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This paper raises the question of the stability of the full spectrum of an elliptic operator in divergence
form (with homogeneous Dirichlet boundary conditions) with respect to domain perturbations which
modify continuously a limited number of “small” eigenvalues. If the perturbations are semi-compact and
modify the measure continuously, we prove that the stability of the first eigenvalue implies the stability
of the full spectrum, under the hypothesis that the perturbed domain is connected.
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1. Introduction

Many mechanical problems raise the following question: do the small eigenvalues control
the full spectrum of an operator with respect to its domain perturbations? We shall
give a positive answer for the class of elliptic operators in divergence form for which the
geometric domain perturbations are semi-compact and whose measures vary continuously.
More precisely, we shall prove that if a connected open set is perturbed in this way, then
the stability of the full spectrum depends only on the stability of the first eigenvalue.
Moreover, we obtain the convergence in the sense of Mosco for the associated Sobolev
spaces.

The mathematical reasons for which this result holds are the following. The semi-compact
perturbations of the open set satisfy one of the two conditions for Mosco convergence. The
second condition, which generally is the “difficult” one is deduced from the convergence
of the first eigenvalue and the convergence of the measure which surprisingly can control
all the cracks which may appear in the shape perturbation process. We first prove a
lemma which asserts that the continuity of a sequence of eigenvectors corresponding to
the first eigenvalue suffices to obtain the second Mosco condition. This follows from a
result of [10] where it is established that the y-convergence is equivalent to the stability
of the solutions of the Laplace-Dirichlet problem with the right hand side equal to 1. In
a second step, we prove that the shape continuity of the first eigenvalue yields the shape
continuity of a sequence of eigenvectors. Finally, we make some remarks concerning the
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extension of this result to manifolds or to elliptic operators with non-smooth coefficients,
and give some examples.

To make our framework more precise, let us consider an open set ) and a sequential
family of geometric perturbations denoted ,,. We are interested in the behavior of the
eigenvalues for the Laplace operator with Dirichlet homogeneous boundary conditions
on the variable domain Q,. Denote A;(Q,) the k-th eigenvalue of the Laplace-Dirichlet
operator on {2, (counting multiplicities). Classic results prove that the vy-convergence of
Q, to Q yields the continuity of the full spectrum in the sense that lim,_,., Ax(2,) =
Ax(Q2). Obviously, the converse implication is false if no geometric relation is imposed

between ,, and Q (consider for example ,, = B(0,1) the unit ball and Q = B(1,1)).

The purpose of this paper is to prove that in some specific situation one can obtain
the y-convergence as a consequence of the sequential continuity of the first eigenvalue.
Therefore, to ensure the continuity of the full spectrum it suffices to control the first
eigenvalue. Some final remarks point to the possibility of obtaining the same results
while controlling instead of the first eigenvalue a more general shape functional. We shall

give an example concerning the mappings € — A;(Q) + A2(2) and Q@ — A (Q) - A2(Q).

2. Some Preliminary Results

Let us introduce the main notations and recall some basic results. Suppose that B is a
fixed ball of RV, which contains the set  and all its perturbations, generally denoted by

{Qn}nEN-

Definition 2.1. Consider {Q,},en, @ C B. It is said that £, y-converges to Q if Vf €
H~Y(B) the weak solution of the problem —Au = [ in Q, , ujaq, = 0 (denoted ug,, f)
converges to the solution of the same problem on £ for n — oo in the topology of H}(B).

The weak solutions ug, ; which belong to Hj(2,) are assumed to have been extended
by zero to elements of H}(B). Recall also the result of [10] which asserts that to obtain
~-convergence 1t suffices to prove continuity for f = 1 only. This assertion is based on
the maximum principle. Moreover, v convergence is equivalent to the strong point wise
convergence of the orthogonal projectors on the variable space Hj ().

The non-smooth perturbations considered in this paper are called semi-compact, i.e.
VK CC Q there exist some positive integer ny such that Vn > ng the set €, con-
tains K. Note that this condition represents half of compact convergence (see [8], [9])
which requires the same property also for the exterior of the variable domain. This rela-
tion means that the sets Q,, cover each compact of the limit domain (this property is also
satisfied by the Hausdorff complementary topology [4]). In fact, asking for semi compact
convergence 1s a way to replace one of the two conditions for convergence in the sense of

Mosco of the Sobolev spaces Hg(2,,).

The space Hy () is said to be the limit in the sense of Mosco (M-limit) of the sequence
{Hy(,) }ren for n — oo if

(M) Ve € HY(R), Jpn € HA(), such that ¢, 2% &

H} (B . .
(M) Vou, € HY (), 0n, 0 o implies o € HY(Q)

Lemma 2.2. [fQ, converges in the semi-compact sense to Q then xo < liminf,_. xq, -
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Proof. For all K CC Q we have xyx < xq, for n > ng and we choose a sequence of
increasing compacts after letting n — oco. O

Remark also that if €, converges in the semi-compact sense to  and if m(£,) — m(Q)

2
then yq, LN Xq i.e. 1, converges in the sense of measures to ). Indeed, let us compute

.

For all ¢ > 0 consider K CC  such that m(2\ K') < e. Then

Xa — Xa,|de =m(Q\ Q,) + m(Q,\ Q)

m(Q\Q,) <e4+m(K\Q,)
and
m(Q, \ Q) <m(Q\ K)

For n large enough such that K CC Q, we get m(K \ ©Q,) = 0 and m(Q, \ K) =
m(Q,) — m(K) <m(Q,) — m() + ¢. Finally

8

From the convergence of the measures, letting ¢ — 0 we obtain the convergence in measure

of ), to Q.

xa — xa,|dr < m(Qn) — m(Q) + 2¢

In our paper, by A\r(€2) we denote the k' eigenvalue counted with its multiplicity of
the Laplace operator (—A) with Dirichlet boundary conditions on the open set 2. This
eigenvalue can be computed using the Max-Min formula (see [7])

Vul?d
Ae(Q) = max min M
Vi uEH(; (Q)\{0}7UJ-Vk—1 [Q |u|2d$

where the minimum is taken for all subspaces of dimension k—1, Vs_; C Hj(f?). Moreover
the maximum is reached if Vj;_; is generated by the first & — 1 eigenvectors. This is the
good way to denote the eigenvalues if one intends to get a continuity result. It is well
known that a consequence of y-convergence is the continuity of the £ eigenvalue. The
case where the eigenvalues are not counted with their multiplicities will be touched upon
in the last paragraph.

Lemma 2.3. If Q, converges in the semi-compact sense to () then

Ae () > limsup A, (2,)

n—oo

Proof. Choose a sequence of opens {A; };en and A; C Air1 C Q such that A; y-converges
to Q. Hence the full spectrum converges and in particular we have Ay (Q) = lim; o Agx(A;).
But for each i € Nthere exists some n; € Nsuch that A; C Q,, for all n > n;, implying by
monotonicity A\z(€Q,) < Ax(A4;). Letting first n — oo and then ¢ — oo we get the upper
semi-continuity of the k-th eigenvalue. 0
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Lemma 2.4. There exists some constant M = M(B) such that for all f,qg € L*(B), for
all @ C B we have ||ug f — UQ’gHH&(B) < MIf — glrzmy-

Lemma 2.5. Suppose {Q, }nen, @ C B such that Q,, converges in the semi-compact sense

toQand f,ge L*(B), f>¢g>0. Ifuq, s H‘AB) uq,¢ then we also have uq, , H(AB) UQ,g-

The proof of this lemma is a simple consequence of the maximum principle (see [10], [2]).

3. The Stability Theorem

Our purpose is to derive the y-convergence of a sequence of domains only from the shape
continuity of the first eigenvalue. The proof of this result can be split in two steps. We
first prove that under some assumptions the y-convergence is equivalent to the shape
continuity of an eigenvector corresponding to the first eigenvalue. Secondly we prove that
the shape continuity of the first eigenvalue in this context gives the shape continuity of a
normalized eigenvector.

In all the forthcoming statements we shall frequently use some of the following hypotheses:

(Hi) {4 }nen converges in the semi compact sense to 2
(Hy)  m(,) = m(Q)
(Hs) Qis connected

Let’s give firstly the following lemma.
Lemma 3.1. Under the hypotheses Hy, Hy, Hs Q, v-converges to Q if and only if there

exists a sequence of normalized eigenvectors corresponding to the first eigenvalue A (),

H} (B
denoted @y, such that ¢ g, i>) Y1,0-

Proof. Effectively,if Q,, y-converges to Q then this assertion is obvious. Let’s suppose the
converse. We shall prove that the convergence of the eigenvectors gives the v-convergence.

The idea of the proof is to establish the shape continuity of the solution of equation
—Au, =1 n H&(Qn)

by proving successively the shape continuity of the solutions of some equations
—Aul =g\ in H}(Q,)

for an index i = 0,..,5 and right hands g well chosen.

Since the first eigenvalues are also convergent the solutions of the equation
_Ayg = )‘1<Qn>991,9n7 yg € H01<Q7’L>

converge for n — oo in H}(B) since y2 = p1,,. Let’s denote by y! the solution of the
equation

—Ay}l = M (D10, .%11 € H(}(QU
Then

19n = Ynllmz ) < MIM(Q0)e1.0, = M (D)1 alr2 s
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Hy (B)
_>

and so we get y! ¢1.0- The right hand side is fixed and equal to A;(Q)p; . For

any compact K CC Q we get infqcx ¢10(x) =& > 0 since p1,g is of class C° on § and
is super harmonic. If the infimum of ¢; g on K would be equal to zero, then the super
harmonicity would give ¢1 o = 0 on the connected component which contains the point,
and from the connection hypothesis H3 on the whole © which is in contradiction with the
choice of ¢y . Since the eigenvector is positive one can write

M(Qpra > M (Q)exk >0, in B
Using Lemma 2.4 we get the shape continuity for the equations
A = M (@) in HY(O)
or simply
—Ay" = xx in Hy()

Let’s prove the shape continuity for the solutions of
—Ay, = xa in Hy()
For any compact K CC ) one can write

lya — oyl < llys — wa™ )l + lwa™ = o) + |ly®F =yl <

<2M|xa — xx|+ |lva¥ — ¥

Choosing firstly a compact K such that 2M|xq — xx| < § and then n large enough such
that ||y2f — o3| < 5 the conclusion follows.

In a similar way, we get the continuity of the solutions of
~Ay, = xq, in Hy(2)

. L*(B . .
since xq, —(> ) xq- This last result proves that the solutions of

—Ay> =1 in Hy(Q,)

are convergent for n — oo and we get from [10] the y-convergence. O

Lemma 3.2. Suppose that hypotheses Hy, Hy, H3 hold. Then the following two assertions
are equivalent

(1) M(Q2,) — M\(Q) and there exisls some constant ¢ € Ry, ¢ # A(Q) such that
A2 (D) — ¢

(2)  there exists a sequence of normalized eigenvectors corresponding to the first eigen-
value which converges.

Moreover, if one of the previous siluations holds, then ¢ = Xy(Q).
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Proof. It is clear that 2. implies 1. We shall prove the converse, namely if A;(Q,) —
A (Q) and Ay(Q,) — ¢ # A (Q) then there exists a sequence of normalized eigenvectors
corresponding to the first eigenvalue which converges.

There exists a sequence of elements u, € D(}) N H}(Q,) such that ¢1 .o = lim,s 4, in

Hg(B). The existence of such a sequence is a consequence of the semi-compact conver-
gence. Moreover, without loosing the generality one can suppose that the elements u,, are
normalized, i.e. |u,|r2B) = 1.

One can decompose the vectors u, in the space H}(€,) in the following way
Up = AnP1,Q, + vy

where a, € Ry and v, € Hi(Q,), vn L ¢1q,. The condition of normalization of w, gives
|’Un|L2(B) = 1 —a?. By hypothesis we have u, — ¢; o and we want to get ¢10, — @10

It suffices to prove the following convergence ¢y g, — u, — 0 in H}(B) or equivalent

/ Vi a, — Vun|2d:1: —0
B

or

(1— an)Z)\](Qn) + / |an|2d;c — 0
B

On the other side, since A;(£),,) converges to A;(£2) we have

/ |Vun|2d7" - / |V9‘91’Q" ?
B B

ai/\l(Qn) + / |V’Un|2d.’]; — /\1(Qn) —0
Qy,

dz — 0

or still

It suffices so to prove the following relation

(1= an)2 M1 () + M(Qn) — a2 () = 0

n

or equivalently a,, — 1. Since the normality of the vectors u, gives a2 =1 — |Un|%2(B) it

suffices to have |v,|r2(m) — 0.

Let’s suppose the Contrary, that is the existence of a subsequence still denoted with the
same index and of a real number o > 0 such that |vn|i2(3) > a > 0. Then we have

|Vu,|*dx
fo de —M(Q,)—0
Qn
S an |V, |dz A (O A (O
ince =Py > X () > A () car v, L @0, we get

im A2 (€2,) — A ()] = 0

n—oo

The continuity of the first eigenvalue and the convergence hypothesis on the second, give

A1(Q) = ¢, in contradiction with the choice of ¢ # A (). O
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Theorem 3.3. Suppose that , converges in the semi-compact sense to 0, such thal
m(Q,) — m(Q) and Q is supposed to be connected. If A\(,) — A (Q) then Q, -

converges lo ).

Proof. Suppose by contradiction that we do not have the y-convergence. If X\;(Q,) —
A2(Q) then the y-convergence is a consequence of the previous lemma and hence we have
A2(Q,) 4 A2(Q). By compactness one can subtract a sequence A3(£2,,) — ¢ # A2(Q). We
shall prove that this situation is impossible. If ¢ # A () then from the previous lemma
we have the v convergence and as a consequence Ay(€2,,) — A2(€) in contradiction with
our choice. Therefore ¢ = A\(§). Again the compactness allows us to subtract a sub
sequence of {Q,,} such that )\3(Qn5132) — ¢3. We shall prove that ¢; = A(Q). We shall
use an induction method and in a more general formulation suppose by absurd that there
exists a subsequence still denoted with the normal index such that k& is the first index

with Ag(Q,) = ¢ # A (Q) and X;(Q,) = A (Q) for j =1,k — 1 et & > 3. We shall prove

that this situation can not hold. There exists a normalized sequence u,, € H&(Qn) such

HY (B
that wu, ﬁ ) ¢1,0. Decompose u,, in the following way
k—1
Up = Z an,j@j,ﬂn + Un
=1

with v, L ¢;q,, Vs =1,k — 1. The normality of u, give

ai’j—l—/ vide =1
B
H; (B)

B
We shall prove that v, = 0. As the following sequences have the same limit, we have

/|Vun|2dx—/ Ve,
B B

B

-1

1

J

2de — 0

or equivalently

B

-1
apn i Ai(Q) + / Vo, [P dz — A (Q,) — 0
B

1

J

The normality of u and the fact that A;(€Q,) = A1() give from the previous lemma

/ |Vo,|*de — )\1(9)/ vide — 0 (3.1)
B

B

If there exists a sub sequence still denoted with the same index such that [y vidz # 0
then
fB |V, [2dz

L — (D 0
J5vidx 1) =
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which gives A,(€2,) — A (©2) — 0, in contradiction with our supposition. So fB vide — 0
which implies from (3.1) [, [Vv,|*dz — 0 and hence

k—1
Hy(B)
Zan,y‘%,m — 1,0

i=1

Then the solutions of the equations

k-1

—Ayn =Y an N0, in

=1
converge to the solution of the equation
—Ay=M(Q)p10 tn Q

Moreover, the right hand sides converge either

kol

-1
HL(B
ani A (Qn) @0, o M(Q)er1a

1

J
and so one can apply the arguments of the previous lemma obtaining that the solutions
of the problem

—Ay}1 = Mp1a in

converge to the solution of the problem

—Ay = )\1(9)991,9

As in the previous lemma this fact gives the vy-convergence , in contradiction with our
hypothesis on the convergence of A;_;(£2,) to A;(€2) which is simple (and & > 3).

So Ax(2,) = A1(£2), and since the limit is unique this means applying the same arguments
for k = 2,3,... that M\(Q,..) — M (Q) for all k& € N, the sequence {Q,.} being that
one chosen in the beginning. But this situation is impossible, since for the ball one
knows that A.(B) — oo for r — oo (see [6]). Moreover, by inclusion and monotonicity
A(£2,) > A(B). Then for some r enough large such that A.(B) > A(€2) + 1 we can not
have A, (Q,.) — A1(©2) and hence the proof is finished. O

Corollary 3.4. Under hypotheses Hy, Hy, Hs the following two assertions are equivalent

(1) A(Qa) = M(Q)
(2)  X(Q,) = X(Q) for all i € I¥

The previous results can be extended in the following way.

Corollary 3.5. Suppose that Q@ — F () is a y-continuous function and the mapping @ —
F(Q) — X\ (Q) is decreasing on inclusions. Then the following assertions are equivalent if

H,, Hy, H3 are satisfied.

(1) F(Q) = F(Q)
(2)  Q, v-converges to
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For the proof we see that the vy continuity of F'(-) with the monotonicity of F\(-) — A()
gives from 1. the continuity of the first eigenvalue and Theorem 3.3 can be applied. As
an example the functional can be chosen as

F(Q) = M(9) + ho(®)

Identically if the functional F'(-) is chosen such that Q — % is decreasing on inclusions

then Corollary 3.5 is still true. For example the functional can be chosen as F(Q) =

A () - A2(9).

4. Mosco Conditions and v-convergence

Theorem 3.3 can be modified as follows. If {2, },en is a perturbation of an open connected
set such that the first Mosco condition is satisfied, we are interested under which supple-
mentary conditions (), y-converges to (), or equivalently M; holds? The semi compact
convergence 1s a way to satisfy the first Mosco condition and therefore one can replace
hypothesis H; with the Mosco condition M; and reformulate Theorem 3.3:

Proposition 4.1. If {Q,}.en is a perturbation of an open set and My, H,, Hs are sat-
isfied, then Q, v-converges to Q if and only if lim, oo A1 () = A (Q).

The proof is similar with Theorem 3.3 using the following arguments. If M; and H; are

. L*(B . .
satisfied, then xq, —(>) xa- Indeed, let’s consider wq the weak solution of the problem
—Awg = 1 in Hj(2). Then wg > 0 a.e. in © and from M; there exists a sequence

HY(B
©n € Hi(S,) such that ¢, ﬁ ) wg. Then a.e. we have the following two situations: if

xa(z) =0 then 0 = yq(z) < liminf, o xa,(z). If 2 € Q then wq(z) > 0 and p,(z) > 0
for n large enough, which means xgq, () = 1 and hence yq(z) < liminf, . xq,(z) = 1.

. . . . I2(B
This relation together with Hy gives xq, —(>) Xa- Another argument necessary for

Proposition 4.1 is the result of Lemma 2.5 where condition H; is replaced by M;. The
proof follows as in [10] or [2].

A “converse” question can also be raised, namely in which conditions the y-convergence
can be derived if the second Mosco condition is satisfied? The fact that the second Mosco
condition is satisfied can be seen through the frame of [1] and means that { contains each
weak y-limit point of the sequence {, },en. Let’s recall firstly a classical result.

Lemma 4.2. Let consider {p,}nen € Hy(B) and ¢, Hol) @. Then for any ¢ € H)(B)

. Ho(B) .
min{@y, ¢} = min{p,, )}

Proof. From the following relations

On + 0 — |n — 1P|

. and [pn — ¥| = (¢n — )" 4 (o0 — )~

min{‘?na 77b} =

H{(B
it suffices to prove ¥ g : oT.
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There exists some constant M > 0 such that Vn € NHS‘%HH(}(B) < M and from the classical

+ 2B 4 . + H(B) | . .
convergence @ — " T we obtain ¢ =" oT. To derive the strong convergence it

/ Vot |2de — / Vot 2da
B B

remains to obtain

or by a simple computation

/ Voo VinPda — / Nioso) | Vol ?da
B B

which is derived from the Lebesgue dominated convergence theorem. O

One can formulate the following

Proposition 4.3. Let Q be an open connected set, and {§, },en a sequential perturbation
in B such thal the second Mosco condition is satisfied. Then €, ~v-converges to Q0 if and
only tf limy 00 A1 (2n) = A1(2).

Proof. It is clear the if 2, v-converges to () we get the continuity of the first eigenvalue.
Let’s suppose the converse, namely lim, o A1(2,) = A (). Let consider 1,0, > 0 an
L* normed eigenvector corresponding to A;(£,). Then there exists some M > 0 such that
Vn e N HQOLQHHH&(B) < M and for a subsequence one can write

H;(B)

S‘ol,ﬂnk - SO

From the second Mosco condition My we get ¢ € Hj(£2) and

A (Q) < / Vo|*dz < liminf/ Vira, |*de =liminf A\ (Q,,) = A (Q)
B n—0o B Tk n—0o

H}(B
So we deduce ¢y g, (i> ) ¢ and since ¢ is unique (¢ > 0,;|p|zz = 1 and ©Q connected)

H} (B
we get p1.0, 0P @. Let’s prove now the first Mosco condition.

Consider an element 6 € D(?). Then supp § = K CC Q and there exists ¢ > 0 such that

1
@ >¢eft >0 and ¢ > e~ > 0. Then since ¢, g, o) ¢ we have

min{¢,, 07} H(AB) min{y, et} = "
min{e,, e} H(AB) min{p, e~} =0~

But min{p,, 0™}, min{e,, 0"} € Hj(Q,) and hence we found a sequence of u,, € Hj(,,)
which strongly converges to 6§, namely

1
u, = —[min{p,, et} — min{p,,cl7}]
&
Hence M, is also satisfied and the y-convergence holds. O

Remark that for this situation no convergence of the measures was necessary.
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5. Final Remarks

The continuity of the first eigenvalue of the Laplace-Dirichlet operator in the previous
context gives the continuity of the full spectrum of an elliptic operator in divergence form
with L coefficients. This assertion is a consequence of the convergence in the sense of

Mosco of the spaces H} ().
Let’s give some examples which underline the necessity of each hypothesis Hy, Hy, Hs.

Example 5.1. Suppose that we do not ask the convergence of the measure. In 2-D we
consider ©, = B(0,2) U B(4,1) \ {z1,...,z,} where z1,...,x, are the first n points of
rational coordinates of the ball B(4,1). Then Q,— B(0,2) in the semi-compact sense and
1.0, = 1.0 = ¢(B(0,2)) but the y-convergence does not take place.

Example 5.2. Suppose that we do not ask the connection for the limit domain. We
choose 0, = B(0,2)UB(4,1)\ {(21,0), ..., (,,0)} where z1, ..., z,, are the first n points of
rational coordinates of [3,5] x {0}. Then Q,—Q where Q = B(0,2)U B(4,1)\ {(z,0)|z €
[3,5] x {0}} in the semi compact sense and H, is satisfied. We have @10, = 10 =
©(B(0,2)), but there is no y-convergence.

Generally, hypothesis H; does not imply H,, only if some more assumptions are satisfied,
like for example a uniform density perimeter condition in relation with the Hausdorff
convergence (see [3]).

If one intends to replace the functional F(2) = A;(Q) by another functional, he can
give the following type of arguments. Let us suppose that F(-) is strictly decreasing on
inclusion and is v continuous (two domains are identified if the capacity of their symmetric
difference is equal to zero). If 1, converges in the semi compact sense to 2 then as in
Lemma 2.3 one get the upper semi-continuity of F(.). Following [5], [1] there exists a
quasi open set A such that
xa < ]iq{l’_l}(i)gleQn and F(A) < ligllgf F(,)

Moreover, one can see that ) satisfies the condition M; and A the condition M, of the
Mosco convergence, and © C A (up to a set of zero capacity). From the monotonicity
of F(-) we get F(A) < F(R2). If by hypothesis we ask F(2) = F(A) then the strictly
monotonicity gives A = € (up to a set of zero capacity), and from the Mosco convergence
that €, y-converges to A. The difficulty is to establish situations when F(A) = F(Q).
This happens for example if we fix ourselfs in the context of Theorem 3.3 with F'(Q2) =
A1(Q), the limit set © connected and m(Q,,) — m(Q).

Some of the previous results, namely those which are not connected to the maximum
principle, can also be reformulated under weaker hypotheses. For example Lemma 3.2
can be reformulated in a more general frame of elliptic operators, while the semi compact
convergence is replaced with a condition corresponding to the first condition M; of the
convergence in the sense of Mosco.

This result can also be extended on manifolds for operators of Laplace-Beltrami type.

If the eigenvalues are not counted with their multiplicities the result must receive another
interpretation. For fixed 2 let’s denote by

0<A()) < X)) <o < X (Q) < ..
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the eigenvalues of the Dirichlet Laplacian increasingly ordered, but without counting the
multiplicities. Then Theorem 3.3 can be reformulated in the following way:

Theorem 5.3. Suppose that Q, converges in the semi-compact sense to 0, such thal

m(Q,) = m(Q) and Q is supposed to be connected. If A\ () = M\ (Q) then for all k € N
Jor all neighborhoods Vi, ..., Vi, of A\1(R),..., A\e(Q) there exists ny large enough, such thal
forn >ny and 3 =1,.. k we have \;(Q,) € V.

Another possible extension of some results of the paper is to consider finely open sets
instead of open sets and to replace the Laplace operator by the p-Laplacian (for 1 <
p < oo). In this case, the stability of the first eigenvalue of the p-Laplacian gives the
Yp-convergence.
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