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Our starting point is the Mosco-convergence result due to Hess ([18]) for integrable multivalued super-
martingales whose values may be unbounded, but are majorized by a w-ball-compact-valued function. Tt
is shown that the convergence takes place also in the slice topology. In the case when both the underlying
space X and its dual X* have the Radon-Nikodym property a weaker compactness assumption guarantees
convergence of the multivalued supermartingales in the slice topology. This result implies convergence
in the Mosco topology and gives an analogue of Hess’ result in the case when X and X* have the RNP.

Finally the results are restated in terms of normal integrands.

1. Introduction

There is a substantial number of results concerning convergence of random sets. These
results are interesting not only for probabilists. They can be also applied in stochastic
optimization or mathematical economics. Relaxing the assumption of boundedness of
random sets leads to new applications of convergence results. These results can be applied
for example to normal integrands. In that case one considers the epigraphs of normal
integrands, which are obviously unbounded. This has been done for example in [18], [20],

[21], [10] and [12].

Recently Beer [4] introduced the so called slice topology which coincides with the Mosco
topology in reflexive spaces but is strictly stronger in general Banach spaces. One of
the most important features of the slice topology is the fact that when the dual of the
underlying Banach space is separable, Effros measurable multifunctions are measurable
with respect to the Borel o-algebra on the power set of that space equipped with the slice
topology. Hess [21] proved the SLLN for unbounded random sets in the slice topology.
Ezzaki [17] studied convergence of conditional expectations in that setting.

Here we consider a sequence of multivalued integrable supermartingales (F,,) whose values
are supposed to be closed convex subsets of a separable Banach space. The sequence is
supposed to fulfill some compactness condition. In the case when nothing is assumed
about X* the sequence is supposed to be majorized by a w-ball-compact set valued func-
tion. In that case the result follows easily from the theorem 5.12 of [18] (see lemma 5.1
here). Namely in that case the Mosco topology and the slice topology coincide. Many
convergence results for sequences majorized by a w-ball-compact-valued functions (see [2],

[25]) have analogues in the following setting. If X and X* have both the Radon-Nikodym
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property (thus X* is separable) we require that the integrals of F), over any element A of
the underlying o-algebra are contained in a w-ball-compact set dependent on the set A.
The techniques used in the proof are inspired by the proof of the already mentioned Hess’
result ([18]) and the proof of theorem 2.5 in [2]. Somewhat stronger condition, namely
domination of the integrals by a w-compact set, appeared in [6], [7] and [8] where bounded
multivalued functions were considered. However, when mutivalued functions whose values
may be unbounded are considered, this condition is not suitable.

As an application we restate our results in terms of supermartingale integrands i.e. normal
integrands whose epigraphs are multivalued (unbounded) supermartingales.

2. Preliminaries

Let (©, A, P) be a complete probability space, (A,) an increasing sequence of sub-o-
algebras of A such that A = o(|J, A,). Let X be a separable Banach space with the
norm || - ||. X* will denote the dual of X and (-,-) the usual duality. The strong and
weak topologies on X will be denoted by s and w respectively. Let P(X) be the family
of all closed subsets of X, P.(X) closed convex, Py(X) closed convex bounded. Pyie(X)
will be used for the family of w-compact convex subsets of X. Also subfamilies of those
families will be considered. Given a set Y C X the restriction of P.(X) to Y will be
denoted P.(Y). A non empty closed convex subset of X will be called w-ball-compact if
its intersection with any closed ball is w-compact. Denote the family of w-ball-compact
sets by R, (X). For any set Y C X let clcoY denote a closed convex hull of Y.

The support function and the radius of the set C' in P will be defined in the following
way:

s(z”, C) i= sup(z, "), [|C] := sup [z|.
rzeC rzeC

Topology of convergence of support functions will be denoted Tgeajar- A sequence (C))
Tscalar-converges to some set C if s(z*,C,) — s(z*,C) for all z* € X*. The distance
Junctional is a mapping d: X x P(X) — Rsuch that

d(z,C):=inf{]|z — ¢||: c € C}.

The topology determined by the convergence of distance functionals is called the Wijsman
topology. Tt will be denoted by Tyijsman. Tt the strong lower limil (denoted by s-1i )
of a sequence (K,) be the set of all + € X such that z = s-limz,, where z,, € K,, and
the weak upper limit (denoted by w-lIs ) be the set of all # € X such that z = w-limzy,
where z; € K,,. A sequence (K,) € P(X) converges in the sense of Mosco to K € P(X)
(notation: K = Tyjegco- im K,) if

K=s5l K, =wls K,.

This holds if and only if w-1s K,, C K C s-li K,.

Let B(zo,r) denote an open ball with the center at zy and radius r. The slice topology
on P(X) is the initial topology Tgjice determined by the family of gap functionals

{D(C,-): C is a nonempty slice of a ball}
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where D(B,C) := inf{||b—¢||: b € B,c € C} and a slice of a ball is an intersection of
B(zo,r) N {z: (z,2*) < a} (provided it is not empty). The slice topology is generally
stronger than the Mosco topology (and the Wijsman topology). It coincides with the
Mosco topology if and only if X is reflexive ([4]). The slice topology restricted to P.(X)

is generated by the subfamily {D(B,-): B € P4(X)}.

A multifunction is any mapping F': @ — 2%X. A multifunction F is said to be (Effros)
measurable if the preimage F'~U = {w € Q: F(w) N U # 0} lies in A for any s-open set
U C X. Only measurable multivalued functions with closed values will be considered and
the adjective will be often omitted. Measurable multivalued functions are often called
random sets.

Given any topology on 2% it is an interesting question when Effros measurability coincides
with the measurability with respect to the Borel o-algebra generated by that topology.
The Wijsman topology fulfills this condition if X is a separable metric space (Hess’ the-
orem, [5, theorem 6.5.14]. The topology generated by the Hausdorfl distance works if
multifunctions with compact values are considered, or, more generally, when multifunc-
tions have values in a py-separable subspace of P(X)! ([1, theorem 3.4]). Finally, as was
mentioned in the introduction, the slice topology guarantees the equivalence in a general
case provided that X™* is separable. Another important fact is that, when X is reflexive,
then the slice topology restricted to P(X) reduces to the topology generated by the Mosco
convergence.

L will denote the family of real valued, integrable functions. Given a sub-o-algebra B of
A let L% (B) denote the family of X-valued Bochner integrable B-measurable functions.
We will write L% instead of Lk (A). Let E%:(X) denote the space of all closed valued

random sets F such that ||F'|| € £k. Those functions will be called integrably bounded.
,C%kac(X) will denote the subspace of Pyi.(X)-valued random sets in ,C%J(X). We will say

that F' is integrable if d(0, F'(-)) € Lg. A multifunction is integrable if and only if it
admits at least one Bochner integrable selection. A set H in ,C%)(X) is bounded if the set

{||F|| : F € H} is bounded in L. Recall that a set E C L is uniformly integrable
(shortly UI) if limy s sup ep f[|f|>t] |f|dP = 0.

Let LL(B) := {f € LX(B) : f(w) € F(w) a.e.} be the set of integrable B-measurable
selections of F. In particular £} := L(A). The integral of P(X)-valued function is

defined as [, FdP := {[, fdP : f € L.}. For A € A, [, FdP is the integral of F'|4. In
general this set might be empty. Theorem 3.6(ii) of [24] yields that for F' € E%’wkc(X) the

set fA FdP is non empty and belongs to Py:(X).
If Fis a P(X)-valued function with £}. # (} then (by theorem 5.1 of [23]) there exists an
almost surely unique B-measurable P(X)-valued function EPF satisfying

pop(B)=c{E°f: [ €Ly}

where the closure is taken in LY. EPF will be called the conditional expectation of F
with respect to the o-algebra B.

A sequence of random sets (F},) is called a martingale, (vesp. supermartingale, submartin-

gale) if for all m < n, FAF = F, (resp. EAF, C F,, EA"F, D F.).

T would like to thank Ch. Hess for pointing this out to me.
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3. Results

Combining the result on the Mosco convergence of P.(X)-valued supermartingales ([18,
theorem 5.12]) and suitable properties of the slice topology the following result, which is
essentially due to Hess, can be obtained.

Theorem 3.1. Let (F,, A,) be a P.(X)-valued supermartingale. Suppose thal

(i)  sup, £d(0, F,) < oo,
(ii)  for alln € Nand almost all w € ) the sets F,(w) are majorized by a w-ball-compact
set R dependent on w.

Then there exists an integrable random set F., with values in R, such that F., =
Taice-lim F, a.e. Moreover if (F,) is bounded in ‘C%kac(X) then F., is integrably bounded.

If (d(0, F,)) is uniformly integrable then EA*F., C F, a.e. for all n € N.

If the space X is reflexive then X € R, so condition (ii) is trivially satisfied (take
R := X). At the same time, in reflexive spaces convergence in the slice topology and
Mosco convergence are equivalent. Convergence of multivalued martingales in the Mosco
topology in reflexive spaces has been investigated in [10, theorem 2.3].

Recall that X has the RNP with respect to (92, A, P) if any P-absolutely continuous
measure () with bounded variation has a density f € £} with respect to P, that is
Q(A)= [, fdP for all A € A.

Let us make some observations. The strong law of large numbers in [21] is proved in two
cases. In one case the sequence is majorized by a fixed w-ball-compact set. In the second
case the space X* is supposed to be strongly separable. Also many convergence results
(see [2] or [25]) that hold for sequences majorized by w-ball-compact-valued functions
have analogues in the case when both the space X and its dual X* have both the RNP
(thus also X* is separable, see [15, Stegall’s theorem p.195]). In that case a different
compactness assumption of a more global nature is required. This leads to formulation
of the following analogues of theorem 5.12 of [18] (see proposition 5.1 in this paper) and
theorem 3.1.

Theorem 3.2. Suppose X and X* have both the RNP (thus X* is separable). Lel
(Fn, Ay) be a P.(X)-valued supermartingale, such that

(i)  sup, Ed(0, F,) < oo,
(i1)  for all A € A the sels clco |, [, FudP are w-ball-compact.

Then there exists an inlegrable random sel F., with values in R, such that F,, =
Taice-lim,, F,, a.e. Moreover, if (F),) is bounded in E%J wo(X) then F, is integrably bounded.

If (d(0, F,)) is uniformly integrable then EA“F.,, C F, a.s.

Obviously also Foo = Tyosco- limy, Fi, a.e. This provides an analogue of theorem 5.12 of
[18] (see proposition 5.1 in the present paper). To prove theorem 3.2 we will prove the
convergence in the Mosco topology first (proposition 5.5) and extend this result to the
slice topology case.

Of course when the space X is reflexive then condition (ii) is trivially satisfied. Mosco
convergence of P(X)-valued martingales in reflexive spaces has been investigated in
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[12, theorem 2.14]. However an extra assumption on the set of martingale selections
MS(F,) :={(fn) : fo = E* foy1, fn € LE (A,) for all n € N} was needed there. Namely
it was required that there exists an (f,) € MS( w) such that sup, .|| f2]] € L. Theorem
4.4 of [18] yields that this condition is satisfied under condition (i) of theorem 3.2. In [10,
theorem 2.3] this extra assumption has been removed.

As example 2.9 in [2] shows, condition (ii) in theorem 3.2 or proposition 5.5 does not
imply (ii) in theorem 3.1.

4. Application. Convergence of supermartingale integrands

As was mentioned in the introduction convergence results for unbounded random sets
provide a convenient tool for investigating convergence of normal integrands. In this
section theorem 3.1 and theorem 3.2 will be restated in terms of integrands. Let us first
recall (see [18] and [21]) some basic definitions and facts.

Given a function u: X — Rits epigraph is defined in the following way
epi u:={(z,a) € X x R:u(z) <a}

w is proper if it is not the constant 400 and does not attain value —oc. Given functions
Un,u : X = R n € Nwe say that the sequence (u,) Tyjice-converges to a function u if
epi U, Talice-converges in X x R to epi u. A function p: Q x X — Ris called a normal
integrand if

(i) ¢(w,-) is Ls.c. for almost all w € Q,
(ii) the multifunction w — epi p(w,-) is measurable.

The multifunction that appears in condition (ii) is called the epigraphical multifunction
of ¢. Sometimes the term random lower semicontinuous function is used for a normal
integrand. The above definition of a normal integrand is due to Rockafellar ([27]). Some
authors (see [16]) define a normal integrand differently. Instead of conditions (ii) it is
assumed that ¢(-,-) is A ® B(X)-measurable. However, if (X, A, P) is complete both
notions coincide ([9, VIL.1]). We say that a normal integrand ¢ is integrable if its epigraph
is an integrable multifunction i.e. w + d(0,epi ¢(w,-)) is integrable. The last function
will be denoted simply d(¢p).

The conditional expectation of a normal integrand is also defined via its epigraph. Namely,
the conditional expectalion of a normal integrand ¢ with respect to the o-algebra B is
the normal integrand v, whose epigraphical multifunction is the conditional expectation
of w — epi p(w, ) ([9, ch. VIII, §9]). When B = {(), 2} the integrand v can be expressed
as v = cln, where cl denotes the l.s.c. regularization operation and where 7 is given by
the continuous infimum convolution

i) = int{ [ e feNipe) 1 e £, [ fape) = o}, rex

(see formula (4.7) in [21]).

A sequence (p,) of convex normal integrands is a martingale (submartingale, super-
martingale) integrand if the sequence of its epigraphical multifunctions is a martingale
(submartingale, supermartingale). The results of the previous section can be restated in
terms of normal integrands in the following way.
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Theorem 4.1. Let X be a separable Banach space and (¢,) a supermartingale integrand
such that sup, Fd(e,) < oo and one of the following conditions holds:

(i) for almost all w € Q there exists a w-ball-compact sel R(w) such that epi @, (w,-) C
R(w) x R,

(i1) in the case when both X and X* have the RNP and for any A € A there exisls a
w-ball-compact set Ry such that |, fA epi pn(w, )dP(w) C R4 x R.

Then there exists an integrable convex normal integrand p.. such that for almost all w € ),

@m(wa ) - ﬁliceﬁlice'hm Son(wa )

. . TMogco .
Remark 4.2. Obviously, we have also that epi , -2 ° epi ., almost surely. In case
(i) this is exactly theorem 6.3 of [18]. Case (ii) is an analogue of that theorem when
X and X* both have the RNP. In reflexive spaces both conditions are trivially satisfied.
Convergence results for martingale integrands in the Mosco tolopology in this setting have
been given in [10, theorem 3.1].

Remark 4.3. It follows from the proofs of theorems 3.1 and 3.2 that theorem 4.1 still
holds if instead of each of the compactness assumptions (i) and (ii) imposed on epi ¢,
conditions (i’) and (ii’) are used respectively. Namely, suppose that there exists a random
l.s.c. minorant ¥ of ¢, such that

(i) for any a,3 € Rand for almost all w € Q the set {z € X: ||z]| < o, ¥(w, z) < B} is
w-compact,

(ii’) in the case when both X and X* have the RNP for any A € A and any o, 8 € Rthe
set {z € X:||z| < a,inf{fA¢(w,f(w))dP(w) cfelk, [, f(w)dP(w) = x} < G}

is w-compact.

5. Proofs

Before the proof of our results some additional results will be needed. As was mentioned
before, the starting point is the following proposition.

Proposition 5.1 (Theorem 5.12, [18]). Let (F,) be a P(X)-valued supermartingale
satisfying the following conditions:

() sup, Bd(0, F,) < oo,
(ii)  for almost all w € Q, clco |J,_, Fn(w) is a subset of some w-ball-compact set de-
pendent on w.

Then there exists an integrable random set F,, with values in R, such that
Foo(w) = TMosco-lim F, (w) for almost all w € ).

Moreover if (F,) is bounded in E%’wkc(X) then Fi, is integrably bounded. If (F),) is uniformly
integrable then EAF,, C F, a.s. If (d(0, F,)) is UI then E*"F,, C F,.

The following lemmas characterize the slice topology:

Lemma 5.2 (Theorem 5.3, [3]). Let X be a normed linear space. Then the slice topol-
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ogy on P.(X) has as a subbase all sels of the form

Vi={AeP(X): ANV £0}, V is s-open,
(B)*t ={A e P(X): D(B,A) >0}, Be Pu(X).

Lemma 5.3 (Proposition 3.3, [21]). Let X be a Banach space and Ry a given member
of Ruw(X). Define the subset R,(Ro) of Po(X) by Ryu(Ro) := {C € P(X): C C Ry}
Then the restriction of Taice Lo Ry(Ro) has the following properties:

(i) il is generated by the families

Fi:={V7:V is s-open in X} and
Fy:={(K)": K € Pyr(Ro)}

where Wt .= {C € 2. C C W} and Pyre(Ro) := {K € Pure(X): K C Ry},
(i1) il s the weak topology generated by the gap functionals D(-, K') where K € Pyyi.(Ro).

Note that this means that in R,,(Ry) the slice topology coincides with the Mosco topology.
This fact provides the following:

Proof of Theorem 3.1. By proposition 5.1 there exists an integrable random set Fl,

-
with values in R,, such that F), Mogco Fy as. If (F,) is bounded in L, Lo () then F.,

is integrably bounded. If (d(0, F},)) is UI then FAF_ C F, as. for all n € N Recall
(the definition after corollary 5.5 in [3]) that the Mosco topology is generated by the
families {V=: V is s-open in X} and {(K°)*: K € Pu.(X)}. Invoking lemma 5.3 the

result follows. O

Let us recall the multivalued Radon-Nikodym theorem for multimeasures which plays a
crucial role in the proof of theorem 3.2 (or, more precisely, in the proof of proposition 5.5,
which is a weaker version of theorem 3.2).

Lemma 5.4 ([13, Théoréme 3], [14, Théoréme 8, p.I11.31]). Suppose that X and
X* both have the Radon-Nikodym property. Let M be a weak multimeasure of bounded
variation with values in Pyr.(X). If M is P-absolutely continuous, there exists a mulli-
function T € Ly (X)), (a version of) the Radon-Nikodym derivative of M with respect
to P, such that

M(A) = /A TdP for all A € A.

Before the proof of the main theorem let us state a weaker result. It concerns the Mosco
convergence of the P.(X)-valued supermartingales and is an analogue of the proposition
5.1 in the case when both the space X and its dual X* have the RNP.

Proposition 5.5. Suppose X and X* both have the RNP (thus X* is separable). Lel
(Fn, Ay) be a Po(X)-valued supermartingale such that

() sup, B0, Fufw)) < oo,

(ii)  for all A € A the sets clco |, [, FadP are w-ball-compact.
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Then there exists an integrable random set F., with values in R, such that F,, =
Taosco-limy, Fy, a.e. Moreover, if sup,E||F,|| < oo then F. is inlegrably bounded. If
(d(0, F,)) is uniformly integrable then EAF,, C F, a.s.

Recall the following result which will be used in the proof of proposition 5.5.

Lemma 5.6 (Lemma 5.11, [18]). Let (C,) be a sequence in 2% and (ry) an increasing
sequence of positive real numbers such that limyry = +o0o. Assume that for every k € N
that sequence (C, N B(0,71})), has a Mosco limit C*. If we set C := Uken C* then
C' = Trosco-limy, Cyy. (In particular C is closed).

Proof of proposition 5.5. Observe (see lemma4.3 of [18]) that for any o-algebra B C A
and all z € X we have

EPd(z, F) > d(x, E°F).
Since (F),) is a supermartingale

vf(w) == d(0, F(w)) + k, w € Q

n

defines a positive submartingale for any & € N By Krickeberg’s decomposition there exist
a positive integrable martingale (r®) and a positive integrable supermartingale (s%) such
that v* = rf — 5%, Define the following supermartingale

FFw) == F,(w) N B(0,7F(w)), we Q.
Let D* denote the countable, dense subset of X*. Notice that E|F*|| < Erf < oo, thus
by proposition TV-1-2 of [26] there exist ¢* € L} and for any z* € D*, ¢*, € L} such
that

s(z*, Ff(w)) — F(w) for ae. w € Qand all k € N, (5.1)
rf(w) = ¢F(w) for ae. w € Q, all k € N

Fix k € N Notice that (rf) is a martingale, thus Erf = E¢* for any n € N Notice
that for any A € A w-ball-compactness of the set clco |, fA F, implies that the set
cleo |, fA FF* is w-compact. Indeed,

clcogAFfzclcoy/A(Fnﬂg(O,ri)) cClcoLJ(AanAF(o,rﬁ))
C clcoU</Aan§(o,/Arj;)> cClcoU<Aan§(o,Er5)>

n n

= clcoU</Aan§(o,c)> :clcoU/AanF(o,c).

n

Since (F¥) are a.e. bounded (s(-, F¥(w))) is equicontinuous on X*. Hence (5.1) holds for
any z* € X*. Define a sublinear function ¢%: X* - R

Cilz™) = /A%’Z*dP-
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For all z* € X,
(") < sl BY) (5.3

where RY = clco U, J4 F¥. This set is w-compact, therefore % is Mackey continuous
on X* and is also w*-l.s.c. Theorem II.16 of [9] implies that there exists a nonempty

closed convex set M¥(A) C X such that ¢5(-) = s(-, M*(A)). Obviously s(z*, M*(A)) =
S,k < E* thus
|MF(A)|| = sup s(z*, M*(A)) < Ey* < oc.

llz*{[x<1

By (5.3) M*(A) C R%, thus is w-compact. Now following the proof of theorem 2.5
in [2] it can be showed that the function ME: A — Puke(X) is additive, absolutely
continuous with respect to P, has bounded variation and s(z*, M*(-)) is o-additive for
all z* € X*. Therefore the multivalued Radon-Nikodym theorem (lemma 5.4) can be
applied. It implies the existence of a multivalued function FX : Q — P, such that

Mk(A) = / F:O for all A € A.
A

This multifunction is determined up to a null set. By the properties of support functions

and multivalued integrals s(z*, fA FE) = fA s(z*, F¥) for all A € A. Thus

-
prosalar pk o o (5.4)

Recall that for all z € X

d(z, F¥(w)) = sup{(z, z*) — s(z*, FF(w)): 2* € D*,||z*||. < 1}.
For all z € X, (d(x, F¥)), is a submartingale. Applying lemma V-2-9 of [26] we conclude
that for all z in a countable dense subset of X

d(z, FFw)) = d(z, FE (w)) for a.a. w € Q. (5.5)
Since distance functionals are Lipschitz with the constant 1, (5.5) holds for any = € X.
This and (5.4) imply that F¥ (w) = Tyiosco- lim FF(w) for allw € Q. Let Ny be a negligible
set such that this convergence takes place for all w € N{. Let N :=]J, Ni. Define
Uien Flo(w), w € N7,
Foo(w) :=
{0}, w € N.

Since F%(w) are w-compact for all w € N, F.,(w) are w-ball-compact for any w € Q.

Lemma 5.6 yields Fio(w) = Tyosco- limy, F(w) for all w € N°.
If (F,) is bounded in ,C;kac(X) then
/ | Fsoll = / sup s(z™, Fy) = / sup sup s(z*, F)

llz*{]«<1 llz*[[x<1 &

= / sup suplims(x*,F:)g/liminf sup sups(z*, F¥)

et & 7 ol K

< liminf/ sup sups(:c*,Ff)gliminf/ sup s(z*, F),)

" llz*[[+ <1 K " llz*{[x <1

= liminf/HFnH < oo.
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If (d(0, F,)) is Ul then by proposition 5.1 and theorem 2.1 of [22]

EAF = E*((JFL) = (U EA"FfO> cd|JFf=F.
k k

k

O

Before the proof of the main result let us formulate an analogue of lemma 5.6 for the case
when convergence in the slice topology is considered.

Lemma 5.7. Let (C,) be a sequence in P.(X) and (1) an increasing sequence of posilive
real numbers such that limyry, = 4oo. Assume thal for every k € N that sequence
(Cn, N B(0,71))s has a limit C* in the slice topology. If we set C' := Uken C* then
C' = Tatice-lim,, C,. (In particular C' is closed).

Proof. Denote C, N B(0,r;) by CE. By the assumptions C* = T~ lim, C* also C* =
TMosco- limy, CF. Lemma 5.6 yields that C,, Mosco-converges to C', thus C' = s-li C),. Let
(y;) be a countable dense subset of C'. Obviously y; € s-li C,, for all i € N. Thus for any
ze X andi e N d(z,y;) > limsup, d(z,C,). Taking the infimum over all integers i we
obtain

limsupd(z,C,) < d(z,C) for all z € X, (5.6)

n

Recalling that the slice topology has as a subbase the sets V= (where V' is norm open) and
(B°)** (where B is closed, bounded and convex) we have by (5.6) that if the intersection
of €' and V' is not empty then for sufficiently large n the intersection €, NV is also
non-empty.
Now it has to be shown that for any B € P4(X) if D(B,C) > 0 then for sufficiently large
n also D(B,C,) > 0. Choose k so large that C' N B(0,7*) # @ and B C %W(O,rk). Now
choose z* € X* and 3 € R such that
sup(z, ™) < B < inf (z,2"). (5.7)
zeC reB
The left inequality implies that s(z*,C'N B(0,7%)) < 8. Since C¥ converges to C* in the

slice topology, theorem 5.4 of [3] (or theorem 2.4.8 of [5]) implies that C* is also a scalar
limit of (CF). Take a positive e < 3 — s(z*,C N B(O,r*)). For sufficiently large n € N

s(z*,CF) < s(2*,C%) + e < s(2*, B0,7*) N C) + ¢ < 3.

Thus SUPxeog<$7$*> < f3 for sufficiently large n € IN. Recalling the right inequality in

(5.7) we conclude that C,, N B(0,7*) and B can be strongly separated. Thus D(B,C*) > 0
by closedness of B and C*. Since B C %B(O,rk) we have D(B,C,) > 0. O

Now we are in a position to prove our main result.

Proof of theorem 3.2. This proof is a modification of the proof of proposition 5.5. As
in the proof of that proposition, for any & € Ndefine a submartingale

Uk(w) =d(0, F,(w)) + k.

n
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It can be represented as a difference of a positive integrable martingale and a positive
integrable supermartingale: vf(w) = rf(w) — sk(w). For any k € N define a supermartin-

gale
F¥ .= F,n B(0,rF).

Proceeding as in the proof of proposition 5.5 one obtains the existence of a negligible set
N C Q and multifunctions FX such that for all £ € N

-

Fiw) % Jar FE (W), for w € N°, (5.8)
Taxres

FFw) Wijgnan FE (W), for w € N°.

Define F,(w) = |, F& (w) for all w € N® and F,,(w) = {0} on N. Since X* is separable

T
lemmas 3.5 and 3.11 of [21] yield that FF(w) lice F* (w) for w € N°. Now the result
follows by lemma 5.7.

It has been shown in the proof of proposition 5.5 that if sup, F||F,|| < co then Fy, is
integrably bounded and if (d(0, F},)) is UI then FEAF., CF,. O

In view of the following lemma proof of theorem 4.1 is straightforward.

Lemma 5.8 (Lemma 6.2, [18]). Lel (¢,) be an adapted sequence of convex normal in-
tegrands. Then the following conditions are equivalent:

(i) sup, Ed(gn) < oo,
(i1)  there exists an integrable adapted sequence u, with sup, fQ On(w, up(w))TdP < oo.
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