JIPAM logo: Home Link
 
Home Editors Submissions Reviews Volumes RGMIA About Us
 

   
  Volume 3, Issue 5, Article 74
 
A Hölder-type Inequality for Positive Functionals on $f$-Algebras

    Authors: Karim Boulabiar,  
    Keywords: Hölder inequality, Positive linear functional, $f$-algebra, Uniformly complete $f$-algebra.  
    Date Received: 04/02/02  
    Date Accepted: 31/09/02  
    Subject Codes:

06F25,47B65

 
    Editors: Sever S. Dragomir,  
 
    Abstract:

The main purpose of this paper is to establish with a constructive proof the following Hölder-type inequality: let $ A$ be a uniformly complete $ Phi $-algebra, $ T$ be a positive linear functional, and $ p,q$ be rational numbers such that $ p^{-1}+q^{-1}=1$. Then the inequality

$displaystyle Tleft( leftvert fgrightvert right) leqleft( Tlef ( left... ...right) ^{1/p}left( Tleft( leftvert grightvert ^{q}right) right) ^{1/q}$    
holds for all $ f,gin A.$

         
       
  Download Screen PDF
  Download Print PDF
  Send this article to a friend
  Print this page
 

      search [advanced search] copyright 2003 terms and conditions login