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1. Introduction

Because of many applications, the problem of the characterization of a isotone mapping
defined on a preordered linear space is the object of interest for many mathematicians.
Special attention in the literature is devoted to the isotonicity with respect to the ma-
jorization preordering and its generalizations (cf. [5, 10, 23, 24, 26, 28]).

A natural extension of the classical majorization concept is a group majorization, which is
a vector preordering induced by a compact group of linear operators. The idea comes from
Rado [25] and Mudholkar [19], while the development of the theory of a group majorization
is due, among others, to Eaton and Perlman [10], Eaton [6, 7, 8, 9], Giovagnoli and Wynn
[12], Giovagnoli and Romanazzi [11], Steerneman [29], and Miranda and Thompson [18].

An important class of the group majorization preorderings are group induced cone order-
ings (for short, GIC orderings) introduced by Eaton [7, 8], because many preorderings of
practical interest are in this class. A basic feature of a GIC ordering is that on some set it
is representable by a cone preordering. Thus some methods suitable for cone preorderings
can be used to the study of GIC orderings.

Our purpose in this paper is to characterize isotone functions. We shall mainly focus
on the isotonicity with respect to a GIC ordering. So, it is a good idea to employ a
result by Marshall, Walkup, and Wets [16] characterizing a isotone real function w.r.t. a
cone preordering (see Sec. 4) and an analogous result by Niezgoda and Otachel [22] for a
vector-valued function (see Sec. 6).
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Thus for a real function we obtain a differential condition for the isotonicity in the form of
some linear inequalities. In order to simplify the inequalities and to get so-called Schur-
Ostrowski type conditions, in Section 3 we establish a generator of the cone related to a
GIC ordering. This allows us to obtain a condition which implies results by Giovagnoli

and Wynn [12, p. 119], and Eaton and Perlman [10, Th. 5.2].

As an application, we give a characterization of the isotonicity of a quadratic form and a
linear form in the general case of a GIC ordering and we also present interpretations of
the S-O type conditions in concreate cases of GIC orderings.

In Section 5, considering our problem in a wider context of a group majorization, we show
that our S-O type condition is necessary and sufficient for a group majorization to be a
GIC ordering. In consequence, a finite reflection group is determined by the condition.

Lastly, in Section 6 we derive some results on the isotonicity of a vector-valued function.
In particular, we establish an equivalent condition on the matrix majorization — Loewner
ordering isotonicity, which extends directly the classical S-O condition. Moreover, we
generalize a result on the antiisotonicity of the Gibbsian states function.

2. Notation and preliminaries

Throughout the paper V is a finite-dimensional real linear space with inner product (-, ).

As usual, by ||z|| = <x,x>% we denote the norm of x € V. If ,y € V then x L y means
that =,y are orthogonal. The symbol I stand for the identity operator from V onto V.

For a set A C V by lin A we mean the smallest linear subspace of V' containing the set
A. The symbols int A and cl A stand, respectively, for the interior and the closure of A.
The relative interior of a set A is the set

riA={z€aff A: B(z,e)Naff AC A for some ¢ > 0},

where aff A denotes the smallest affine subset of V' containing the set A, and B(z,¢) is
the open ball in V' with the centre  and the radius . A set A is said to be relatively
open if 1A = A. It is known that if A is a nonempty convex subset of V' then ri A and
cl A are nonempty convex sets, and, in addition,

clriA=clA, riclA=1iA, and rirtA=r1iA

(see [27, Th.6.2-6.3]).

For a function ¥ defined on V' and a set A C V' the symbol ¥ |4 denotes the restriction of
¥ to A.

Recall that a nonempty set C' C V' is a convex cone if aC + C C C for all scalars
a,3 > 0. It is easy to check that ¢l is a closed convex cone whenever C' is a convex
cone. For aset T" C V the symbol cone T' denotes the convex cone of all nonnegative finite
linear combinations of vectors in T'. We shall call a subset T of a closed convex cone C'
a generator of C' if C' = clconeT. The symbol dual C' denotes the dual cone of a convex

cone (' C V defined by

dualC ={y € V:(z,y) >0,z € C}.
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Note that dual C is closed and
dual(dual C') = cl C.

A relation < on a nonempty set A C V is called a preordering if

(i) =z <z forall z € A,
(ii) 2 {y,y =< z implies z < z for all z,y,z € A.

The condition

y <z, x <y implies y=x forall z,ye A
is not required.

A cone preordering on a set A C V is a preordering < on A defined by
yaz iff r—yeC forall z,y € A, (2.1)

where C' C V is a convex cone. Then we also say that < is induced by C'. It is clear that
the cone preordering on A induced by (' is induced by the convex cone C'Nlin A, too.

Let O(V) denote the orthogonal group acting on V and let G be a compact subgroup
of O(V). Group majorization w.r.t. the group G, abbreviated as G-majorization, is the
preordering < on V' defined by

y =z iff ye Cx) forall z,yeV, (2.2)

where C'(z) is the convex hull of the set orb(z) = {gz : g € G}. It is easily seen that
G-majorization = is G-invariant in the sense that

y =z iff gy X gox forall z,y €V and ¢;,9, € G.

A function ¥ defined on V' is said to be group-invariant w.r.t. the group G (for short,
G-invariant) if

U(gz) = ¥(x) forall z €V and g€ G.

Basic properties of a group majorization are collected in the following theorem, which
employs the support functions

m(v,z) = sup (v,gz), v €V, (2.3)
9€G

of the sets C(z), z € V (cf. [27, Sec. 13]).

Theorem 2.1 ([7, 12]). Let < be the group majorization induced on V by a compact
group G C O(V'). Then for any x,y € V the following statements are equivalent:

(i) y==,
(il)  U(y) < U(z) for all G-invariant convex real functions U defined on V,
(ii1) m(v,y) < m(v,z) for allv e V.

It was noted in [10, Remarks 2.3 and 2.5] that minimal points w.r.t. G-majorization form
the linear subspace

Mg ={z€V:gx=u forall g€ G} (2.4)
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and
C(z)N Mg = {z}, (2.5)

where T is the unique minimal point in C'(z). On the other hand # = Pz, where P
denotes the orthoprojector from V onto Mg. In addition,

O(z) = O() + 7, (2.6)

where & = # — 2 = Qz and Q = [ — P is the orthoprojector from V onto Mg, the
last symbol means the orthocomplement of Mg to V. Thus, by (2.5) and (2.6), for any
zy €V

y <z iff y=2 and § < 1. (2.7)

Moreover, if p denotes the normed Haar measure on G then

iz/Ggwdu(g) (2.8)
(see [12, p. 113]).

3. Group induced cone orderings

The structure of a group majorization is particularly simple when this preordering is a
group induced cone ordering.

Definition 3.1. A group majorization w.r.t. a compact group G C O(V) is said to be a
group induced cone ordering (for short, a GIC ordering) if there exists a nonempty closed
convex cone D C V such that

(A1) orb(z) N D is not empty for each z € V,
(A2) m(z,y) = (z,y) for all z,y € D.

Note that in the above definition the same role as D plays gD for any g € (G. This follows
from G-invariance of the support function.

Condition (Al) says
V=D

9€G

that is, for each © € V there exists a g € G satisfying gz € D, while condition (A2) is
equivalent to the rearrangement type inequalities

(x,g9y) < (x,y) forall z,y € Dandg € G. (3.1)
The last means
|z —yl| < ||z —gy|| forall z,y € D andgé€ G. (3.2)

Both conditions (A1) and (A2) guarantee the existence and the uniqueness of the operator
(-)* : V — D with the property that for each € V the vector z* is the unique element
of the set orb(z) N D (see Lemma 3.3 below). This operator is a mazimal invariant for G
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(see [14, Chap. 6. Sec. 2.]). It is easy to see that z* = z for all z € D, which gives that
(+)* is idempotent, and
e =y < llz = yll, = yeV,

which implies the continuity of the operator.

One can deduce that a GIC ordering < restricted to its cone D is the cone preordering

on D induced by dual D:
y =z iff (t,z—y)>0 forall t T, (3.3)

where x,y € D and T'is a generator of D. To see this it is sufficient to employ Theorem 2.1
and (A2). Moreover, for any z,y € V connection (3.3) extends to

y 2z iff y* <" iff (t,2"—y*) >0 forall teT. (3.4)

In our considerations we shall use the following lemma.

Lemma 3.2. Assume that the conditions (A1) and (A2) are met for a compact group
G C O(V) and a closed convex cone D C V. If z is an arbitrary point in 1i D then the
set {(I —g)z : g € G} is a generalor of the convex cone dual D.

Proof. Fix z € ri D. By (3.1) it is clear that
clecone{(I —g)z: g € G} C dual D.

Now we shall prove

dual D C clcone{(I — g)z : g € G}.
To this end it is sufficient to show that

dual clcone{(/ —g)z: g € G} C D.

Let = € dualclcone{(I — g)z : ¢ € G}. Then (z,(I — g)z) > 0 for all g € G. By (Al)
there exist g € D and gy € G such that = gyzg. Thus we have (gozo, (I — go)z) > 0.
This and (3.1) imply

<$0,Z> 2 <90$0a2> 2 <90$0,902> = <$0,Z>-
Hence ((I — go)z0,2) = 0.

The last leads to (I — go)zo L x¢. In fact, since z € ri D, so there exists € > 0 such that
z+A(zg—2z) € D for all real numbers X satisfying |A| < e. In particular, Z:t%é‘(xo—z) € D.
But by (3.1) we get (I — go)zo € dual D, so we have

0<(z+ %6(3:0 —z),(I —go)ro) = :I:%€<$0, (I —go)zo) + (1 F %6)(2, (I — go)zo)

1
= Z|Z§€<-T0a ([ - .qo)$0>-

Hence ((I — go)zo, z0) = 0, as claimed.
Therefore we obtain
(900, z0) = ||zol|* = |lgowol| - [l

Thus, by Cauchy-Schwarz inequality, we get goxg = pxo for some real number p > 0.
Since ¢y is an isometry, so goxg = xo and hence x = zy € D. O
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The next lemma extends Lemma 4.3 of [10] and Lemma 4.1 of [29]. We cite it from [21].

Lemma 3.3. Let G be a compact subgroup of O(V) and let D C V be a nonemply sel
such that condition (A2) holds. Then DN gD = {x € D : gv = 2} and ri DN gD is the

empty set for all g € G such that gp # I|p. In particular, if gv € D for some x € i D
and g € G then gp = Iip. In addition, if gyx = gox for some x € vi D and g,,g, € G

then 91p = 92|p-

An important notion in the context of a GIC ordering is fundamental region. A set ' C V
is said to be a fundamental region for a group G C O(V) if

(i) F is open,

(ii) FNgF =0 for all g € G such that g # I,

(i) V = U,ea g(cl F).

For a finite group there always exists a convex fundamental region F (see [13, Chap. 3]).
Giovagnoli and Wynn [12] proved that cl F' is a closed convex cone under a suitable choice
of a fundamental region F. Furthermore, for a finite group G, by Theorem 4.1 in [29], F'

is unique up to transformations by G iff the group majorization induces by G is the GIC
ordering with the convex cone D = cl F.

The following theorem completes the above facts.

Theorem 3.4. Let G C O(V) be a compact group. If there exists a fundamental region
F for G then G is finite.

Proof. Suppose (G is an infinite group. Because (G is a compact group so there exists an
infinite sequence (g,, ) of elements of G such that g; # g; for ¢ # j, and (g,,) is convergent
to some element in G.

Because F' is open so that there exists an open ball B(z,¢) C F with the centre z # 0
and the radius ¢ > 0. Now, it can be shown that

lg = all = ell=™" for all 9.4 € G.g # . (3.5)

where
lg — gl = sup |[(g — g)z|]

llfl=1
is the norm of the operator g — g.

Suppose not. Then ||g — g|| < ¢||z||™" for some g,g € G, g # §. Therefore, by G C O(V),
one can write

Iz =97 gzl = llgz — gzl < llg — gl - ll=]| <.
Hence g7'gz € B(z,¢) C F', and consequently z € g7'gF. However, z € B(z,¢) C F, so
that z € FN g 'gF, where g7'g # I. The last fact contradicts (ii) of the definition of a
fundamental region completing the proof of (3.5).

Therefore in particular by (3.5)
lg: — g;ll > e|lz||”" >0 for all i # j.

But this is impossible by the convergence of the sequence (g,,). Thus GG must be a finite
group, as claimed. O
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In the sequel we shall call a set F' C V' a relatively open fundamental region for a group

GCOV)if

(i) F is relatively open,

(ii) FNngF =0 forall g € G such that gz # I},

(iii) V = U,eq g(cl F).

The motivation is the fact that when G induces a GIC ordering with suitable convex cone

D then the set F'=r11 D is a relatively open fundamental region for G in the sense of the
above definition (see Lemma 3.3).

We conclude this section with three classical examples to illustrate the notions considered
above. Another examples may be found in [1, 7, 8,9, 10, 12, 18].

Example 3.5. Take V to be R", the n-dimensional Fuclidean space of column vectors
with the usual inner product (z,y) = 27y, where (-)1 denotes the transpose. The classical
majorization is the preordering on R" defined as follows (see [15, p. 7]). For any vectors
x,y € R" one writes

n n k k
y = x iff ZyZ-:Z;ci and Zy[i]gz.r[i],k:l,Q,...,n—l, (3.6)
i=1 i=1 i=1 i=1

where 23] > 2[9) > ... > 2[y] are the entries of a vector z € R" in nonincreasing order.

It is well-known that this preordering is the group majorization induced via (2.2) by
G = P, being the permutation group acting on R". Elements of P, can be represented
as n-by-n orthogonal matrices whose each entry is 0 or 1.

Moreover, the preordering is a GIC ordering related to the closed convex cone
D={zeR" :2,>23>...2 2,}.

A fundamental region for P, is
F={azeR":az1>z,>...>x,}

In this example
¥ = (.TC[I], l‘[g], e ,:E[n])T.

A generator of D is the set
T={W @

where for k =1,... .n
t® =(1,...,1,0,...,0)"

is the vector whose the first £ entries are 1 and the remaining ones are 0, and, in addition,

t(”+1) _

()

Thus (3.6) is implied by (3.4).
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Example 3.6. Put V to be the linear space M,, of all n-by-n real matrices. The inner
product of z,y € M,, is the trace tr zy?. Let G be the group of linear operators of the
form

T = qiagy, v € My,

with g1, g2 running over all n-by-n orthogonal matrices. It may be found in [7, pp. 17-18]
that the group majorization < induced by this group is the GIC ordering under the cone

D={seM,: 211 >222>...2 24, >0, and z;; = 0,1 # j}.
A generator of D is the set T consisting of the diagonal matrices
t®) = diag(1,...,1,0,...,0", k=1,2,... ,n,

whose the first k& diagonal entries are 1 and the remaining ones are (0. Moreover, for any

eV
z* = diag s(x)

is the diagonal matrix with the n-vector s(z) of the singular values of = on the principal
diagonal. The dual cone of D is the set

k
dual D = {z e M,, : ZJ;“ >0, k=1,2,... ,n}.

=1

The set
F={$€Mn2$11>3322>...>£Unn>0, aHdCUUIO,Z#]}

is a relatively open fundamental region for infinite group G.

Thus (3.4) implies for any matrices z,y

k k
y <z iff Zsi(y)SZsi(;v), k=1,2,...,n. (3.7)
=1 =1

The above means that y < z iff so-called weak majorization relation holds between the
vectors s(y) and s(z) of the singular values of y and z, respectively.

Example 3.7. Following Eaton [9, p. 168] we present an example of a group which
does not induce a GIC ordering. Let V be R"™ with the usual inner product and let
G = P, U —P,, where as in Example 3.5 P, is the group of all n-by-n permutation
matrices. A fundamental region for G is

Fz{xER”::v1>x2>...>:cn,z:ci>0}.
i=1

Then (A1) is met for D = cl F, but (A2) fails.
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4. Differential characterization of G-isotonicity for real functions

Let U be a real function defined on a subset A of V. Suppose < is a preordering on V.
We call ¥ isotone on A with respect to < iff

y <z implies ¥(y) < U(z) for all z,y € A.

U is antitsotone on A whenever —V is isotone on this set.

If V' is provided with a group majorization structure induced by a compact group G' C
O(V) then G-isotonicity means isotonicity w.r.t. G-majorization.

It is understood that G-isotonicity implies G-invariance. Moreover, it is readily seen from
Theorem 2.1 that all G-invariant convex real functions defined on V' are G-isotone on V.
An another class of G-isotone functions is formed by all G-invariant functions ¥ such that
for any real number X the set

{z eV :¥(z) <A}
1s convex.

In addition, if G-majorization is a GIC ordering with a convex cone D as in Definition 3.1
then G-isotonicity on V' of a function W is equivalent to its G-invariance and G-isotonicity
on D of the function ¥ p.

For the case of the classical majorization, i.e. when G is the permutation group P,, acting
on V = R", we have the following differential characterization of G-isotone real functions
(also called in this case Schur convex functions).

Theorem 4.1 ([28, 23]). Assume that V is symmetric real function having a differential

on R™. Then a necessary and sufficient condition that W be a Schur convex function on

R™ 1s

(: - ;) (2_\1,“ - g—wU) >0 forall 2 € R" and 1<ij<n.  (41)

Many authors cite the above Schur-Ostrowski’s condition in the form

ov S ov ov

— — > ... >
0xq )= axg(x) - ~ Oz,

(z) for all © € R" such that =1 >z, > ... > z,. (4.2)

Much general result is due to Eaton and Perlman [10]. It concerns reflection groups. Recall
that a closed group G C O(V') is a reflection group if GG is the closure of a subgroup of
O(V') generated by some set of reflections S, in the form

Spx =x —2r,x)r, z €V,

where r € V, ||r|| = 1.

Theorem 4.2 ([10]). Let G be a reflection group acting on R". Assume that ¥ is a
G-invariant real function possesing a differential on R™. Then a necessary and sufficient
condition that ¥ be G-isotone on R™ is

(roz) - (r,VU(z)) >0 forall € R" and r such that S, € G. (4.3)
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An important example of a reflection group is the permutation group P,. So Theorem
4.1 is a corollary from Theorem 4.2, because in the case of this group each vector r
has the form r = %(em — ¢l9)) with some 1 < 4,7 < n, where ¢(®) denotes the kth

coordinate vector in R" (see [10, p. 841]). For another examples of reflection groups and
interpretation of (4.3) for these groups see also [8].

In [8] Eaton posed the question if the condition
(I —g)z,VU(z)) >0 forall g€ G and z €V, (4.4)

being in the same line as (4.1) and (4.3), implies G-isotonicity on V' of a G-invariant
differentiable function ¥ : V' — R in the general case of a G-majorization. It is known
that (4.4) is necessary for the G-isotonicity (see [10, Prop. 2.2]).

The sufficiency of this condition for the case of a GIC ordering was noted in [12, p. 120] in
the context of their Theorem 2. However, it seems that their remark regards finite groups
only, because for infinite ones the assumptions of that theorem are not valid (see our Th.

3.4 in Sec. 3).

For the completeness, in this section we present a theorem like the mentioned remark in
[12] for GIC orderings with arbitrary (finite or infinite) groups as well as some examples
and applications. Furthermore, we discuss the problem of reduction of the assumptions.
On account of forthcoming applications in Section 5, we prefer a two-variable version of

(4.4).

As we already saw in Section 3, a GIC ordering on appropriate convex cone D is generated
by the cone dual D. So, we need a tool to explore isotonicity w.r.t. a cone preordering.
The following theorem is very useful to our aim.

Theorem 4.3 ([16]). Let ® be a real function defined on an open convexr subset A of a
finite-dimensional inner product space W. Suppose < is a preordering on A induced by a
closed convex cone C C W and T is a generator of the cone. If the gradient V®(x) exists
at each point x in A then ® is isotone on A with respect to < iff 0 < (t,VO(z)) for all
r€AandteT.

The essence of the assertion of the above theorem is the fact that for each z € A the
gradient V®(z) belongs to dual C.

Now we are ready to give a characterization of the isotonicity for GIC orderings. Remind
that a G-isotone function must be G-invariant. Therefore we restrict ourselves to G-
invariant functions. For such a function W the existence of the gradient on V' is equivalent
to the existence of the gradient on a subset D C V satisfying V' = UgEGgD. Moreover,
the formula

VU (gz) = gVU(x)
holds for all x € D and g € G.

Theorem 4.4. Let G be a compact subgroup of the orthogonal group O(V). Assume <
is the group majorization induced by G via (2.2) which satisfies conditions (A1) and (A2)
with some closed convexr cone D C V. Suppose VU is a G-invariant real function defined

on V with gradient VU(z) at each point x in D. Then U is G-isolone on V iff
(I —9)z,VU(z)) >0 for allg € G and z,z € ri D. (4.5)
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Proof. If G is finite, i.e. if int D # § (see Th. 4.1 in [29] and our Th. 3.4), then the
theorem is a consequence of Theorem 4.3 and Lemma 3.2. In the general case, i.e. when
(7 1s finite or infinite, some improvements are needed as follows.

Necessity. Suppose U is G-isotone. First we shall show the inequality
t=<z+MI—g)z forall g€ G, z,z€ D and A >0, (4.6)
Namely, for any v € D by (A2) and (3.1) we get
m(v,z) = (v,z) < (v,2) + (v, A(I — g)z) < m(v,z+ M1 — g)z).
Now, by (A1) and the G-invariance of the function m(-,u) (with a fixed u) we obtain
m(v,z) <m(v,z+ A1 — g)z)
for all v € V, which together with Theorem 2.1 yields (4.6).

Now, by (4.6) we have
W(e) < U(o+ AT g)2)

forall g € G, z,2 € D and A > 0. Thus the right-hand directional derivative of ¥ at the
point z and in the direction (I — ¢)z, in symbol

is nonnegative. Therefore
(1 = 6)2, V(@) = Vo B(2) 2 0

for all g € G and z,z € D, which implies (4.5).

Sufficiency. Suppose ((I — g)z, VU¥(z)) > 0 for all g € G and z,z € riD. Hence, by
Lemma 3.2 and the property
dual(dual D) = D,

we have V\Il(:v) € D for all z € ri D. Denote W =1lin D and
C =dualy D ={we W: (w,v) >0 for all ve D}.

Consider the function ® = W ;p. It is clear that there exists gradient of ® on vi D. In
general, V®(z) = KVU(z), where K is orthoprojector from V onto W. But VU(z) € D,
z€riD,so VO(z) = VU(z). In consequence, VO(z) € D, and therefore (¢, V®(z)) >0
for all ¢ € C' and = € ri D. Observe that 2 € r1 D being an element of W belongs to the
interior of D treated as a subset of W. So, an application of Theorem 4.3 with T'= (' and
A =11 D gives the isotonicity of ® on ri D with respect to the cone preordering induced
by dualy D = dual D N W. This means that W is isotone on ri D with respect to the cone
preordering induced by dual D. Therefore, by (3.3), ¥ is G-isotone on ri D.

However, the latter implies the G-isotonicity of ¥ on D. In fact, for any z,y € D such
that y < x there exist sequences z,,y, € ri D satisfying =, — =, y, — y under n — oo,
and additionally y, =< x,. Namely, it is sufficient to put

1 1
xn:x—{——(uo—x) and yn:y—{——(uo—y),
n n
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where ug is a fixed point in ri D (see [27, Th. 6.1]). So

U(yn) < W(zn).

Now, the gradient assumption for ¥ leads to
U(a+ Ab) — ¥(a) under A — 0
for any a,b € V. Thus
U(z,) = U(z) and ¥(y,) = ¥Y(y) under n — oo.

Finally, we have U(y) < ¥(z), as claimed. Thus ¥ is G-isotone on D.

In addition, because the function ¥ is G-invariant, so it must be G-isotone on V. O

Observe, by the above proof, that the last theorem remains valid if we put D instead of

ri D in (4.5).

Corollary 4.5 ([12]). Let G and ¥ be as in Theorem 4.4. Then U is G-isotone on V' iff
(I —g)z,VU(z)) >0 forallg € Gandz V. (4.7)

Proof. The sufficiency of (4.7) for the G-isotonicity follows easily from Theorem 4.4 and

Lemma 3.2.

Necessity. In a similar way as in the necessity part of the proof of Theorem 4.4 one can
show that

(I —g)z,VU(2)) >0 forany g € G,z € D.
This and the fact G C O(V) lead to

(G(T—g)z,gV¥(x)) >0
for all g,g € G, x € D. Hence

(I = ggg")ga, gV ¥(x)) >0

with any ¢, g € G, € D. Next, the formula gVV¥(z) = VU(gz) and the arbitrariness of
g € G give
(I = g)gz, V¥(gz)) = 0

for all g,g € G and x € D. This and condition (Al) guarantee (4.7). O

Example 4.6. In this example we apply Theorem 4.4 to obtain a sufficient and necessary
condition on the isotonicity w.r.t. a GIC ordering of a quadratic form.

Let G C O(V) be any compact group. Consider a quadratic form ¥(z) = (z, Lz), z € V,
where L = LT is a symmetric linear operator from V into V.

Note that ¥ is G-invariant ifl L is commutative with each member of G.

If L is non-negative definite on V', i.e. (x,Lz) > 0 for all z € V| then the function

1 . . o
x — (z,Lz)z, x € V, is a seminorm on V/, so it is convex on V.
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In consequence, by Theorem 2.1, when the operator commutates with the group and it is
non-negative definite on V' then the form is G-isotone on V.

The converse does not hold, i.e. there are G-isotone on V' quadratic forms which are
not non-negative definite on V. For instance, suppose for a moment that V = R? and

G ={I,g}, where
_( —-10
=00 1)

Then y < 2 means |y;| < |z1] and y, = z,. Put

=(10).

That L commutates with GG is evident. Also it is easy to see that
V() = (x, Lz) = 2% — x5

and ¥ is G-isotone on V. However, as we see, U is not non-negative definite on the space

V.

Return to the general situation considered in this example. Assume additionally that
G induces a group majorization which is a GIC ordering with some closed convex cone
D C V. Now we characterize G-isotonicity of quadratic forms as follows.

The quadratic form
U(z) = (z,Lz), z €V,

is G-isotone on V iff L is commutative with G and L is non-negative definite on the space
Mg ie. (z,Lz) > 0 for all x € MZ, where MZ is the orthocomplement of the space
Mg={veV:gv=v,g€ G} to V.

For the proof, first suppose G-isotonicity of ¥ on V. The G-invariance of U implies the
commutativity of I with G, which gives Lz € Mg for all € M. Indeed,

gL = Lgx = Lz

for all z € Mg and g € G. Moreover, Lz € M# for all z € MZ, because for any y € Mg
we obtain

(Lx,y) = (z, Ly) = 0,
the last follows from the fact that Ly € Mg. In other words, both spaces Mg and M&

are L-invariant subspaces of V.

By Theorem 4.4, the G-isotonicity of U yields
(I~ 9)2. V() > 0

for all ¢ € G and =,z € ri D. But V¥(z) = 2Lz, so on account of Lemma 3.2 we get
Lx € D for all x € ri D. Next, by the continuity of L, we obtain Lx € D for all x € D.
Recall that Lz € M& for x € MZ. Therefore Lz € DN Mz whenever x € DN MZ. Now
applying (3.1) we have

(z,Lz) > (z,g9Lx)
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for any x € DN M2 and g € G. Hence, if 1 denotes the normed Haar measure on G,
then

[ty dule) > [ (oot duto),

G
and further

(x, Lz) > (z, /Gng du(g))-

For x € DN MZ the vector fG gLz du(g) belongs to M&, because Lz € Mz and MZ
is a G-invariant space. On the other hand, properties of the Haar measure imply that
fG gLz du(g) is a common fix point for each member of G, i.e.

/gLJ; du(g) € Mg.
G

In consequence,
| gL dutg) € Mo Mg = (0}
G

for any « € D N Mg&. Therefore (x,Lz) > 0 for any « € DN MZ. Now, via (Al), G-
invariance of Mz, and the commutativity of L with G, we get (x, Lz) > 0 for all z € MZ,
as claimed.

Now suppose L commutates with G and it is non-negative definite on MZ. It remains to
prove that the form U(z) = (z, Lz), z € V, is G-isotone on V.

First, consider the function = — <x,Lx>% for + € MZ. Tt is a seminorm on Mg, so
it is convex. In addition, because of the commutativity of I with &, this seminorm is
G-invariant. All of this gives G-isotonicity of the seminorm on M#. Hence U is G-isotone
on M.
Now we shall show that U is G-isotone on whole space V. Fix any =,y € V such that
y =< x. Write

r=2+7 and y =y + v,
where 7,57 € Mg and &, € MZ are defined as in Section 2. Then, by (2.7), § < & and
y = 7. Since L commutates with G, the spaces Mg and MZ are L-invariant. Then a
direct calculation shows

(x,Lz) = (z,Lz) + (2, L)
and similarly

(y. Ly) = (g, Lg) + (9, Lg).
Therefore

(v, Ly) < (@, Lz) ift (g, Lg) < (2, L%).

So that, by the G-isotonicity of W on Mg, we have (y, Ly) < (z, Lz), which completes

proof of the characterization of G-isotone quadratic forms presented in this example.

Note by virtue of the property dual(dual D) = D and Lemma 3.2, that condition (4.5)
means

VU(z) € D for any z €riD.

Such interpretation is useful when it is apriori known an analytical description of D in a
concreate case of a GIC ordering.
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Example 4.7. Miranda and Thompson [18] have considered the following group ma-
jorization. Let V be the linear space M, of all n-by-n real matrices with the inner
product (z,y) = trzy?, the trace of the matrix zy?, where z,y € M,,. Put G to be the
group of all linear operators

My, 3>z — gehT € M,

g and h running over the special orthogonal group SO,,, that is, the group of all orthogonal
n-by-n real matrices with determinant 1.

These authors have proved that the group majorization induced on V' by G is a GIC
ordering related to the convex cone

D={zeM,:z11>...2 Tp1n_1 > |Tunl|, 2;; =0 fori # j}.

Therefore in this example condition (4.5) on G-isotonicity of a G-invariant function W :

M, — R has the form

v () > . > OV (z) > 0V () and 09 () =0, 1 #j, forall z€riD,
85311 axn—ln—l ax'rm al'”
(4.8)
where

nD={zeM,:x11>...> Tpo1n-1 > |Tpnl|, ©ij =0 for ¢ # j}
(cf. (4.2)).

Now let us discuss some variations of Theorem 4.4. Tt follows from Theorem 4.3 and
Lemma 3.2 that Theorem 4.4 remains valid when the two following modifications are
done. First, we assume the existence of the gradient of ¥|p on ri D together with the
continuity of Wp at least on D \ ri D instead of the existence of the gradient of ¥ on D.

Secondly, in (4.5) we replace VU(x) by VU|p(z). This is in accordance with the approach
of Marshall, Walkup and Wets [16].

Example 4.8. Suppose a compact group G C O(V) induces a GIC ordering with some
closed convex cone D. Consider the class of the functions

U, (z) = (a,z"), z€V,

where a € D. We shall prove that these are the only G-isotone on V and positively linear
on D real continuous functions whose restrictions to D have gradients on ri D (as elements
of the space lin D). Recall that a function U : V' — R is positively linear on D if

W(aw + fy) = aW(x) + fU(y) forall 2.y € D and a,f >0,

In fact, by (3.4) it is understood that each ¥, is G-isotone on V. The continuity of ¥,
is a consequence of the continuity of the operator x +— z*. The positive linearity on D is
obvious. Evidently, ¥, p(z) = (a,z) for x € D, and hence V¥, p(z) = a for z € ri D.

On the other hand, consider a real continuous function ¥ which is G-isotone on V', positive
linear on D, and has gradient on ri D. Let ® = W . The formula

Oz —y) =0(z) — O(y) forall z,ye D
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extends ® from D to the subspace lin D = D — D. Tt is not hard to verify that ® is a
linear functional on lin D. So ®(z) = (a,z), z € lin D, for some a € lin D, and further,
VU \p(x) = VO(z) = a, x € ri D. Applying Theorem 4.4 and the remark made before
this example, we see that the G-isotonicity of U yields

(I =g)z,a) = ((I = g)z, V®(x)) 2 0
for all g € G and z,z € ri D. Therefore, by Lemma 3.2, we have a € dual(dual D) = D.
Since ® = U|p, so W(x) = (a,z), 2 € D. In addition, for any = € V we have U(z) = ¥(z*)

because of the G-invariance of U. Combining the last two facts we get U(z) = (a, 2*) for
any z € V, as claimed.

This is a consequence of Theorem 4.3 that a further reduction of the gradient existence
assumption in Theorem 4.4 is possible. Namely, we may only assume the existence of the
gradient on a dense subset A C D which has the form A = U§=1 A; with some disjoint
open (in lin D) and convex sets A; C D, and, in addition, the continuity of the function
U at least on the set D\ A. Then in (4.5) we may replace the relation z € ri D by = € A.

Example 4.9. The group majorization considered in this example is closely related to
that in Example 4.7.

Namely, take V = R™ with the usual inner product and
G={g9g=pc:p€PpcelC,,det c=1},

where P, is the permutation group and C, is the coordinate sign changes group. Recall
that members of P, are n-by-n orthogonal matrices whose each entry is 0 or 1, while
members of C, are n-by-n diagonal matrices whose diagonal entries are +1. It can be
proved that then ¢ induces a GIC ordering with

D={x€R":21>...2 2,1 > |zal|}.

Now we search conditions on a real continuous function @ defined on R™ so that the
function

is G-isotone when 1 possesses gradient and is symmetric (P,-invariant).

Put A = A; U A;, where
Ay ={z€riD:x, >0}

and

Ay={z€riD:x, <0}
Then

U(z) =(x) for v € Ay
and

U(z) = (&) for = € A,,
where & = (z1,...,2,-1,—2,). Therefore on A; it holds that

ov oy .
axz(r) = axi(l‘), 1=1,...,n,




M. Niezgoda / On Schur-Ostrowski type theorems for group majorizations 97

while on Ay, we have
gz(:v) = g;i(;i), 1=1,...,n—1,

and . -
oz, () = - oz, (2)-

By the considerations before this example, a necessary and sufficient condition for ¥ to
be G-isotone is

VU(z)e D forall z € A.

This is equivalent to

0 9
_¢(x1,... Tty |Tn]) > > Y

a.fl - 8:vn_1

o
(21,0 Ty |20]) > ‘—(:vl,... o1, |Th])

Oy,

for all © € R™ such that 1 > ... > z,_; > |z,| > 0 [cf. 4.2].

For instance, from the above criterion it is not hard to verify that the Laplace density
function

1 n
B(z) = goep(~ Y fei)
=1
is antiisotone for the group majorization presented in this example.

In principle we are often interested in a minimal generator of a convex cone. Therefore it
is natural to ask whether in (4.5) the set G may be replaced by a smaller one, say Gy C G,
such that the set {(I —g)z : g € Gy} is a generator of dual D for any z € ri D. Obviously,
for a fixed z € ri D we may exclude from G elements ¢ satisfying gz = 2, and put

Go={g9€G:gz#z}.

For a GIC ordering it can be proved that for any z,y € ri D and g € GG holds

gr=x iff gy=y

(see Lemma 3.3). Therefore we may take
Go={9€G:gpimp # linn}

If D has nonempty interior, that is, if ¢ is finite (see our Th. 3.4 and Th. 4.1 in [29]),
then the last means

GOZ{QEGIQ%[}.

However, in the general case of a GIC ordering none further reduction of the set G is
possible. Though, in some particular cases this is possible (see Example 4.10 below).

Let us discuss the same problem in the context of condition (4.7). Now the requirements
for Gy are the following. First, the set

{(I—g)z:g9€ Go}
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must be a generator of dual D under an arbitrary fixed z € ri D, and next, the property
gGog™ =Gy forall g e G

should hold. Then in a similar way as in the proof of Corollary 4.5 one can point out that

in (4.7) GG may be replaced by Gi.

Example 4.10. As an application of the above discussion we shall show how Corol-
lary 4.5 implies Theorem 4.2.

Consider any finite reflection group G C O(V'). Let
Go={S5,:5, € G},
where S, is the reflection across the hyperplane orthogonal to r € V., ||r|| = 1, i.e.
Spx =x — 2z, r)r, v €V,

It is easy to check that for arbitrary g € G we obtain ¢S,¢7' = S,,. Therefore gGog™ C
(Gy. On the other hand Gy C gGog~! because for any S, € Gy we have S, = gSg—l,ng_l
with Sy-1, = ¢71'S,g € G. Thus gGog™"' = Gy for any g € G.

It is well-known that G, being finite reflection group, induces a GIC ordering with some
convex cone D such that the cone dual D is generated by the set {(I — S5,)z : S, € Gy},
where z is an arbitrary point in ri D (cf. [10, Lemma 4.1] and (3.3)-(3.5)).

Therefore, on account of the considerations before this example and the equality
1
(r.2) - (r, V(&) = S((T = 5,)2, VO (2)

one can see that G-isotonicity of ¥ on V' is equivalent to the condition
(roz) - (r,V¥(z)) >0 forall S, € G and z € V.

Thus Theorem 4.2 may be treated as a consequence of Corollary 4.5 (when the group is
finite).

It is interesting in this example that a further reduction to so-called fundamental reflec-
tions is possible (see [10, p. 840]).

5. A characterization of GIC orderings via S-O type condition

In light of Theorem 4.4 one may ask whether or not Schur-Ostrowski type condition (4.5)
is valid for a wider class of preorderings than GIC orderings. We shall show that the
answer is negative. In other words, property (4.5) marks out GIC orderings among all
group majorizations defined on a fixed linear space.

Remind that if conditions (A1) and (A2) hold for a convex cone D then, by Lemma 3.3,
the set F' =ri D is a relatively open fundamental region for G. Therefore in Theorem 5.1
we study (4.5) under this kind of assumptions on F.

Theorem 5.1. Suppose (G is a compact subgroup of O(V). Let FF C V be a relatively
open fundamental region for G such that D = cl F' is a convex cone. Then the following
statements are equivalent:
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(i)  conditions (A1) and (A2) hold for D,

(i1)  condition (4.5) holds for all G-isotone real functions ¥ defined on V with gradient
VU(z) at each point x in D,

(iii) condition (4.5) holds for the function ¥(z) = ||z|* = € V.

Proof. (i) = (ii). This implication follows directly from Theorem 4.4.
(i1) = (iii). The function
V() =|lz]*, z €V,
is G-isotone. To see this, note that function z — ||z|| is convex and G-invariant on V.

According to Theorem 2.1 this function is G-isotone, and consequently ¥ is G-isotone.
Moreover, ¥ has gradient VU(z) = 2z for any € V. Now, it is obvious that (ii) implies

(iii).
(iii) = (i). Because for U(z) = ||z||*, x € V, we have VU(z) = 2z, so by (iii) and (4.5)
we obtain

0 < (1 — 9o, TU()) = (T — )2, 20)
for all g € G, 2,z € ri D = F, which together with D = ¢l F' and the continuity of the
inner product implies (A2).

Condition (A1) for D = cl F' follows from the fact that F' is a relatively open fundamental
region for G. O

Remark that in Theorem 5.1 condition (4.5) cannot be replaced by (4.4) because the latter
is a necessary condition on the isotonicity for the general case of a group majorization,
and obviously there exist group majorizations which are not GIC orderings.

In Theorem 5.1 the same role as the square of the norm function plays any function of
the form

V() =y(|=]*), =€V,

where 1 is a real function defined on the real interval [0, c0) having the derivative which
is positive.

To show this, observe that the function ¥ is G-isotone, because it is the composition of

the square of the norm function which is G-isotone, and the increasing function . On
the other hand
V() = 26/(Jell®) -, v €V,

Therefore, by Theorem 4.4 we obtain
0 <A((I = 9)z, V() = 2¢'([|z]1*) - {((I - g)z,z)
for all g € G and z,z € 1i D = F, which implies
0<((I—9g)z )
for g € G and 2,z € 1i D = F, as required.

For instance, such a function on V = R" is

n

1
U(z) = —(V2m0)™" exp(—§J_2 z7), v € R",

=1
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minus of the normal distribution density with the mean zero and the variance-covariance
matrix o?].

One of the most important results in the theory of group majorizations is so-called Con-
volution Theorem which has a number of applications in probability and statistics (see
[6, 9]). It was proved for finite reflection groups by Eaton and Perlman in [10]. Recently
Suren Fernando showed that this theorem holds only for these groups (see [4, p. 123]).
Therefore as a corollary from Theorem 5.1 we can get a criterion on the reflexivity for a
finite group in terms of S-O type condition (4.5). Recall that for a finite group G C O(V')
there exists a fundamenatal region F' C V such that D = cl F' is a convex cone.

Corollary 5.2. Suppose G C O(V) is a finite group with a fundamental region F such
that the set D = cl F is a convex cone. Then G is a reflection group iff condition (4.5)
holds for all G-isotone real functions ¥ defined on V' with gradient VU¥(z) at each point
zin D.

Proof. As we already mentioned (see Ex. 4.10), Eaton and Perlman showed that the
reflexivity of a group G implies that the group majorization induced by G is a GIC
ordering. It is a result of Steerneman [29, Th. 4.1] that for a finite group the converse
holds. Namely, if the conditions (A1) and (A2) are met then ¢ must be a reflection group.
Now it suffices to apply Theorem 5.1. O

It is worth noting in the context of the reflexivity of a group that sometimes it is convenient
to study (4.5) for some simpler function than ¥(z) = ||z|*.

Example 5.3. Let V be the linear space 7, of all n-by-n upper triangular matrices with
the usual inner product (z,y) = tr zy’. Consider the group G consisting of all linear
operators

To 3z — gz € Tn,

where g runs over the group C, of all n-by-n diagonal matrices with entries equal to 1 or
—1 on the principal diagonal.

To see that GG is not a reflection group when n > 2 we apply Corollary 5.2. One can easily
check that
F=A{zeT,:2;>0,1<i<n}

is a fundamental region for G and
D=cdF={zeT,:2;>0,1<i<n}

is a closed convex cone.

Now consider function
2
U(z) = Z;v]j.
=1

This is a G-isotone function, because it is the square of a certain convex G-invariant
function. To our aim it is sufficient to verify that S-O type condition (4.5) does not hold
for U. The gradient of the function ¥ is the matrix

ov
VU(z) = (axij(']c))]g,m |
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where

ov

alﬂlj

(z) =221, 721

and
ov
(%cz-j

Therefore with ¢ = —I we have

(z)=0, i>1,7>1.

n

(1= 9)z,VU(2)) =4 a1z

7=1
Next, let z, z € F' be such matrices that
1 n n . n 1 -1 -1 —1
01 0 . 0 0 1 0 0
xr=1|10 0 1 . 0 and z=1] 0 1 0
0 0 0 1 0 0 0 1

Then
(I —=9)z,VU(z))=4(1—-(n—1)n) <0

when n > 2. This completes the proof that in this example GG is not a reflection group.

6. An extension to vector-valued functions

Some results presented in Section 4 can be extented to vector-valued functions.

Namely, let V] and V5 be finite-dimensional real inner product spaces. The inner products
on both the spaces will be denoted by the same symbol (-, -). Suppose V; is equipped with
a GIC ordering <; induced by a compact subgroup G of the orthogonal group O(V;). Let
D C V) be a closed convex cone D C V] related to < as in Definition 3.1. Assume that
V5 is provided with a cone preordering <5 induced by a closed convex cone C' C V.

Our goal in this section is to characterize G-C-isotone vector-valued functions ¥ : V; —
V4, i.e. functions such that

y =1 x implies ¥(y) <, U(z) forall z,y € Vi,

and to characterize C-G-antiisotone (on convex sets A C V3) vector-valued functions
¢ : V3, — Vi, 1.e. functions satisfying

y <2 x implies ®(z) <5 ®(y) for all z,y € A.

Theorem 4.3 being a main source of results in Section 4 must be now replaced by its
vector version.

Theorem 6.1 ([22]). Let ¥ be a continuous function defined on a convex set Ay C V;
with values in a set Ay C V. Suppose <1 is a preordering on Ay induced by a convex cone
Cy C Vi, and <y, is a preordering on A, induced by a closed convex cone Cy C V. If the
directional derivative V,U(x) at the point x and in the direction t exists for all x € 11 A4
and t € Cy N lin Ay then the following conditions are equivalent:
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(i)  y =y z implies U(y) <o U(x) for all z,y € Ay,
(i1) 0 <yt implies 0 <o V,W(z) for all x € 11 Ay and t € lin Ay,

Employing the above theorem one can prove the next two corollaries. (We will not repeat
the assumptions stated at the beginning of this section).

Corollary 6.2. Let ¥ : V. — V, be a continuous G-invariant function such that the
Gateaur derivative V'(z) exists for all x € riD. Then ¥ is G-C-isotone on V; iff 0 <,
U (z)t for all z €riD and t € T, where T is a generator of the cone dual D Nlin D.

Example 6.3. Put V] to be S, the space of all n-by-n real symmetric matrices with the
trace inner product. Consider the group G of all linear operators of the form

S, 31— grgl €8,,
where ¢ runs over the orthogonal group O, acting on R".

Take V; to be also &, and C' to be the Loewner cone L, of all non-negative definite
matrices in S,,.

It is well-known that (' induces on Vj a GIC ordering with the convex cone
DZ{IL'EDn11’1121'222---21'nn},

where by D, is denoted the space of all n-by-n real diagonal matrices (see [7, p. 17]).
Then lin D is the space D,,, while

duval DNlin D = {z € D, : Zx]-j:(), ijjz(), i=1,2,...,n—1}.

7=1 7=1
A generator of dual D Nlin D is the set
T = {t(i) = e =1, n— 1},

where e, k= 1,...  n, is n-by-n diagonal matrix whose kth diagonal entry is 1 and the
remaining ones are 0.

Therefore a necessary and sufficient condition for a continuous G-invariant function
Uy oo Uy,
U =
Vo . U,
defined on V; = §,, with values in V, = §,, to be G-C-isotone on V] is

ov ov ov .
Do () =2 92m (x) =a ... 72 p. (z) forall z €riD, (6.1)
where
8\1’]](.’13) 8qj1ﬂ(.73)
o Oz U gy
0%k ! :\I}I(x)e(k): . ) , 1sk<n
OV, () IWUnn(z)
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Thus we obtain an analogon of Schur-Ostrowski condition (4.2) for matrix-valued func-
tions. Condition (6.1) means that the matrix (0U/0z;41:41)(z) is not greater than
(0¥ /0z;;)(x) in the Loewner ordering sense i.e. that the matrix

ov ov

—(z) = — 1<:1<n—-1
Oxii 0% iv1i41 - ’

(),

is non-negative definite for each n-by-n diagonal matrix « such that 11 > z92 > ... > Tps.

Corollary 6.4. Let ® be a continuous function defined on a convexr set A C V, with
values in D C Vy. Suppose that the Gateaux derivative ®'(x) there exists for all x € 11 A.
Then ® is C-G-antiisotone on A iff (u,®'(z)t) <0 forallz €riA, t €T and u € U,

where T' is a generator of the cone C'Nlin A and U is a generator of the cone D.

Proof. It is sufficient to employ Th. 6.1 for the function —® which has values in the set
—D with the cone preordering induced by dual D. O
Example 6.5. In [1, Th. 1-16] we can found the following theorem.

If 2,y € R” and

T > Tirty Yi 2 Yir1, and x; — w1 >y —yipq forall e=1,...,n—1
then
o(z) = oly),
where < is the classical majorization on R™ and
T
g(a)z( nexpal L nexpa,n ) CaeR
Y iy €XP ay Y ey €XD Ay

is the Gibbsian states function.

This theorem gives reasons to establish a necessary and sufficient condition for a contin-
uous function ® : D — D to be D-P,-antiisotone, where

D={zse R :xy>ay>...22,}

induces the cone preordering <5 on the domain of ®, and the permutation group P,
induces the classical majorization preordering <; on the range of the function.

We shall apply Corollary 6.4. Take Vi = V5 = R™ with the usual inner product. Next put
G ="P,, A= D, and (' = D. Then a continuous function

&= (Dy,...,0,)"
is D-P,-antiisotone on D iff
D @' ()t <0, 1<i,j<n+1, z€riD,

where t9) € R" k = 1,2,...,n, is the vector whose the first k entries are 1 and the
remaining ones are 0, and t"t") = —{"), Because
dr e [oF 2%
() =
9One)  8Da(e)

dzy e Az,
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so the condition on D-P,-antiisotonicity of ® takes the form

ZZ a‘Lq S i,j=1,2,....n, x€riD,

p=1 ¢=1

with the equality when i = n or j = n, whereriD ={z € R" : 2y > 23 > ... > x,}.

The equality is equivalent to the condition that

00 (x .
Z 8$k =0 and Z 9z, :, k=1,2,...,n, x €nbD.

In other words, the condition means that if we take any left upper submatrix of ®'(z)
then the sum of all its entries is nonpositive and the sum of all entries in each column

and row of ®'(z) is 0.
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