(F ′) = dim∂kC(F ′) ≤ dim Zk−1(E
′)

= |E′| − rk E′ =
(

n

k− 1

)
− |E′′| − rk E′. (4)

Thus (3) will follow from

rk E′ ≥
(

n− 1

k− 2

)
− |E′′| + |F ′′|. (5)

Now rk E′ is also the rank ofE′ in the binary matroidM given by the rows ofI (k−1, k−2).
(For instance, ifk = 3 this is the ordinary polygon matroid of the graphE′. For matroid
background see [6].)

The dual of this matroid,M∗, is the matroid given by the columns ofI (k, k− 1). By the
rank formula for dual matroids (with ground setE),

rk∗E′′ = |E′′| − rk E + rk E′ = |E′′| −
(

n− 1

k− 2

)
+ rk E′,

so (5) is equivalent to

rk∗E′′ ≥ |F ′′| = (k+ 1)s. (6)

Proof of (6): Supposex ∈ X belongs to preciselyt of Y1, . . . ,Ys, say x ∈ ⋂t
i=1 Yi \

(
⋃s

i=t+1 Yi ). Then the columns ofI (k, k− 1) corresponding to

E′′′ :=
t⋃

i=1

(
Yi\{x}
k− 1

)
∪

s⋃
i=t+1

(
Yi

k− 1

)
are independent, since their restriction to the rows indexed by{Z ∪ {x} : Z ∈ E′′′} is a
diagonal matrix.

Thus (using Claim 3.2) rk∗E′′ ≥ tk+ (s− t)
(k+1

2

)
, which gives (6) provided

t ≤ (k+ 1)(k− 2)

k(k− 1)
s. (7)

But the average number ofYi containing an element ofX is s(k + 1)/n, so we have (7)
provided⌊

s(k+ 1)

n

⌋
≤ (k+ 1)(k− 2)

k(k− 1)
s, (8)

which is true. (In fact, our assumptionn ≥ k+2 gives (8) without the “b c” except in the triv-
ial casesk ≤ 2 and the casek = 3,n = 5,s= 1, for which the left-hand side of (8) is zero.)
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4. Proof of Theorem 1.5

We supposeF is as in Theorem 1.5 and, as above, may assumeF contains cycles.

Claim 4.1 Each minimal cycle ofF is either
(Y

3

)
for some Y∈ (X

4

)
or isomorphic to

{vab, vbc, vcd, vda,abc,acd}. (9)

We call cycles of these two types 4- and 5-cycles, respectively.

Proof: Let G be a cycle ofF . As usual, thelink in G of W ⊆ X is LG(W) = {F\W :
W ⊆ F ∈ G}.

If LG(x) (x ∈ X) is nonempty then it contains a cycle, say{x1, . . . , xt } (actuallyLG(x) is
an Eulerian graph). Choosex ∈ G, such thatt is maximal. SetFi = {x, xi , xi+1} (subscripts
modulot) and let

Gi = {xi , xi+1, yi } with yi ∈ LG({xi , xi+1})\{x}.

(Note there must be such aGi .)
Suppose first thatt ≥ 4. Then for eachi we must haveyi ∈ {xi−1, xi+2}, since otherwise
{Fi−1, Fi+1,Gi } is a special triangle. But then: ift ≥ 5 and (say)yi = xi+2, then
{Fi−1, Fi+2,Gi } is a special triangle; while ift = 4, it is easy to see that there arei, j with
Gi ∪ G j = {x1, . . . , x4}, and then{Gi ,G j , F1, . . . , F4} is a 5-cycle inG.

Now supposet = 3. Then by the maximality oft , G contains the cycle
(Y

3

)
with

Y = {x, x1, x2, x3}. 2

In what follows, forK ⊆ (X
3

)
, we take∂K = 〈K〉 ∩ (X

2

)
. We also set

(X
2

) = E.
We will associate with each cycleG of F a setH = H(G) ⊆ X.

(a) If G is a 5-cycle, thenH(G) is just the vertex set ofG. Note that in this case with labels
as in (9),

|T ∩ H | 6= 2 ∀T ∈ F (10)

and (
H

2

)∖
∂

(
F ∩

(
H

3

))
⊆ {{b, d}}.

Now supposeG = (Y3) is a 4-cycle. Notice that ifT1, T2 ∈ F satisfy|Ti ∩ Y| = 2 and
|Ti ∩ Tj ∩ Y| = 1, then necessarilyT1\Y = T2\Y (or we have a special triangle). We
therefore have one of the following.
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(b) There are at most two (opposite) edges{x, y} of Y for which there existsT ∈ F with
T ∩ Y = {x, y}. In this case we takeH(G) = Y.

(c) There existv ∈ X\Y anda, c, d ∈ Y = {a, b, c, d} such that{v,a, c}, {v,a, d} ∈ F .
In this case we takeH = H(G) = Y ∪ {v} and observe that the absence of special
triangles implies

T ∈ F, |T ∩ H | = 2 ⇒ T ∩ H = {v,a}, (11)

(
H

2

)∖
∂

(
F ∩

(
H

3

))
⊆ {{v, b}}.

It is also easy to see that

T ∈ F ∩
(

H

3

)
⇒

∣∣∣∣∂(F \{T}) ∩ (T

2

)∣∣∣∣ ≥ 2 (12)

(i.e., at least two of the pairs fromT are covered by triangles ofF other thanT).

Let C be the collection of minimal cycles, andH = {H(G) : G ∈ C} = H4 ∪H5, where
Hi = {H ∈ H : |H | = i }.

From the preceding observations we have

|H ∩ H ′| ≤ 2 for all distinctH, H ′ ∈ H. (13)

To see this note that we cannot haveT, T ′ ∈ F with |T ∩ H | = |T ′ ∩ H | = 2 and
|T ∩ T ′ ∩ H | = 1; on the other hand, if|H ∩ H ′| = {x, y, z}, thenH ′ contains triangles
of F other than{x, y, z} covering at least two of the pairs from{x, y, z}. (In (a), (b)—with
H ′ in place ofH—there is at most one pair inH ′ not covered by at leasttwo triangles ofF
contained inH ′. In (c) no two such pairs can lie in a common triangle ofF (this takes care
of the case{x, y, z} ∈ F ), and there is at most one pair (namely{v, b}) which may not lie
in any triangle ofF ∩ (H ′

3

)
(this covers the case{x, y, z} 6∈ F).)

Now let

F ′′ = F ∩
⋃
H∈H

(
H

3

)
, F ′ = F \F ′′,

E′′(H) = ∂
(
F ∩

(
H

3

))∖
∂

(
F
∖(

H

3

))

(whereH ∈ H), and

E′′ =
⋃
H∈H

E′′(H), E′ = ∂F ′.



A HOMOLOGICAL APPROACH 147

By the discussion in (a)–(c) and (13) we have, for all distinctH, H ′ ∈ H,

|E′′(H)| ≥
∣∣∣∣F ∩ (H

3

)∣∣∣∣, E′′(H) ∩ E′′(H ′) = ∅,

so that|E′′| ≥ |F ′′|.
It is thus enough to show

|F ′| ≤
(

n− 1

2

)
− |E′′| = |E\E′′| − (n− 1). (14)

SetE0 = E\E′ \E′′. As earlier (see (4)), acyclicity ofF ′ gives

|F ′| ≤ |E′| − rk E′, (15)

so (14) follows from

rk E′ ≥ n− 1− |E0|. (16)

Proof of (16): Fix H ∈ H. Let

Zi = {w ∈ X\H, |E(w, H) ∩ ∂F | = i }

for 3≤ i ≤ |H | (whereE(w, H) = {{w,a} : a ∈ H}). Also let

Z =
|H |⋃
i=3

Zi .

We assert that ifZ 6= ∅, then

rk E′ ≥ |Z| +max{i : Zi 6= ∅} − 1. (17)

In view of the definition ofZ, (17) follows from

E(w, H) ∩ ∂F ⊂ E′ for all w ∈ Z

(since ifw ∈ Zt with t the maximum in (17), then adding toE(w, H) ∩ ∂F one edge
of E(w′, H) for eachw′ ∈ Z \{w} gives an independent subset ofE′ whose size is the
right-hand side of (17)).

Proof: Letw ∈ Z. We distinguish two cases.

Case 1. H= {a, b, c, d} ∈ H4.
If there existsT ∈ F , such thatw ∈ T and|T ∩ H | = 2, sayT = {w,a, b}, then there is

no T ′ ∈ F with w ∈ T ′ andT ′ ∩ H ∈ {{c}, {d}} (since this would give a special triangle).
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The definition ofZ thus requiresT ′ := {w, c, d} ∈ F . Now T, T ′ ∈ F ′, since if, say,
T ′ ∈ F ′′, then there is aT ′′ ∈ F with w ∈ T ′′ andT ′′ ∩ H = {c} or {d} (using (13) and
(12)), which we have just seen to be impossible.

Suppose on the other hand that there is noT ∈ F with w ∈ T and|T ∩ H | = 2. Then
for eachx ∈ H with {w, x} ∈ ∂F , there existsTx ∈ F with w ∈ Tx andTx ∩ H = {x}.
Moreover, the absence of special triangles implies thatTx\{w, x} = Ty\{w, y} = {z}, say,
wheneverTx, Ty are as just described. This givesTx ∈ F ′; for if Tx ⊆ H ′ ∈ H, then at
least one of{w, y}, {z, y} is contained in a triangle ofF ∩ (H

3

)
other thanTx (see (12)), and

this with any otherTy (and the triangles inH ) gives a special simplex.

Case 2. H= {v,a, b, c, d} ∈ H5 (with labels as in Claim 4.1 or (c) as appropriate).
Here we can only havew ∈ T ∈ F and|T ∩ H | = 2 if H is as in (c) andT = {w, v,a}

(see (10)). But in this case we cannot have any of{w, b}, {w, c}, {w, d} in ∂F without
creating a special triangle, so cannot havew ∈ Z.

So as in Case 1, for eachx ∈ H with {w, x} ∈ ∂F , there existsTx ∈ F with w ∈ Tx and
Tx ∩ H = {x}. This again givesTx ∈ F ′ via the argument of Case 1 applied with somey
for which (Ty exists and){x, y} ∈ E′′(H) (noting that there is always at least one suchy).

2

We can now complete the proof of (16). Forw ∈ X\(Z∪H), |E(w, H)∩E0| ≥ |H |−2,
and forw ∈ Zi , |E(w, H) ∩ E0| = |H | − i for 3≤ i ≤ |H |. Thus we have in Case 1,

|E0| ≥ 2(n− |Z| − 4)+ |Z3|,
and in Case 2,

|E0| ≥ 3(n− |Z| − 5)+ 2|Z3| + |Z4|.
These in conjunction with (17) give (16) wheneverZ 6= ∅, and also whenZ = ∅ provided
n ≥ 7. The remaining casen = 6 is easily disposed of; for completeness: if there exists
H ∈ H5 then (10) and (11) show that there is at most one triangle ofF not contained inH ,
and none if

(H
3

) ⊆ F ; and if there existsH ∈ H4, thenZ = ∅ implies that|F \(H
3

)| ≤ 2.
2

Regarding cases of equality in Theorem 1.5, we have the following result, whose proof,
omitted here, is given in [2].

Theorem 4.2 SupposeF ⊆ (X
3

)
, |F | = (n−1

2

)
, andF contains no special triangle.

(a) If n ≥ 8, thenF = {F ∈ (X
3

)
: x ∈ F} for some x∈ X.

(b) If n = 7, thenF is either as in(a)or is isomorphic to{F ∈ ([7]
3

)
: |F ∩ {1, 2}| 6= 1}.

(c) If n = 6, thenF is either as in(a)or is
(Y

3

)
for some Y∈ (X

5

)
.
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