JIPAM

Hermitian Operators and Convex Functions  
 
  Authors: Jean-Christophe Bourin,  
  Keywords: Hermitian operators, eigenvalues, operator inequalities, Jensen's inequality.  
  Date Received: 06/04/05  
  Date Accepted: 10/11/05  
  Subject Codes:

47A30 47A63.

 
  Editors: Frank Hansen,  
 
  Abstract:

We establish several convexity results for Hermitian matrices. For instance: Let $ A$, $ B$ be Hermitian and let $ f$ be a convex function. If $ X$ and $ Y$ stand for $ f({A+B}/2)$ and $ {f(A)+f(B)}/2$ respectively, then there exist unitaries $ U$, $ V$ such that

$displaystyle Xle frac{UYU^* + VYV^*}{2}.$    
Consequently, $ lambda_{2j-1}(X) le lambda_j(Y)$, where $ lambda_j(cdot)$ are the eigenvalues arranged in decreasing order.;



This article was printed from JIPAM
http://jipam.vu.edu.au

The URL for this article is:
http://jipam.vu.edu.au/article.php?sid=615