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Abstract. In this paper we introduce a family of polynomials indexed by pairs of partitions and show that if
these polynomials are self-orthogonal then the centre of the lwahori-Hecke algebra of the symmetric group is
precisely the set of symmetric polynomials in the Murphy operators.
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1. Introduction

In [4] Murphy showed that for any fiell the centre of the group algebra of the symmetric
group&, onn symbols is the set of symmetric polynomials in the Murphy operators. One
consequence of this result is a relatively easy proof of the Nakayama conjectli for

Given an invertible elemertin a ring R let ©#7'= ¢y 4(&,) be the associated lwahori-
Hecke algebra. Thet# contains elements which ageanalogues of the Murphy operators
of the symmetric group and once again the symmetric polynomials in these elements belong
to the centre o&7". It is natural therefore to make the following conjecture.

Conjecture 1.1 [2] For any ring R and any invertible element q in R the centre of the
Iwahori-Hecke algebraz7 (Sy) is the set of symmetric polynomials in the Murphy
operators.

Dipper and James [2, Theorem 2.14] have proved this conjecture in the caseditiere
is semisimple; unfortunately, there is a gap in their proof for the non-semisimple case. As
for the symmetric group, one of the reasons why this conjecture is interesting is that as
a corollary one can prove the Nakayama conjecture-#@r (this was proved by Gordon
James and the author in [3], with one direction being done previously in [2]).

In this paper we reduce Conjecture 1.1 to a purely combinatorial problem of showing
that certain polynomials are orthogonal. To the best of our knowledge these polynomials
have not appeared in the elsewhere in the literature; it seems likely that they will be of
independent interest.
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One of the reasons why the conjecture for” is more difficult to prove than in the
symmetric group case is that the multiplicationdn”is much more complicated. In the
first section of this paper we overcome this difficulty by proving a combinatorial result
which allows us to rewrite an arbitrary product of Murphy operators as a linear combination
of less complicated products (modulo “unimportant” terms). In the second section we apply
this result towards Conjecture 1.1.

2. Rewriting rules for Murphy operators

Throughout this paper we fix a positive integeand let&,=&({1, 2, ..., n}) be the
symmetric group ofl1, 2, ..., n}.

Let R be a commutative ring with 1 arglan invertible element oR. Then thewahori-
Hecke algebra <7’=c/r q(Sp) is the unital associativik-algebra with generator,,
T, ..., Th—1 and relations

T?=@-DT +aq.
TiTjaTy =TT T,
TTi =TT ifli—jl>2

forall1<i, j <n.

Given an integeir, where 1<i <n, let 5 =(i,i + 1); then{s;, S, ..., $-1} is the
(standard) set of Coxeter generators for the symmetric ggusuppose thab € S, and
writew =55, .. . S,; this expression fow isreduced if kis minimal, in which case we say
thatw haslength £(w) =K. Given such a reduced expressiondotet T, =T, Ti, ... T,;
the relations i7" ensure thal,, is independent of the choice of reduced expressionfor
Moreover,{T,, | w € &,} is a basis forc7.

Definition 2.1 [2] TheMurphy operators of 7 are the elements; = 0 and
Li=a"" T + 9% Ty + -+ +9  Ti—wi,
fori=2...,n.

Using the defining relations in7’it is a straightforward exercise to show that the fol-
lowing holds.

Lemma 2.2 [2, Section 2] Supposethat<i <nandl<j<n. Then
(i) T and Lj commute when# j — 1, j.

(i) T, commutes with {L;,1 and L + Lj,.

(i) L;j and Lj commute.

By (i) and (ii) the symmetric polynomials in the Murphy operators belong to the centre
of &%.
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Now that we have amassed sufficient notation to explain Conjecture 1.1 in the general
case we restrict our attention to the generic Iwahori-Hecke algebra (where we renormalise
everything).

Letq% be an indeterminate ov&rand let4 = Z[q%, q*%] be the ring of Laurent polyno-
mials inq% with integer coefficients. Then?'=c7 4 q(Sy) is thegeneric lwahori-Hecke
algebra of&,,.

For anyw € &, we letT, =q~2‘®T,. Definea =q? — q~2; then the multiplication
in o/’is completely determined by

FE o 'Izsw if £(sw)>L(w),
YU  TawtaT, if L(sw) <),

foralli=12 ...,n—1andw € &,.

We defineI:i = f(l,i) + f(z,i) + -+ f(i—l,i) form=2...,n. Becausd:i = q% Li we
also callL; aMurphy operator; this should cause no confusion. In fact, the Murphy operators
are quite hard to work with directly; instead we work with the elemenis=1 and

gi:-I:i—l-lzi—2----|:1-|:1-«--|:i—2-|~—i—1y fori=2,...,n,

which we call Z-Murphy operators. This terminology is justified by the well-known
lemma.

Lemma 2.3 Supposethat<i <n. Then?; = al; + 1.

Proof: Wheni =1 there is nothing to prove. Therefore, by induction and using the fact
thatTi T jTi =Ti+1jy whenj=1,2,...,i — 1, we find
Y1 =Ti 4T = Tieli + DT
= Ol(f(iJrl,i—l) + -|:(i+1,i—2) + -+ f(i+1,1)) + '|~'i2

:aLi+1+1. O

We remark that the easiest way to verify Lemma 2.2 is to first prove the corresponding
result for the Z-Murphy operators.
Define the inner produgt ) : <7 ® o7 — A to be theA-linear extension of the map

. 1, ifx=y
<TX7 Ty) = .
0, otherwise

wherex, y € &,. Animportant property of the inner product, which we shall apply without
mention, is that

(hlhz, h3> = (hz, h;’[h3), for all hq, hy, hs € 7,
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wheres : % — <% is the uniqueA-linear anti-isomorphism of# such thafl* =T,
for all w € &, This is easy to check becaudg, hs) is the coefficient of 1 i}hs.

Following Dipper and James [2], %< &, we say thaappearsinh e =7 if (Ty, h) #0;
equivalently, ith= 3", .. a,T, thena, #0 (a, € A).

A partition L. = (Aq, A, ...) of nis aweakly decreasing sequence of non-negative integers
such thad ; Aj =n. Write A= (A4, ..., A), if Ay =0only ifi >k, and let

612611X6A2X X@)Lk
be the correspondingung or parabolic subgroup ofS,.

Definition 2.4 [2] LetA be a partition oh and suppose that, s, .. ., S, are the standard
Coxeter generators fa®; wheren > i; > i; > --- > ix > 0. Thenu, € &, is the
permutatiors;,s, . . . S,

Example 2.5 Suppose that = (3, 3, 2, 1), a partition of 9. Then
G, =63xG3x G xG1=6({1,2,3}) x &({4,5,6}) x &({7, 8})) x S({9})

is generated by the set of simple transpositi@nss,, 4, S5, S7}. Thereforau, is the element
srsuss = (1, 2, 3)(4, 5, 6)(7, 8).

Remark 2.6 The elements; are elements of minimal length in their conjugacy class (in
fact they are Coxeter elements @;,). The reason why they are of interest to us is that
Dipper and James [2, Theorem 2.12] have shown thaisifin the centre o ’then there
exists a partitiork. such thau, appears irc.

Our initial aim is to prove the following result.

Theorem 2.7 Suppose that is a partition of n and thafl <ij, i, ..., ik <n. Then y
appears inL;, Li, ... L; onlyifé(u,) <k.

Because the Murphy operators commute we may assume;that > - - - >ix. Fur-
thermore, by Lemma 2.3, we may replace the Murphy operatdn the statement of
Theorem 2.7 with thez-Murphy operatorZ;. We shall need quite a few lemmas before
we can approach the summit.

Definition 2.8 An elementw of &, is decreasing if it has a reduced expression of the
formw=s,s,...5, forsomen>i;>iz> --- >i; >0.

In particular, eachu, is decreasing. To prove Theorem 2.7 we actually give a recursive
formula for calculating the inner produc{$,,, Li,Li, ... L;,) whenevem is a decreasing
element of lengtkk.
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We define an equivalence relati&® on o/’ wherebyh; dec h, if and only if (T, hy) =
(Tw, hy) for all decreasing elements € S, (hy, h, € =%). A note of Warning:zecdoes
not respect the multiplication in7’

We need one more set of definitions before we can start to work. Henceforth, we fix
an integeii where 1<i <nand let&; =& ({1, 2,...,i}) and o#; = /4 q(&;), which
we consider as a subalgebra©f’in the natural way. We also let?;" = D wee N[a] T,
and o7t = <%. Note thatc’* is closed under multiplication and that; € 7" for
i=12,...,n

Lemma 2.9 Suppose that & =7+ and thatw appears inT;h for somew € &, such
thatf(sw) > £(w). Then sw appears inTjh.

Proof: By assumptionT; T, = T, SO

<-|~—Sws -l:l h) = (-IN—I fw» T—I h) = (T—uw -|~—|2h) = (T—ws h) +Ot<-|:w, -IN—I h>
Now h andTih belong toc7' ™, so(T,, h) and(T,,, Ti h) are both polyrlomials i with
non-negative coefficients. Therefore, no cancellation can occufTandTih) # 0 because
(Tw, Tih) #0. |

The following easy but useful lemma is from [2].

Lemma2.10 LetY be a Young subgroup &, and suppose that € &, appears infxh
or hTy for some x¢ Y and some k «7(Y). Thenw ¢ Y.

Proof: It suffices to consider the case whére- T, for somey e Y. The lemma now
follows easily by induction o (y). O

The next seemingly innocuous result will get us half way to Theorem 2.7.

Proposition 2.11 SupposNeNthNat):sv for somev € S; and1l<i <n. Let xe &; and
suppose thatv appears inT; T, Tih for some he ¢/#;. Then xe &;_;.

F:rgof: _ Becausew appears inT; Ty Ti h there gxi~sts some € &, such thatw appears in
Ti T« T; T;. By assumptionf(w) = £(v) + 1soT; T, = T, + aT,; therefore,

2) = (T, LT ) + (T, kT T).

o
RN
<
=
o
=
<

I
=
E_h
X—h
—

—

However,(T,, TxTi T,) = (T, T,-1, TxT;) = 0 by Lemma 2.10; so

0# (Ty, TTTiT) = (T, KTi To) = (T Ty Tpr, TeTi) = T Ty T, Tis)-

Therefore xs appears irff; T, T,-: and so there exists sonyee &; such thasy = xs.
Hencex € §S;5 N &; = &;_; as required. O
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The relevance of the proposition to Theorem 2.7 is revealed by the following corollaries.

Corollary 2.12 Suppose that &= 1 and let he &% and suppose thab is decreasing.
Then

a(Tsw, h), if siwe &,

(T, Zipah) =1 (T, by, if we 6,
0, otherwise

In particular, w appears inZj1h if and only if either
(i) w e &; andw appearsin hor
(i) w = sv wherev € &; is decreasing and appears in h.

Proof: If w ¢ &1 thenw does not appear i, 1h. In general, by Lemma 2.3 we have
that

(Tu, Ziyh)
=T, Tasrioh) + o(Tw, Tsri—ph) + -+ + o(Tw, Tazrph) + (Tw, h).

If w € &; thenw does not appear iff(m,j)h for any 1< j <i by Lemma 2.10, so
(Tw. Ziz1h) = (T, h) as claimed. On the other handyif= s v for somev € &; then by
Proposition 2.11w does not appear i1 j)h for 1 < j < i and by Lemma 2.1@
does not appear ih so (T, Zi11h) =a(Ts,. Tih) = a(T,, h) + «?(T,, Tih). However,
(T,, Tih) = 0 by Lemma 2.10 again, so the corollary follows. O

This translates into a result ofbBéholz; we generalise both of these corollaries below.

Corollary 2.13 [1, Satz 5.1] Suppose that n> iy > i > -+ > ix > 1 and that
w is decreasing. Thew appears inLLlLi2 ...Lj ifand only ifw = §,1S,-1...S,-1-

Moreover in this case (T, Li, Li, ... Li,) = 1.

Proof: By Corollary 2.12, if 1<i < nandh € ¢’ then

- (T,.h), ifsw=ve&,
Ty, Liz1h) = )
( i+1) {0, otherwise
The result now follows easily by induction dn O
Remark 2.14 If w = 5,-1S,-1...S,-1, for distinctiy, iy, ..., ix as above, we see that
(Tw, Li,Li, ... Li,) = g*. More generally, ifw € &y is any element of lengtk and 2<
i1,...,ik < nthen(T,, Lj,Li,...L;) = q“(T,, Li,Li,...L;). We have renormalized

the T-basis and the Murphy operators in order to avoid having to keep track of these units.
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The corollary tells us which decreasing elementsshf appear in a product of dis-
tinct Murphy operators. We now turn to the general case, which will follow by essentially
expanding part (ii) of the lemma below.

Lem[naz 15 Suppose &> 1and thatr> 1. Then
() Ty = AT +aYg 717>

(ii) y{H_T.xIT. taY ST S aR Y s

Proof:  Firstconsider (i). When= 1the formulareducestothe observation thati 1=
<ZiTi + @ Ziy1. By Lemma 2.2, and <1 commute so by induction,

T =T +aZi) = (T L) +aslf]

— i/r+1-|- +aZ irill si/s
s=0

proving (i). For (ii), note tha, * = T; — «, so using (i) twice we find

|+1—(TI 0‘)<% Ti +°‘Z L‘Z:‘+]S.%S)

r—1
=Ti ZiTi +°‘Z(T' ilr+]s.) ZF _O‘E{rT' _QZZ it
s=0 s=0
r—1 r—s—1
=T T +az(gf Tite Y 25 mzm)%f
s=0 m=0
-1
—a <M —0122 A
s=0
=T < +a2 717 %S+a225i[+fis
s=1 s=1
as required. O

The next few lemmas investigate which decreasing elements can appear in the products of
the formT; Z| T;; these are by far the most difficult terms appearing in (ii) of the lemma. We
begin with a technical result which is another application of Proposition 2.11. At first sight
theh appearing in the lemma plays no role; however, itis crucial for our applications because

. . dec T . . ..
the equivalence relatiog does not respect multiplication, as noted in Definition 2.8.
For convenience, giveinand j, where 1< i, j < n, we define
Tl Ty, ifi <],
T =1T. if =],
TTg... T, ifj<i

In particular, 7; = Ti_1.aT1.i_1.
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Lemma2.16 Lethe (“/?(T and suppose that i j > i > 2and s> 1. Then

dec

T Z7 4 TioaTijh =0
Proof: Fork>i let Ac=Ty.i <3 Ti_1Ti.k; then we must show thah;h %<0 for all
he r//l+ Ifthis is not so thenthere must exist a decreasing elemen® ;... which appears
in Ajh for someh e ﬂ/f’f By Lemma 2.9 we may assume that= sjv;, wherev; € &;.
Since Ajh=T; A;_;T;h we can apply Proposition 2.11 to find an element; e &;_;
which appears inA;_;. By Lemma 2.9,s;_1vj_1 appears inAj_;, so we can apply
Proposition 2.11 once more to find an elemgnt € &;_, which appearsir;_,. Continu-
ing in this way we see that there exists an elemgnte &;_; which appears in%?_l'ﬁ 1.

However, this is impossible by Lemma 2.10,Agh £°0 as claimed. O

To proceed with the expansion Eﬁ‘i;{'ﬁ we require two closely related families of
polynomials.

Definition 2.17 Definea(s) andb(s) to be the polynomials ifN[«?] given by a(0) =
b(0) =1,

a(S) _ Z <S ;‘mm_—l:I-)aZm, and b(S) — Z <S;—mm)a2m’

m=1 m=0

fors > 1.

We remark that even though it would have been more natural to defideto be the
0-polynomial it is much more convenient to have it equal to 1. Also note that because
a?=q—2+qg~!botha(s) andb(s) are actually Laurent polynomials gn(rather tharq%).

The closed forms foa(s) andb(s) were noticed by John Graham; all that we really need
however is that they are the polynomials determined by the recurrence formulae below.

Lemma 2.18 Suppose thats 1. Then
(i) as+1) = a(s) + a?b(s).

(i) B(s) = a(s)+b(s—1).

(i) a(s) =2, _;ma(s—m).

(iv) B(S) =1+a?) o _, mb(s—m).

Proof: The first two statements follow from the definitions using the well-known identity
() = (5, + (i) the final two statements then follow from (i) and (i) and induction.
O

We now return to the expansion of{, ;. The next lemma reveals the origin of the
a-polynomials.
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Lemma2.19 Letr, i and j be integers suchthats 1andn> j > i > 2, and suppose
thathe <. Then

r-1
= .= ,.d = r s
T]..i i,rT.J h = E a(S)Tj..i_l«fir_fTi_l..j ,%is_lh.
s=0

Proof: We argue by induction on. Whenr =1 it is clear from the definitions that
TJ i< = TJ i1 LT jh so there is nothing to prove. Suppose then that 1.
By Lemma 2.2,%_; commutes WIthT].., and Wlth'l',.,J Therefore, using Lemma 2.15(ii)
and Lemma 2.16,
-1
T T h T T h + o2 ZmTJ P TR )

BecauseZ[" ;h € o%"j* we may apply induction to expand the right-hand sum

r-1 d r-1r—-m-1
mT.i 21" M h & ma®) T T T i ZHTh
m=1 m=1 t=0
r-1r-1 B B
= ma(s — m)Tj..i,l,Sz’{j'l'i,l..j i?_lh
m=1s=m
r-1 B B S
= > T 5Tioe 25 3h- ) ma(s—m).
s=1 m=1
Now a(s) = «? Y > _; ma(s—m) by Lemma 2.18(iii). Since(0) = 1, combining the last
two equations yields the lemma. O
A composition of r into|-parts is a sequenee= (o1, 0>, ..., 07) of non-negative inte-
gerssuch thaz:>l oi = r. A strict composition of r is a compositiom = (01, 02, ..., 07)

of r in which each parb; is strictly positive. Let¢(r,|) be the set of all composi-
tions ofr into | parts and%'(r) be the set of all strict compositions of For example,
©(3,2)={3,0,(21),(1,2),(0,3}and ¢ (3) ={(3), (2, 1), (1,2),(1, 1,1}

Lemma 2.20 Leti, j andr be integers such thatx 1and n> j > i > 2 and suppose
thathe <#/. Then

T ThE Y a@iy...al) 2 ?(G ... Z¥h.

oe¢(r—1,i)

Proof: This time we argue by induction anIf i = 2 then, using Lemma 2.19 and noting
that 1 = 1, we have

T—j--i i:'-ﬁj h
dec r—1 B 5 r—1
=Y a@TaTej2h=) a@® Zjuh= Y  a()Zjn
s=0 s=0 oew(r—1,2)
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as required. Now suppose that 2. Then, by Lemma 2.19 and induction,

_,
|
[

r—1

> a®a0i_2)...a0) L1 7 E.. PSS h

s=0cew(r—s—1,i—1)

Y aiiy)...alo) L] L,

oee(r—1,)

as required. O

For convenience, given a compositiore ¢'(r —1,i)welet 77 = <7 <77 ... T~

We are now ready to compute the needed inner of products of the(figrnin) Whereh is
a product of Murphy operators.

Proposition 2.21 Letr, i and k be integers such that* 1, n >i >2andk>r +1
and suppose thab = sv is a decreasing element of length at least k. Finalgt h =
L1 Ljpsn - L Wherei= jryg > - > ju = 2. If €(w) = k then

(Tu, Z1,40) = Z ab(oi)a(oi_1) . ..a(o1)(T,, Z°h).

oee(r —1,i)
01=0

If ¢(w) > k then(T,,, iH_lh) 0.

Prqof: We proceed by simultaneous inductionloandr. Ifr =1 then('fw, [i+1h) =
a(T,, h), by Corollary 2.12, and the theorem follows.

Suppose then that > 1 and that the theorem holds for smallerNow by Lemma
2.15(ii),

r—1 r—1
Lah=TiZ[Th+ad 7T Lth+a®) s 575h.
s=1 s=1

We deal with each of these three terms in turn.
Sinceh € o7}" we may use Lemma 2.20, with= i, and Corollary 2.12 to see that

(To, T ZiTih)= Y a@i1)...a)(Tw, Ly 277 ... Z7h)

ogee(r—1,i)

= Z a(oi_1) .. U(Ul)<Tvv I ZTh)

ogee(r—1,i)
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0i-1

Now v is of length at leask — 1, so by induction ork it cannot appear inZ;"; ... Z7'h
unless this is a product of at ledst- 1 non-trivial -Murphy operators. Consequently, to
get a non-zero contribution to this sum we require that o; = 0. Therefore, noting that
b(0) =1,

(T, Tiz{Thy= Y bloai1)...a()(T,, Z°h).
ocecw(r—1,i)
o1=0
0j =0

By Lemma 2.20 and Corollary 2.12,

_‘
[ay

(T 2T )

»
1
LN

-1
=Y (T, T[T <th)

s=

=

1
1

=

=Y Y ai)...a@)(T, LianZi LT Z7h)
s=1loew(r—s—1,i)

_1 N )

=2 a0 1) ... a(D)(Ty, Lipa L5472 Th)

s=1 gee(r—s—1,i)
op=0; =0

= > a(i)...al)(T, L),
oee(r —1,i)
01=0
o #0

where the terms in the third line correspondingrto# 0 oro; # 0 disappear because, as
above,w cannot appear in a product of fewer tHan 1 non-trivial <-Murphy operators.
Finally, by induction orr,

=

1
s{Tu. Z{7127h)
s=1

r—1

= i Z sab(oi)a(oi_1) ... a(gl)<'|~'v’ ils o h)

s=1 oe¢ (r—s-1i)
O'1=0

=« Z a(oi_1) ... Cl(o‘l)(fv, th) . Z;mb(ai —m).

oee(r —1,i)
01=0
oj #0
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By Lemma 2.18(iv)b(oi) = 1+ &2 > 7 _, mb(o; — m). Therefore, adding up the three
contributions tqT,, <! ,h) calculated above, we find

(Tw, Z7,q0) = Z ab(o)a(oi_1)...a(o)(T,, Z7h).
oee(r —1,i)
01=0

By induction the inner products on the right-hand side are zettuif > k so the result
follows. U

As a corollary we obtain Theorem 2.7.

Corollary 2.22 Suppose thatv is decreasing and that > i3 > i, > --- > iy > 1
is a sequence of positive integers. Themppears in<;, Zi, ... < only if £(w) < k.
Moreover if £(w) = k thenw appears inZ;, i, ... Zi, only if w = §,,1v for some
DS Gilfl.

Proof: If k = 1 there is nothing to prove, so suppdse- 1. Then, ifw appears in
Zi, Zi,... <., by Lemma 2.9 eithew = s,_1v, for somev € &;,_1, or £(S,_1w) >
¢(w) ands,_jw appears ini, Zi, ... Zi.. Now apply Theorem 2.21. O

Next we describe exactly which decreasing elements of maximal length appear in a
product of Murphy operators; for this we need some definitions.

A sequence of integeis= (i, i, ..., ix) isdecreasingif n > i; > i, > --- > iy > 0;i
isweakly decreasingifi; > iy > --- > iy. If iisdecreasingthenwe writg = 5.5, ... S,
(cf. Definition 2.4). Note thai; is a decreasing element &;,; of lengthk.

Definition 2.23 Leti = (i1, io,...,ix) andj = (j1, j2, ..., jk) be twoweakly decreasing
sequences of length Theni — j if

(i) im>jmform=1,2...,k and
(i) {in iz, ..ouin) S {js 2 --es -

In particular, note that> is transitive and that— j only if i; = j;.
Example 2.24 Starting fromi = (4, 4, 4) the paths leading to decreasing 3-tuples (omitt-

ing (4, 4, 3) and (4, 4, 2) and the edges from (4, 4, 4) to the three decreasing sequences)
are

(4,4,4)
b(2),” \a(2)
(4,3,3) (4,2,2)
b(1),” a(1) b(1)
(4,3,2) (4,3,1) (4,2,1)
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The next result says, for example, that the only decreasing elements of length 3 which
appear in%’g ares;S, 4SS andsysys;.

By Theorem 2.21 the labels on the graph give the inner procdﬁgts%‘g) whenw is one
of these elements. For exampl@,TsT1, 73) = ¢?6(2)a(1) + «?6(1)a(l). The second

term comes from the omitted ed¢g 4, 4) ealh 4,3,1).

Theorem 2.25 Suppose that = (j1, j2, ..., jk) iS a decreasing sequence and suppose
thati = (i, i2, ..., ix) is weakly decreasing. Then = w; appears in<i, Zi, ... <, if
and only if(i — (1)) — jwherei — (1) = (i1 — L i, — 1, ..., ik — 1).

Proof: Leti =i;—1andsupposethat=--- =i, > i;y1(ifnecessary, ld{,.; = 0). We
argue by induction ok. Whenk = 1 there is nothing to prove so suppose that 1. Since
w is of lengthk, by Proposition 2.21(i) and Corollary 2.1@,appears inZi, Zi, ... Zi,
only if w = sv for somev € &;. As (i — (1¥)) — jonlyifi; — 1 = j;, we may assume
thatw = sv for somev € &;.

Ifr = 1then(T,, 1., %y ... Zi) = a(Ty, Zioy ... Zi), by Corollary 2.12, and
the result follows by induction ok. If r > 1 then, by Proposition 2.21,

@) (T—w, ;7'{+1iﬁir+1... Q/|k>
=a Y a()...al0_Db@)(T,. L7 %, ... L)

oee(r —1,0)
01=0

Now if (i — (1¥)) — j then by induction there exists a compositiosuch thab appears
in 7%, ., ... Zi, which is a summand on the right-hand side(bf. Now all of the
terms in this sum belong te’#’*, so no cancellation can occur. Thereforeappears in
L1 L, - i, as required.

Conversely, itw appears inz, i, ... Zj, thenv appearsinz” <j, , ... Zj, forsome
oe v (r—1i)withoy =0by(f). Let ¥ ¥ ... ¥, = Zj,... Zj, for some weakly
decreasing sequengs, . . ., i;). By induction(i; —1,...,iy—1) = (j2, ..., jx). Onthe
otherhand(i;—1,...,ix—1) — (i1—1,i,—1,...,iy—1). By transitivity, (i— (1)) — j.

O

Finally, we deduce the corresponding results for products of the Murphy opetators

Theorem 2.26 Suppose thati=(i1,ip,...,ix) is weakly decreasing and=(ji,
j2. ... Ji) is decreasing and leb = w;. Then
() w; appearsinL;,L;, ... L; onlyif £(w;) <Kk.
(i) Ifl = ¢(w;) =k thenw; appears inL;,L;, ... L;, if and only if i — (14)) — j.
(iii) Suppose that(w) =k, i; = j;, and leti=i, — 1 and letr be the integer such that

ip=---=irandk > i,y1. Then
<-|~—wj» I:ir+1|:ir+1~-- I:ik>: Z b(ai)a(ai,l)...a(az)(fv, |:U|:ir+1... |:ik>,
oee(r —1,0)
01=0

wherev = s, ...sj andL® = L7L7 .. L.
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Proof: Since ¢; =aL; +1 by Lemma 2.3, (i) follows from Proposition 2.21. Conse-
quently, wher¢(w) = k we may expand theZ;;’s using (i) to see thatT,, EAT- AT
Zi) = (T, [i,Li, ... Li,); (i) and (iii) follow from this observation combined with
Theorem 2.25 and Proposition 2.21 respectively. O

Applying Theorem 2.26(iii) recursively gives a purely combinatorial algorithm for com-
puting the inner productd,,, L, ... L;,) for any decreasing elememtof lengthk and any
weakly decreasing sequen@g, . . ., ix).

3. Symmetric polynomials

In this section we return to Conjecture 1.1 and reduce it to the conjecturgthgs, I, =
83, (Kronecker delta), for certain polynomidrs, € N[a?] (1, 14, andv partitions of some
integerk < n).

If o = (01, 02, ...) isacomposition, let be the partition obtained from by reordering
its parts inweakly decreasing order. Forexample,# (3,0, 2, 3, 1)thens = (3,3,2, 1).

Definition 3.1 Letk andn be positive integers and lgt a partition ofk. Then theuth

monomial symmetric function iy, ..., Lyis
M.my= > L[gLg...Cp
ocee(k,n—1)
o=pu

Notice thath?lu(n) belongs to the centre of’7;, by Lemma 2.2 since it is a symmetric
polynomial in the Murphy operators. Als®j, (n) is an element o7 and M, (n) =
Mﬂ(m) if and only if n = m. For example,

|\7|(2’1)(3) = [%l:g =+ Ezl:g
|\7|(2’1)(4) = |:§|:3 + Lzl:g + |:§|:4 + [%l:;;—i— |:2|:‘21 + |:3l:zzl

Even thoughh?lﬂ(n) #* M#(m) for n # m, these elements look the same as far as de-
creasing elements of lengttare concerned. Recall the permutatigrfrom Definition 2.4.

Theorem 3.2 Suppose thak is a partition of n and that is a partition of k where
k < n.Then

(i) (Tu,» M, (n)) # Oif and only if¢(u;) < k.

(i) If £(u;) < k and m> n then(T,,, M, (m)) = (Ty,, M, (n)).

Proof: Because all of the summands kilfu(n) belong toc’#’+ no cancellation can oc-
cur in (qu, I\7lu(n)) and the first statement is immediate from Theorem 2.26(ii). For
the second statement, suppose that 5v for some decreasing element &;. Then
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u; € Sj 1 so without loss of generality we may take= i + 1 andm > n. Therefore, by
Theorem 2.26(ii),

<fu;” Mp_(m)> = Z <1:n_]_-rv, I:?]:]m—l e I:(271>

oev(k,m—1)
o=nu

- oo, Lot L3
n 2
o€ f;(k, n—1)
o=

(-I:U,\ ’ MM(”))?
proving (ii). g

Let A be a partition ofn. As illustrated in Example 2.5, if = (A4, ..., Ax) thenu, is
the permutation

@ ..., 200 +1 ..+ 2R+ -+ A1+ 1 ..., 0n)

and¢(u,) = (A1 — 1D+ (A2 — 1) +---+ (A — 1). Using this observation the next Lemma
follows easily.

Lemma3.3 Suppose thatm 2k. Thenthe map — A = u+ (1"%) gives a one-to-one
correspondence between the partitignsf k and the partitiong. of n such that(u,) = k
(where we writgu + (1"%) for the partition(us + 1, w2 + 1, ..., n_x + 1)).

Consequently, ifx is a partition ofk of lengthl then
Uth(]_I) = U;H-(l'“) = UIH‘(]-HZ) =
where we identify these permutations under the natural embed@igs> S, — - - -
Accordingly, we relabel the permutations using partitions ok, wherek is the length
of uy.

Definition 3.4 Suppose that is a partition ofk of lengthl. Letv; = u; .

Thus,v, € Sy and we can consider, as an element o5, whenevem > k +1. In
particular,v, € &y for any partitioni of k.
Consequently, it andu are partitions ok < n then by Theorem 3.2,

my, = ('I:U.A, |\7|M(n)> = <'|~'U“ |\7|M(2k)> £0
depends only upokand not upom (and(T,,, M, (n)) = 0 whenv; ¢ &,). By definition,

m;, € N[?]. In principle, Theorem 2.26 can be used to calculate the polynommig]s
for exampleme, 13 = a(2)b(1) + a(1)? by Example 2.24.
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We letMy = (m;,,,) be the matrix of these inner productsieendy run over the partitions
of k. Lettingv = «?, and indexing the rows and columns lexicographically (beginning with
(13)), the full matrix wherk = 3 is

1 v2 4+ 3v v3 + 32
Myg=|1 v*+4w+1 v3 4+ dv? + 2v
1 v’ +50+3 v¥¥+5024+50+1

Notice that when we set= 0, or equivalently] = 1, M is unitriangular. Using Theorem
2.26 one can show that,, (0) =1 and thatm,, has non-zero constant term if and only
if > u, wherer> is the usual dominance ordering on partitions. The point is that in the
expansion of Theorem 2.26(iii) only tibepolynomials can occur if we are to get a non-zero
constant term in the coefficients. So in general the maflpxs lower unitriangular when
v=0.

More surprising is the following:

Conjecture 3.5 Suppose k> 0 is any positive integer. Tlhedeltl\hk = 1. In particular,
My is invertible over the Laurent polynomial rindg = Z[qz, q~z].

This conjecture was made by Gordon James during discussions with Richard Dipper
and the author. James also conjectured that Theorems 2.7 and 3.2 were true. Using these
results we next show that Conjecture 3.5 implies Conjecture 1.1. Below we give an explicit
conjecture for the inverse ofly.

Let R be a commutative ringj an invertible element ifR. As in Definition 3.1, given
a partitionu of k < n we defineM,, (n) e /R4 to be the monomial symmetric function
in the g-Murphy operatord_», ..., L, of &%rq4. By Lemma 2.2M,(n) belongs to the
centre ofc/’r q.

Theorem 3.6 Let R be a commutative ring with, g an invertible element in Rand
suppose that the matricdgy are invertible for all0 < k < n. Then

{M,(n) | n a partition of 0 < k < n such thawv, € &y}

is a basis for the centre of7r 5. Consequentlythe centre o7, 4 is precisely that set of
symmetric polynomials in the Murphy operatorshus Conjecture 3.5 implies
Conjecturel.1

Proof: By Remark 2.14, for any partitiorrssand . of k, the inner productT,,, M, (n))
in 7R q is equal to the polynomia ‘™ (T,,, M, (n)) evaluated ag = § (note thatmy,,
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is a polynomial ine? = q — 2 + g~1). Thus we may work in the generic Hecke algebra
and then specializg to §.

First consider the case wheReis the rational function fiel@)(q) and letM(n) be the
matrix of inner productgT,, , M «(n)) wherex andp vary over all partitions of all positive
integersk, where 0< k < n. By Theorem 2.26(i)M (n) has the form

M.(n) 0
M2(n)

M) = M3(n)

whereMy(n) = ((T,,, M,.(n))) is the submatrix of inner products M (n) wherex and
run over all of the partitions df. By Theorem 3.2, when, € &, the entries in the.th
row of M (n) are equal to the corresponding entries of the maitjixin particular they are
independent ofi. Whenv, ¢ &, all of the entries in this row ol (n) are zero.

Now, by assumption the matri¥ has full rank. Consequently the rank bfc(n) is
greater than or equal to the number of partitiamd k such thav;, € &, (0<k <n). There-
fore, the o/ qg),g-submodule spanned by the monomial symmetric functidpnsq) has
dimension greater than or equal to the number of partitionsn.ofHowever, by
[2, Theorem 2.26] (see also Remark 2.6), the centre’d )  has dimension less than or
equal to the number of partitions of This completes the proof of the proposition when
R = Q(q). (In fact this argument holds whenevRiis a field.)

Now because the matricé are invertible overd = Z[q%, q%], the monomial symmet-
ric functions{M,, (n)} span anA-lattice o# in the centre ot/ q).q ande# ® 4 Ris the
centre ofc/7r g (here we consideR as and-module by specifying thai acts asj on R).
Therefore, théM,, (n) = ‘@ Mﬂ(n) ® 1} are linearly independent and span the centre of
Cyf)R,q O

Although we have not been able to prove Conjecture 3.5, we do have an explicit conjecture
for the inverse matrix oMy. Recall that¢ (k) is the set of strict compositions &f There

is a well-known one-to-one correspondence between the compositiong (k) and the
subsets of1, 2, ..., k — 1} where

o=(01,...,00) < Jy ={o1,01+02,...,01+ -+ 01_1}.

For example Jaxy = {1,2, ...,k — 1} and Jy) = @ for allr. Given two partitions. and
wu define

Cu=D"Plfo € €K | I S I, ands = u}|,
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and letCy = (c;,,). For example whek = 4, and

(1)
212/(‘\12 b
1 -1 .
F4) = ‘>< ><‘ and Cy=|1 -2 1 . ,
1 -2 0 1
31 @) (1L3) 1 -3 12 -1

\\/

where the rows and columns @f, are ordered lexicographically and all omitted entries are
Zero.

S0, [cu | is equal to the number of compositioasin ¢'(k) such thaitc = u; more
generally,c;, | is the number ofefinement®f A into compositions such that = L.

Conijecture 3.7 The inverse matrix oy is Ci MyCy.

In particular this implies Conjecture 3.5 and hence, by Theorem 3.6, Conjecture 1.1.
Itis not hard to show thaE? = | for all k; in fact this reduces to the well-known identity

Sy o [b 0 s=0
= 0, otherwise

So, in fact Conjecture 3.7 claims thdt, * = C(MC. . Further, ifTy = C¢M then
Conjecture 3.7 says th& = |. Equivalently, if[x = (I';,) then Conjecture 3.7 holds if
andonly ifd" T;,Tyy = iy

By the above remark¥y is lower unitriangular whenn = 0 and, assuming Conjec-
ture 3.5, def’y = detCy = £1. It would also appear to be true that1)**»T; , is a poly-
nomial inv with non-negative coefficients. The matridgsfor k = 1, 2, 3, and 4 are as
follows.

1 —1 —2—-3v —0v3-3?
= (@), F2=< v>’ 3= 0 v+1 v+2v |,
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andrl'4 is the matrix

1 V¥ +H24+6v v+43+32 O+t +158 +1202 08 + 8% + 200 + 1603

0 —v2—2v—1 —3—32—v V=63 —N2—4dy —v°—Tv*— 14382
0 v v+ 20+1 v3 + 502 + 4o v+ 603 + 2 + 4
0 v+1 v2 + 2 W+ 52 +50+1 v* + 603 + W2 + 3
0 -1 —v—1 —v2 -4y -2 —¥-52-5 -1
The reader may check that dgt = +1 and thaﬂ",f = | as we have claimed. We have

checked Conjecture 3.7 far< 7.
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