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ABSTRACT. In the article, some integral inequalities are presented by analytic approach and
mathematical induction. An open problem is proposed.
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1. SEVERAL I NTEGRAL I NEQUALITIES

In this article, we establish some integral inequalities by analytic method and induction.
Proposition 1.1. Letf(x) be differentiable on(a, b) andf(a) = 0. If 0 6 f ′(x) 6 1, then

(1.1)
∫ b

a

[
f(x)

]3
dx 6

(∫ b

a

f(x) dx

)2

.

If f ′(x) > 1, then inequality(1.1) reverses. The equality in(1.1) holds only iff(x) ≡ 0 or
f(x) = x− a.

Proof. Fora 6 t 6 b, set

F (t) =

(∫ t

a

f(x) dx

)2

−
∫ t

a

[
f(x)

]3
dx.

Simple computation yields

F ′(t) =

{
2

∫ t

a

f(x) dx−
[
f(t)

]2
}

f(t) , G(t)f(t),

G′(t) = 2
[
1− f ′(t)

]
f(t).

Sincef ′(t) > 0 andf(a) = 0, thusf(t) is increasing andf(t) > 0.
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(1) When0 6 f ′(t) 6 1, we haveG′(t) > 0, G(t) increases andG(t) > 0 because of
G(a) = 0, henceF ′(t) = G(t)f(t) > 0, F (t) is increasing. SinceF (a) = 0, we have
F (t) > 0, andF (b) > 0. Therefore, the inequality (1.1) holds.

(2) Whenf ′(t) > 1, we haveG′(t) 6 0, G(t) decreases,G(t) 6 0, F ′(t) 6 0, andF (t) is
decreasing, thenF (t) 6 0, the inequality (1.1) reverses.

(3) Since the equality in (1.1) holds only iff ′(t) = 1 orf(t) = 0, substitution off(t) = t+c
into (1.1) and standard argument leads toc = −a.

The proof is completed. �

Corollary 1.2 ([3, p. 624]). Let f(x) be a continuous function on the closed interval[0, 1] and
f(0) = 0, its derivative of the first order is bounded by0 6 f ′(x) 6 1 for x ∈ (0, 1). Then

(1.2)
∫ 1

0

[
f(x)

]3
dx 6

(∫ 1

0

f(x) dx

)2

.

Equality in(1.2)holds if and only iff(x) = 0 or f(x) = x.

Proposition 1.3.Supposef(x) has continuous derivative of then-th order on the interval[a, b],
f (i)(a) > 0 andf (n)(x) > n!, where0 6 i 6 n− 1, then

(1.3)
∫ b

a

[
f(x)

]n+2
dx >

(∫ b

a

f(x) dx

)n+1

.

Proof. Let

(1.4) H(t) =

∫ t

a

[
f(x)

]n+2
dx−

[∫ t

a

f(x) dx

]n+1

, t ∈ [a, b].

Direct calculation produces

H ′(t) =

{[
f(x)

]n+1 − (n + 1)

[∫ t

a

f(x) dx

]n}
f(t) , h1(t)f(t),

h′1(t) =(n + 1)

{[
f(x)

]n−1
f ′(t)− n

[∫ t

a

f(x) dx

]n−1}
f(t) , (n + 1)h2(t)f(t),

h′2(t) =

{[
f(x)

]n−2
f ′′(t) + (n− 1)

[
f(t)

]n−3[
f ′(t)

]2

− n(n− 1)

[∫ t

a

f(x) dx

]n−2}
f(t) , h3(t)f(t).

By induction, we obtain

(1.5) h′i(t) =

{
f (i)(t)

[
f(t)

]n−i
+ pi(t)−

n!

(n− i)!

[∫ t

a

f(x) dx

]n−i}
f(t) , hi+1(t)f(t),

where2 6 i 6 n and

p2(t) = (n− 1)
[
f(t)

]n−3[
f ′(t)

]2
,

pi+1(t)f(t) = p′i(t) + (n− i)f (i)(t)
[
f(t)

]n−i−1
f ′(t).

(1.6)

Fromf (n)(t) > n! andf (i)(a) > 0 for 0 6 i 6 n − 1, it follows thatf (i)(t) > 0 and are
increasing for0 6 i 6 n− 1.
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Using mathematical induction, it is easy to see that

pi(t) =
∑

j0+
i−1∑
k=1

k·jk=n−1

C(j0, j1, . . . , ji−1)
i−1∏
k=0

[
f (k)(t)

]jk ,

wherejk andC(j0, j1, . . . , ji−1) are nonnegative integers,0 6 k 6 i− 1.
Therefore, we obtainp′k(t) > 0 andpk+1(t) > 0, thenp′k−1(t) andpk(t) are increasing for

2 6 k 6 n. Straightforward computation yields

hn+1(t) = f (n)(t) + pn(t)− n!.

Consideringf (n)(t) > n!, we gethn+1(t) > 0, andh′n(t) > 0, thenhn(t) increases.
By our definitions ofhi(t), we have, for1 6 i 6 n− 1,

hi+1(a) = f (i)(a)
[
f(a)

]n−i
+ pi(a) > 0.

Therefore, using induction oni, we obtainh′i(t) > 0, hi(t) > 0, andhi(t) are increasing for
1 6 i 6 n. ThenH ′(t) > 0 and increases, andH(t) > 0. The inequality (1.3) follows from
H(b) > 0. Thus, Proposition 1.3 is proved. �

Corollary 1.4. Let f(x) ben-times differentiable on[a, b], f (i)(a) > 0 andf (n)(x) > n! for
0 6 i 6 n − 1. Then the functionsH(t), hj(t) andpk(t) defined by the formulae(1.4), (1.5)
and (1.6)are increasing and convex, where1 6 j 6 n− 1 and2 6 k 6 n− 2.
Remark 1.5. The inequality (1.3) is not found in [1, 2, 4, 5]. So maybe it is a new inequality.

Lastly, we propose the following open problem:
Theorem 1.6(Open Problem). Under what conditions does the inequality

(1.7)
∫ b

a

[
f(x)

]t
dx >

(∫ b

a

f(x) dx

)t−1

hold for t > 1 ?
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