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Abstract: The aim of this note is to give a general framework for Chebyshev inequalities
and other classic inequalities. Some applications to Chebyshev inequalities are
made. In addition, the relations of similar ordering, monotonicity in mean and
synchronicity of vectors are discussed.
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1. Introduction and summary

Let V be a real vector space provided with an inner product〈·, ·〉 . For fixedx ∈ V
andy, z ∈ V the inequality

(1.1) 〈x, y〉 〈x, z〉 ≤ 〈y, z〉 〈x, x〉

is called aChebyshev type inequality.
A general method for finding vectors satisfying the above inequality is given by

Niezgoda in [4]. The same author in [3] proved a projection inequality for theEaton
system,obtaining aChebyshev type inequalityas a particular case for orthoprojectors
of rank one. Furthermore, the relation of synchronicity with respect to theEaton
systemis introduced there. It generalizes commonly known relations of similarly
ordered vectors (cf. for example, [6, chap. 7.1]).

This paper is organized as follows. Section2 contains basic notions related to
convex cones. In Section3 a projection inequality in an abstract Hilbert space
is studied. The framework covers the projection inequality for the Eaton system,
Chebyshev sum and integral inequalities and others, see Examples3.1 – 3.3. We
modify and extend the applicability of the relation of synchronicity to vector spaces
with infinite bases. The results are applied to theChebyshev sum inequalityin Sec-
tion 4 and theChebyshev integral inequalityin Section5.
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2. Preliminaries

In this noteV is a real Hilbert space with an inner product〈·, ·〉. A convex cone is
a nonempty setD ⊂ V such thatαD + βD ⊂ D for all nonnegative scalarsα and
β. The closure of the convex cone of all nonnegative finite combinations inH ⊂ V
is denoted bycone H. Similarly, span H denotes the closure of the subspace of all
finite combinations inH. The dual cone of a subsetC ⊂ V is defined as follows

dual C = {v ∈ V : 〈v, C〉 ≥ 0}.

It is known, that the dual cone ofC is a closed convex cone and

dual C = dual(cone C).

If for a subsetG ⊂ V , a closed convex coneC is equal tocone G, then we say
thatC is generated byG or G is a generator ofC. The inclusionA ⊂ B implies
dual B ⊂ dual A. If C andD are convex cones, then

dual(C + D) = dual C ∩ dual D.

The dual cone of a subspaceW is equal to its orthogonal complementW⊥. If a set
C is a closed convex cone, then

dual dual C = C,

(cf. [5, lemma 2.1]). The symboldualV1 C stands forV1 ∩ dual C and means the
relative dual ofC with respect to a closed subspaceV1 of V . If for a closed convex
coneD the identitydualV1 D = D holds, thenD is called a self-dual cone w.r.t.
V1. For example, the convex cone generated by an orthogonal system of vectors is
self-dual w.r.t. the subspace spanned by this system.

In other cases the standard mathematical notation is used.
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3. Projection Inequality

From now on we make the following assumptions:P is an idempotent and symmet-
ric operator (orthoprojector) defined onV , V = V1 + V2, whereV1 is the range ofP
andV2 is its orthogonal complement, i.e.V1 = PV andV2 = (PV )⊥. The identity
operator is denoted byid . All subspaces and convex cones of a real Hilbert spaceV
are assumed to be closed.

Fory, z ∈ V we will consider aprojection inequality(briefly (PI)) of the form

〈y, Pz〉 ≥ 0.

If y = z, then (PI) holds for any orthoprojectorP taking the form‖Pz‖2 ≥ 0. A
general method of solution of (PI) is established by our following theorem (cf. [4,
Theorem 3.1]).

Theorem 3.1. For vectorsy, z ∈ V and a convex coneC ⊂ V the following state-
ments are mutually equivalent.

i) (PI) holds for ally ∈ C + V2

ii) Pz ∈ dual C

iii) z ∈ dual PC.

Proof. Since i), the inequality (PI) holds for everyy ∈ C. Thus

0 ≤ 〈y, Pz〉 = 〈Py, z〉 .

Therefore0 ≤ 〈C, Pz〉 = 〈PC, z〉 . HencePz ∈ dual C andz ∈ dual PC. It proves
that i)⇒ ii), iii).

Conversely, ifPz ∈ dual C then fory = c + x, wherec ∈ C and 〈x, V1〉 =
0 are arbitrary have〈y, Pz〉 = 〈c, Pz〉 + 〈x, Pz〉 = 〈c, Pz〉 ≥ 0. By a similar
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argument, ifz ∈ dual PC theny ∈ C + V2 implies thatPy ∈ PC. It leads to
〈y, Pz〉 = 〈Py, z〉 ≥ 0. From this we conclude that ii),iii)⇒ i), which completes
the proof.

Example3.1 (Bessel inequality).For an orthoprojectorP the inequality (PI) holds
provided thaty = z. Let {fν} be an orthogonal system inV . If P is the orthopro-
jector onto the subspace orthogonal tospan{fν}, i.e. P = id−

∑
ν

〈·,fν〉
‖fν‖2 fν , then we

obtain the classic Bessel inequality

‖z‖2 ≥
∑

ν

〈z, fν〉2

‖fν‖2
.

Example3.2(Chebyshev type inequalities).Letx ∈ V be a fixed nonzero vector. Set
P = id− 〈·,x〉

‖x‖2 x. It is clear thatP is the orthoprojector onto the subspace orthogonal
tox. In the case where the inequality (PI) becomes aChebyshev type inequality(1.1):

〈x, z〉 〈y, x〉 ≤ 〈y, z〉 ‖x‖2.

In the spaceV = Rn underx = (1, . . . , 1), inequality (1.1) transforms into the
Chebyshev sum inequality(or (CHSI) for short):

n∑
i=1

yi

n∑
i=1

zi ≤ n
n∑

i=1

yizi.

Consider the spaceV = L2 of all 2-nd power integrable functions with respect to
the Lebesgue measureµ on the unit interval[0, 1]. Forx ≡ 1 inequality (1.1) takes
the form of aChebeshev integral inequality(or (CHII) for short):∫

ydµ

∫
zdµ ≤

∫
yzdµ.
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Example3.3 (Projection inequality for Eaton systems).Let G be a closed subgroup
of the orthogonal group acting onV, dim V < ∞, andC ⊂ V be a closed convex
cone. Let us assume:

i) for each vectora ∈ V there existg ∈ G andb ∈ C satisfyinga = gb,

ii) 〈a, gb〉 ≤ 〈a, b〉 for all a, b ∈ C andg ∈ G.

If P is the orthoprojector onto a subspace orthogonal to{a ∈ V : Ga = a}, then
the inequality (PI) holds, provided thaty, z ∈ C, (cf. [3, Theorem 2.1]).

The triplet(V, G, C) fulfiling the conditions i)-ii) is said to be anEaton system,
(see e.g. [3] and the references given therein). The main example of this structure is
the permutation group acting onRn and the cone of nonincreasing vectors.

Let C ⊂ V be a convex cone. Every cone of the formC + V2 has the representa-
tion:

(3.1) C + V2 = PC + V2.

Therefore, on studying the projection inequality (PI), according to Theorem3.1,
it is sufficient to consider convex cones of the formC = D + V2, whereD is a
convex cone inV1. The following proposition is a simple consequence of Theorem
3.1.

Proposition 3.2. Let D ⊂ V1 be a convex cone. Fory, z ∈ V the following condi-
tions are equivalent.

i) (PI) holds for ally ∈ D + V2

ii) z ∈ dual D.
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Let D ⊂ V1 be a convex cone. ThenV2 ⊂ dual D. This implies thatP dual D =
V1 ∩ dual D. Applying (3.1) to dual D + V2 = dual D, we get

(3.2) dualV1 D + V2 = dual D.

According to the above equation and the last proposition, we need to find for (PI)
such conesD for whichD ∩ dualV1 D are as wide as possible.

Proposition 3.3.The inequality (PI) holds fory, z ∈ D+V2, whereD is an arbitrary
self-dual cone w.r.t.V1.

Proof. By assumption,D ⊂ V1, hence (3.2) givesdual D = D + V2. Proposition
3.2 implies that (PI) holds fory, z ∈ (D + V2) ∩ dual D = D + V2.

If D is a self-dual cone w.r.t.V1 thenD + V2 is a maximal cone for (PI) in the
following sense.

Proposition 3.4. LetD be a self-dual cone w.r.t.V1 with D+V2 ⊂ C, whereC ⊂ V
is a convex cone.

If (PI) holds fory, z ∈ C thenC = D + V2.

Proof. SinceV2 ⊂ C, (3.1) yields C = PC + V2. By Proposition3.2, (PI) holds
for y, z ∈ (PC + V2) ∩ dual PC. The assumption that (PI) holds fory, z ∈ C gives
PC + V2 ⊂ dual PC. SinceD + V2 ⊂ C, D = P (D + V2) ⊂ PC. From this we
havedual PC ⊂ dual D = D + V2, by (3.2), becausedualV1 D = D. Combining
these inclusions we can see thatC = PC + V2 ⊂ D + V2.

The converse inclusion holds by the hypothesis, and thus the proof is complete.

Let GP denote the set of all unitary operators acting onV with gV2 = V2. Notice
thatGP is a group of operators. The inequality (PI) is invariant with respect toGP .
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Theorem 3.5.For fixedg ∈ GP the following statements are equivalent.

i) (PI) holds fory, z

ii) (PI) holds forgy, gz.

Proof. Assume thatg is a unitary operator satisfyinggV2 = V2. This is equivalent to
g∗V2 = V2, whereg∗ is the adjoint operator ofg. We first show thatgV1 ⊂ V1.

Suppose, contrary to our claim, that there exists au ∈ V1 with the property
gu = v1 + v2, vi ∈ Vi, i = 1, 2, v2 6= 0. We have:

‖u‖2 = ‖gu‖2 = ‖v1 + v2‖2 = ‖v1‖2 + ‖v2‖2 (g − unitary, v1 ⊥ v2),

‖u− g∗v2‖2 = ‖g(u− g∗v2)‖2

= ‖gu− v2‖2

= ‖v1‖2 (since g − unitary, g∗g = id),

‖u− g∗v2‖2 = ‖u‖2 + ‖g∗v2‖2

= ‖u‖2 + ‖v2‖2 (u ⊥ g∗v2, g∗ − unitary).

Hence:  ‖u‖2 = ‖v1‖2 + ‖v2‖2

‖v1‖2 = ‖u‖2 + ‖v2‖2
⇒ ‖v2‖2 = 0 ⇒ v2 = 0,

a contradiction. This completes the proof ofgV1 ⊂ V1.
Note thatg∗V1 ⊂ V1, too. This implies thatV1 ⊂ gV1. Therefore

(3.3) gV1 = V1.
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Now, letz ∈ V be arbitrary. We havez = z1 + z2, wherezi ∈ Vi, i = 1, 2. For
an orthoprojectorP ontoV1 we get:

gPz = gP (z1 + z2) = gz1 = P (gz1 + gz2) = Pgz,

becausegz1 ∈ V1 by (3.3) andgz2 ∈ V2 by assumption. Thus

(3.4) Pg = gP.

By (3.4),
〈gy, Pgz〉 = 〈gy, gPz〉 = 〈g∗gy, Pz〉 = 〈y, Pz〉 .

This proves required equivalence.

A simple consequence of the above theorem is:

Remark1. For a convex coneC ⊂ V andg0 ∈ GP the following statements are
equivalent.

i) (PI) holds fory, z ∈ C

ii) (PI) holds fory, z ∈ g0C.

In the remainder of this section we assume thatV is a real separable Hilbert space.
Let {fν} be an orthogonal basis ofV1, i.e.

〈fη, fν〉
{

> 0, η = ν
= 0, η 6= ν,

for integersη, ν.
Under the above assumption, the projectionPz takes the form:

(3.5) Pz =
∑

ν

〈z, fν〉
‖fν‖2

fν .
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From this, fory, z ∈ V we have

〈y, Pz〉 =
∑

ν

〈y, fν〉 〈z, fν〉
‖fν‖2

.

Therefore the following remark is evident.

Remark2. Let {fν} be an orthogonal basis ofV1.
Fory, z ∈ V the inequality (PI) holds if and only if∑

ν

〈y, fν〉 〈z, fν〉
‖fν‖2

≥ 0.

Set

(3.6) D =

{
x ∈ V : x =

∑
ν

ανfν , αν ≥ 0

}
.

Clearly,D is a closed convex cone generated by the system{fν}. The scalarsαν =
〈x,fν〉
‖fν‖2 are the Fourier coefficients ofx w.r.t. the orthogonal system{fν}. Moreover,
D is a self-dual cone w.r.t.V1. By Proposition3.3we get

Corollary 3.6. If {fν} is an orthogonal basis ofV1, then (PI) holds fory, z ∈ D+V2,
whereD is defined by (3.6).

Let Ξ denote the set of all sequencesξ = (ξ1, ξ2, . . . ) with ξ2
ν = 1, ν = 1, 2, . . . .

For givenξ, let us define the operatorgξ onV as follows:

gξx = x− Px +
∑

ν

ξν
〈x, fν〉
‖fν‖2

fν .
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This operator is an isometry, because

‖gξx‖2 = ‖x‖2 − ‖Px‖2 +
∑

ν

ξ2
ν

〈x, fν〉2

‖fν‖2

= ‖x‖2 − ‖Px‖2 + ‖Px‖2 = ‖x‖2,

by (3.5) and obvious orthogonality

x− Px ⊥
∑

ν

ξν
〈x, fν〉
‖fν‖2

fν .

If x ∈ V2, then〈x, fν〉 = 0 for all ν. HencePx = 0 =
∑
ν

ξν
〈x,fν〉
‖fν‖2 fν . For this

reason

(3.7) gξx = x, x ∈ V2.

We write

(3.8) G = {gξ : ξ ∈ Ξ}.

We will show thatG is a group of operators. It is evident that:

(3.9) gξ = id, for ξ = (1, 1, . . . ).

Let ζ, ξ, γ ∈ Ξ. We have:

gζfν = fν − Pfν +
∑

η

ζη
〈fν, fη〉
‖fη‖2

fη = ζνfν,
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becausePfν = fν , ν = 1, 2, . . . . From this, byx− Px ∈ V2 and (3.7) we get:

gζgξx = gζ(x− Px +
∑

ν

ξν
〈x, fν〉
‖fν‖2

fν)

= gζ(x− Px) +
∑

ν

ξν
〈x, fν〉
‖fν‖2

gζfν

= x− Px +
∑

ν

ζνξν
〈x, fν〉
‖fν‖2

fν .

Thus

(3.10) gζgξ = gζ·ξ = gξgζ ,

whereζ · ξ = (ζ1ξ1, ζ2ξ2, . . . ). This clearly gives:

(3.11) gζ(gξgγ) = gζ·ξ·γ = (gξgζ)gγ

and
gξgξ = gξ·ξ = id,

which is equivalent to

(3.12) (gξ)
−1 = gξ.

Sincegξ is an isometry and invertible,

(3.13) gξ − unitary, ∀ξ∈Ξ.

By (3.13), (3.7), (3.9) – (3.12) we can assert thatG is an Abelian group of unitary
operators that are identities onV2. As a consequence,G ⊂ GP .
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Given anyx ∈ V , we defineξx = (ξx,1, ξx,2, . . . ) by

(3.14) ξx,ν =

{
1, 〈x, fν〉 ≥ 0

−1, 〈x, fν〉 < 0.

It is clear thatξx,ν 〈x, fν〉 = |〈x, fν〉|. Hence

gξxx = x− Px +
∑

ν

|〈x, fν〉|
‖fν‖2

fν ,

wherex− Px ∈ V2 and
∑
ν

|〈x,fν〉|
‖fν‖2 fν ∈ D. Therefore

(3.15) gξxx ∈ D + V2.

Assertion (3.15) is simply the statement that

(3.16) (Gx) ∩ C 6= ∅, ∀x∈V

with C = D + V2. This condition ensures that the sum of the conesgC, whereg
runs overG, covers the whole spaceV . Now, we show that (3.16) holds forGP and
for every coneC = PC + V2, PC 6= {0}.

Fix v ∈ V . Clearly, v = v1 + v2, vi ∈ Vi, i = 1, 2. If v1 = 0 then v ∈
GP v ⊂ V2 ⊂ C, i.e. (3.16) holds. Assume that0 6= v1 and note that there exists
0 6= u1 ∈ PC. Let us construct the two orthogonal bases{eν} and{fν} of V1 with
e1 = v1 andf1 = u1. Setu = ‖v1‖ u1

‖u1‖ + v2 and

(3.17) g = id−P +
∑

ν

〈·, eν〉
‖eν‖‖fν‖

fν .
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Observe thatu ∈ C, gv = u andg is the identity operator onV2. Now, we prove that
g is unitary. Firstly, we note that for anyx ∈ V

‖gx‖2 = ‖x‖2 − ‖Px‖2 +
∑

ν

〈x, eν〉2

‖eν‖2
= ‖x‖2,

because‖Px‖2 =
∑
ν

〈x,eν〉2
‖eν‖2 . Our next goal is to show thatgV = V. To do this, fix

y ∈ V. We have

y = y − Py +
∑

ν

〈y, fν〉
‖fν‖

fν

‖fν‖
.

Set

x = y − Py +
∑

ν

〈y, fν〉
‖fν‖

eν

‖eν‖
.

It is easily seen thatgx = y. So,g is unitary.
Finally, g is a unitary operator onV with gV2 = V2 andgv = u. It givesu ∈

GP v ∩ C, as desired.
We are now in a position to introduce a notion of synchronicity of vectors for (PI).

For an orthoprojectorP let C be a convex cone which admits the representation

C = PC + V2,

wherePC is nontrivial. LetG be a subgroup ofGP with the property (3.16).
The two vectorsy, z ∈ V are said to beG-synchronous (with respect toC) if

there exists ag ∈ G such thatgy, gz ∈ C. If G = GP , then we simply say thaty and
z are synchronous.

The definition is motivated by [3, sec. 2]. It generalizes the notion of synchronic-
ity with respect to Eaton systems. Obviously,G-synchronicity forces synchronicity
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under fixedC. In the sequel, for special cones we show that synchronicity is equiv-
alent to (PI) butG-synchronicity is a sufficient condition for (PI).

According to Theorem3.5, by the notion of synchronicity, it is possible to extend
(PI) beyond a coneC if only (PI) holds for vectors inC.

Proposition 3.7. LetC ⊂ V be a convex cone withC = PC + V2, PC 6= {0} and
let G be a subgroup ofGP with property (3.16).

The following statements are equivalent.

i) (PI) holds fory, z ∈ C

ii) (PI) holds for the vectorsy andz which areG-synchronous w.r.t.C.

Proof. i) ⇒ ii). Assumey andz areG-synchronous w.r.t.C. There existsg ∈ G
with gy, gz ∈ C. Since i), (PI) holds forgy, gz. By Theorem3.5 we conclude that
(PI) holds fory andz.

The converse implication is evident becausey, z ∈ C are of courseG-synchronous.

Now, we are able to give an equivalent condition forG-synchronicity. Simulta-
neously, the condition is sufficient for synchronicity w.r.t.D + V2.

Proposition 3.8. Let G be the group defined by (3.8) and letD be the cone defined
by (3.6).

The vectorsy, z ∈ V areG-synchronous w.r.t.D + V2 if and only if

〈y, fν〉 〈z, fν〉 ≥ 0, ∀ν .

Proof. If y, z areG-synchronous, then there exists aξ such thatgξy, gξz ∈ D + V2.
Henceξν 〈y, fν〉 ≥ 0 andξν 〈z, fν〉 ≥ 0 for all ν. Multiplying the above inequalities
side by side we obtain0 ≤ ξ2

ν 〈y, fν〉 〈z, fν〉 = 〈y, fν〉 〈z, fν〉 for everyν.
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Conversely, suppose that〈y, fν〉 〈z, fν〉 ≥ 0 for every ν. In this situation, the
sequences defined fory andz by (3.14) are equal. Hencey andz areG-synchronous
by (3.15).

Summarizing the above considerations we give sufficient and necessary condi-
tions for (PI) to hold.

Theorem 3.9. Let {fν} be an orthogonal basis ofV1. SetC = D + V2, whereD is
defined by (3.6). The following statements are equivalent.

i) y andz are synchronous w.r.t.C

ii) (PI) holds fory andz.

In particular, if

(3.18) 〈y, g0fν〉 〈z, g0fν〉 ≥ 0, ∀ν,

then (PI) holds, whereg0 ∈ GP is fixed.

Proof. The first part, i)⇒ii). It is a consequence of Corollary3.6 and Proposition
3.7.

Conversely, if ii), then〈Py, Pz〉 ≥ 0. Firstly, suppose thatPz = αPy. Clearly,
α ≥ 0. By (3.16), which holds forGP andC, there exists ag ∈ GP such that
gy ∈ C. HencePgy ∈ PC = D. By (3.4), gPy ∈ D. Sinceα ≥ 0, αgPy ∈ D.
Sincez − Pz ∈ V2, g(z − Pz) ∈ V2, becausegV2 = V2. Hence

gz = gPz + g(z − Pz) = αgPy + g(z − Pz) ∈ C.

Thereforegy, gz ∈ C, i.e. y andz are synchronous.
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Next, assume thatPy andPz are linearly independent. Let us construct an or-
thogonal basis{eν} of V1 with

e1 = Py, e2 = Pz − 〈Pz, Py〉
‖Py‖2

Py

and letg ∈ GP be defined by (3.17). There is no difficulty to showing that

gy = y − Py︸ ︷︷ ︸
∈V2

+
‖Py‖
‖f1‖

f1︸ ︷︷ ︸
∈D

∈ C,

gz = z − Pz︸ ︷︷ ︸
∈V2

+ 〈z,Py〉
‖e1‖‖f1‖︸ ︷︷ ︸

≥0, by (PI)

f1 + ‖Pz‖2‖Py‖2−〈Pz,Py〉2
‖Py‖2‖e2‖‖f2‖︸ ︷︷ ︸

≥0, by Cauchy−Schwarz ineq.

f2

︸ ︷︷ ︸
∈D

∈ C.

Therefore,y andz are synchronous as required.
Now, let us note that (3.18) is equivalent to

〈g∗0y, fν〉 〈g∗0z, fν〉 ≥ 0, ∀ν.

By Proposition3.8, g∗0y andg∗0z areG-synchronous w.r.t.C. Hence there exists a
g ∈ G such thatgg∗0y, gg∗0 ∈ C. Sincegg∗0 ∈ GP , y andz are synchronous w.r.t.
C. For this reason (PI) holds, by the first part of this proposition. The proof is
complete.
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4. Applications to the Chebyshev Sum Inequality

Throughout this section,V = Rn with the standard inner product〈·, ·〉. Let {si}
be the basis ofRn, wheresi = (1, . . . , 1︸ ︷︷ ︸

i

, 0, . . . , 0), i = 1, . . . , n. The symbols

V1 andV2 stand for the subspace orthogonal tosn and its orthogonal complement,
respectively, i.e.

V1 =

{
(x1, . . . , xn) :

∑
i

xi = 0

}
, V2 = span{sn}.

Let P be the orthoprojector ontoV1, i.e. P = id− 〈·,sn〉
n

sn. In this situation, by
Example3.2, (PI) becomes theChebyshev sum inequality(CHSI).

It is known that the convex cone of nonincreasing vectors

C = {x = (x1, . . . , xn) : x1 ≥ x2 ≥ · · · ≥ xn}

is generated by{s1, . . . , sn,−sn}. On the other side,

{(1,−1, 0, . . . , 0), (0, 1,−1, 0, . . . , 0), (0, . . . , 0, 1,−1)}

is a generator of

dual C =

{
x = (x1, . . . , xn) :

n∑
i=1

xi = 0,
k∑

i=1

xi ≥ 0, k = 1, . . . , n− 1

}
.

Setei = nPsi, i = 1, . . . , n− 1. Clearly,

(4.1) ei = nsi − isn = (n− i, . . . , n− i︸ ︷︷ ︸
i

,−i, . . . ,−i︸ ︷︷ ︸
n−i

), i = 1, . . . , n− 1.
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Write
D = cone{ei}.

Clearly,PC = D andV2 ⊂ C. Hence by (3.1),

C = D + V2.

Applying Proposition3.2, we conclude that (PI) holds fory, z ∈ (D+V2)∩dual D =
C ∩ dual D. With the aid of generators we can check thatD ⊂ dual C. Hence
C = dual dual C ⊂ dual D.

By the above considerations, for arbitraryy, z ∈ C, the inequality (CHSI) holds.
This is a classic Chebyshev result.

The system{ei, i = 1, . . . , n− 1} constitutes a basis ofV1. Observe that

〈ei, ej〉 = i(n− j)n, i ≤ j, i, j = 1, . . . , n− 1.

Hence, easy computations lead to〈
ek+1 −

n− k − 1

n− k
ek, ei

〉
= 0, i = 1, . . . , k; k = 1, . . . , n− 2.

From this, the Gram-Schmidt orthogonalization gives the orthogonal system{qi} for
the basis{ei} as follows:

(4.2)

{
q1 = e1,

qk+1 = n−k
n

(
ek+1 − n−k−1

n−k
ek

)
, k = 1, . . . , n− 2.

According to (4.1) and (4.2) we obtain the explicit form of the orthogonal basis
{qi}

(4.3) qk = (0, . . . , 0︸ ︷︷ ︸
k−1

, n− k,−1, . . . ,−1︸ ︷︷ ︸
n−k

), k = 1, . . . , n− 1.
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Let us denote
K = D̃ + V2,

whereD̃ stands for thecone{qk}. The convex conẽD is self-dual w.r.t.V1.
According to Proposition3.3we can assert that (CHSI) holds fory, z ∈ K.
Let g0(x1, . . . , xn) = (−xn, . . . ,−x1). Clearly,g0 ∈ GP . By Remark1, (CHSI)

holds fory, z ∈ g0K. Have:

g0K = g0(D̃ + V2) = g0D̃ + V2 = cone{g0qk}+ V2.

Definefk = g0qn−k, k = 1, . . . , n− 1. Sinceg0 ∈ GP , g0 is unitary andg0V1 = V1,
by (3.3). Hence,{fk} is an orthogonal basis ofV1. Observe

(4.4) fk = (1, . . . , 1︸ ︷︷ ︸
k

,−k, 0, . . . , 0), k = 1, . . . , n− 1.

Write
M = cone{fk}+ V2.

By Remark1, it is evident that (CHSI) holds fory, z ∈ M .

Proposition 4.1. For x = (x1, . . . , xn) ∈ Rn

x ∈ K ⇐⇒ the sequence

{
1

n− k + 1

n∑
i=k

xi

}n

k=1

is nonincreasing,

x ∈ M ⇐⇒ the sequence

{
1

k

k∑
i=1

xi

}n

k=1

is nonincreasing.

Proof. We prove only the first equivalence. The second one uses a similar procedure.
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By (3.2), K = dual D̃, becausẽD is self-dual w.r.t.V1. Hence by (4.3) we can
assert thatx ∈ K is equivalent to

(n− k)xk ≥
n∑

i=k+1

xi, k = 1, . . . , n− 1.

Adding to both of sides(n− k)
∑n

i=k+1 xi and dividing by(n− k)(n− k + 1), we
obtain

1

n− k + 1

(
n∑

i=k

xi

)
≥ 1

n− k

(
n∑

i=k+1

xi

)
, k = 1, . . . , n− 1.

This is equivalent to our claim.

By the above proposition, we can see thatC ⊂ K andC ⊂ M . The coneM is
said to be a cone of vectors nonincreasing in mean. It is easily seen that (CHSI) holds
for y, z ∈ −K and fory, z ∈ −M (for e.g., by takingC = K, M and substituting
− id into g0 in Remark1). The statement that (CHSI) holds for vectors monotonic
in mean is due to Biernacki, see [1].

The remainder of this section will be devoted to (CHSI) for synchronous vectors.
We will consider relations between synchronicity and similar ordering.

HereGP is the group of all orthogonal matrices such that the sum of the entries of
each row and column is equal to1 or−1. The group of alln×n permutation matrices
is a subgroup ofGP , which together with the coneC fulfil ( 3.16). The permutation
group synchronicity w.r.t.C is simply the relation "to be similarly ordered". It
implies synchronicity w.r.t. every cone which containsC, e.g.M or K.

The two vectorsx = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn are said to be similarly
ordered if

(4.5) (xi − xj)(yi − yj) ≥ 0, ∀i,j.
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The assertion that (CHSI) holds for similarly ordered vectors is a consequence of
Proposition3.7.

Theorem3.9states that (CHSI) is equivalent to synchronicity w.r.t.cone{fk}+V2

where{fk} is an arbitrarily chosen orthogonal basis ofV1. Moreover,G-synchronicity
gives (CHSI), whereG is the group (3.8) acting onRn. For this reason, the specifi-
cation of Theorem3.9can be as follows.

Let {fk} be defined by (4.4) andG by (3.8) in compliance with the basis.

Corollary 4.2. (CHSI) holds fory, z if and only if y and z are synchronous w.r.t.
M .

In particular, (CHSI) is satisfied byy andz such that

〈y, Ufk〉 〈z, Ufk〉 ≥ 0, k = 1, . . . , n− 1,

whereU is a fixed unitary operation withUsn = sn or Usn = −sn, i.e. U is
represented by an orthogonal matrix whose rows and columns sum up to1 or to−1.

By Proposition3.8we have:

Remark3. The vectorsy = (y1, . . . , yn) andz = (z1, . . . , zn) areG-synchronous
w.r.t. M if and only if[

k∑
i=1

yi − kyk+1

][
k∑

i=1

zi − kzk+1

]
≥ 0, k = 1, . . . , n− 1.

Relations of similar ordering andG-synchronicity w.r.t.M are not comparable,
i.e. there exist similarly ordered vectors which are not synchronous and there exist
synchronous vectors that are not similarly ordered. On the other hand, both relations
imply synchronicity w.r.t.M and as a consequence, (CHSI) holds.

Example4.1. ConsiderRn, n > 3.
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For 0 < α < 1 < β < n − 1 sety = (0, . . . , 0, 1 − n,−α), z = (0, . . . , 0, 1 −
n,−β). According to (4.5) and Remark3 the vectorsy andz are similarly ordered
and are notG-synchronous, but they are synchronous w.r.t.M , so (CHSI) holds.

Now, sety′ = f1 + f2, z′ = f2 + f3, wherefi are defined by (4.4). The vectorsy′

andz′ areG-synchronous w.r.t.M , becausey′, z′ ∈ M , so (CHSI) holds.
On the other handy′ = (2, 0,−2, 0, . . . , 0), z′ = (2, 2,−1,−3, 0, . . . , 0) are not

similarly ordered by (4.5), because(y′3 − y′4)(z
′
3 − z′4) = −2(−1 + 3) < 0.
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5. Applications to the Chebyshev Integral Inequality

SetV = L2 as in Example3.2. The characteristic function of the measurable set
A ⊂ [0, 1] is denoted byIA. Additionally we will write es = I[0,s], 0 ≤ s ≤ 1.
The symbolV1 stands for the subspace orthogonal toV2 = span{e1}, i.e. V1 ={
x ∈ L2 :

∫
xdµ = 0

}
. By Example3.2, it is known that for the orthoprojectorP

ontoV1 (PI) transforms into theChebyshev integral inequality(CHII). Let C ⊂ L2

be the closed convex cone of all nonincreasingµ a.e. functions. It is known (see [5,
Theorem 3.1 and 3.3]) that:

C = cone ({es : 0 ≤ s ≤ 1} ∪ {−e1}) ,(5.1)

dual C = cone{IΠ − IΠ+ε : ε > 0, Π, Π + ε ⊂ [0, 1]},

whereΠ stands for an interval.
The Haar system:

χ0
0 = e1(5.2)

χk
n(t) =


2n/2, 2k−2

2n+1 ≤ t < 2k−1
2n+1

−2n/2, 2k−1
2n+1 ≤ t < 2k

2n+1

0, otherwise

n = 0, 1, . . . , k = 1, 2, . . . , 2n

forms an orthonormal basis ofL2. In particular,H = {χk
n : n = 0, 1, . . . , k =

1, . . . , 2n} is an orthonormal basis ofV1.
Let

D = coneH.
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The coneD is self-dual w.r.t.V1, so by (3.2) we have:

(5.3) dual D = D + V2.

By (5.1), observe thatH ⊂ dual C, henceC = dual dual C ⊂ dualH =
dual D. Combining this with (5.3), we obtain

(5.4) C ⊂ D + V2.

From (5.4) and Corollary3.6 it follows that

Corollary 5.1. (CHII) holds fory, z ∈ D + V2.
The coneD + V2 contains the cone of all nonincreasingµ a.e. functions inL2.

It is easily seen that the coneD+V2 contains functions which are not nonincreas-
ing µ a.e.

Let G be the group (3.8) acting onL2 with the Haar system. Employing the
G-synchronicity relation w.r.t.D + V2, by Theorem3.9we get:

Corollary 5.2. (CHII) holds fory, z ∈ L2 if only

(5.5) 〈y, χ〉 〈z, χ〉 ≥ 0, ∀χ∈H.

We next discuss the relation between the condition (5.5) and the known sufficient
conditions for (CHII). One of these is the condition thaty andz are similarly ordered,
i.e.

(5.6) [y(s)− y(t)] [z(s)− z(t)]] ≥ 0, for all 0 ≤ s, t ≤ 1

(see e.g. [6, pp. 198-199]). Now, we show by an example that theG-synchronicity
condition (5.5) is not stronger than the condition of similar ordering (5.6) in L2.
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Example5.1. In L2 let y = χ1
2 + χ2

2, z = χ2
2 + χ3

2, whereχj
i are defined by (5.2).

The vectorsy andz areG-synchronous w.r.t.D + V2, because they are inD.
On the other hand

y(s) = 2, 0 ≤ s ≤ 1
8

y(t) = 0, 4
8
≤ t ≤ 5

8

,
z(s) = 0, 0 ≤ s ≤ 1

8

z(t) = 2, 4
8
≤ t ≤ 5

8

.

From this,[y(s)− y(t)] [z(s)− z(t)]] = [2 − 0][0 − 2] ≤ 0 for any0 ≤ s ≤ 1
8

and
4
8
≤ t ≤ 5

8
. Thusy andz are not similarly ordered.

Now, we recall that a functiony ∈ L2 is nonincreasing (nondecreasing, mono-
tone) in mean if the functions 7→ 1

s

∫ s

0
ydµ, is nonincreasing (nondecreasing, mono-

tone).
Differentiating 1

s

∫ s

0
ydµ we can easy obtain thaty is nonincreasing in mean if

and only if 1
s

∫ s

0
ydµ ≥ y(s), µ a.e.

It is known that (CHII) holds fory andz which are monotone in mean in the same
direction (see [1], cf. also [6, pp. 198-199]). Johnson in [2] gave a more general
condition. Namely, if

(5.7)

[
1

s

∫ s

0

ydµ− y(s)

] [
1

s

∫ s

0

zdµ− z(s)

]
≥ 0, ∀0<s<1

then (CHII) holds fory andz.

Remark4.

1. There exist functions inconeH which are not nonincreasing in mean.

2. There exist functions nonincreasing in mean which are not inconeH.

3. There exist functions inconeH for which (5.7) does not hold, i.e. the condition
(5.5) is not stronger than (5.7).
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Proof. An easy verification shows that:
Ad. 1) χk

n ∈ H, k > 1 are not nonincreasing in mean.
Ad. 2) Setf = I[0,1/2) − 2I[1/2,3/4). f is nonincreasing in mean and is not in

coneH because〈f, χ2
1〉 < 0.

Ad. 3) Sety = χ2
1, z = χ3

2. For 5
8

< s < 6
8

have:[
1

s

∫ s

0

ydµ− y(s)

] [
1

s

∫ s

0

zdµ− z(s)

]
= −

√
2/2

s
· 3/2

s
< 0.

The set of allL2-functions nonincreasing in mean constitutes a convex cone. It
will be denoted byM . LetM0 be the class of all step functions of the form

gs,t = I[0,s) −
s

t− s
I[s,t], 0 < s < t < 1.

Proposition 5.3.

M = dualM0,

PM = dualV1 M0 = coneM0,

M = coneM0 + V2.

Proof. By definition,f ∈ M if and only if

1

s

∫ s

0

fdµ ≥ 1

t

∫ t

0

fdµ for all 0 < s < t < 1.

After equivalent transformations we obtain∫ s

0

fdµ ≥ s

t− s

∫ t

s

fdµ for all 0 < s < t < 1.
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This is simplyf ∈ dualM0, so the first equation holds.
To show the second equation, note thatM0 ⊂ M ∩ V1. Hence

dual(M ∩ V1) ⊂ dualM0 = M,

by the first equation. It follows thatV1 ∩ dual(M ∩ V1) ⊂ M ∩ V1, i.e.

(5.8) dualV1(M ∩ V1) ⊂ M ∩ V1.

Fix f ∈ M ∩ V1 and letg ∈ M ∩ V1 be arbitrary. For suchf andg (CHII) holds
and takes the form:∫ 1

0

fgdµ ≥
∫ 1

0

fdµ ·
∫ 1

0

gdµ = 0 · 0 = 0,

i.e. f ∈ dualV1(M ∩ V1). Therefore

(5.9) M ∩ V1 ⊂ dualV1(M ∩ V1).

SinceM = dualM0, dual M = coneM0. Now, observe thatV2 ⊂ M . This
implies by (3.1) thatM = PM + V2. Furthermore, in this situationPM = M ∩ V1.
The above gives

dual M = dual(M ∩ V1 + V2)

= V1 ∩ dual(M ∩ V1) = dualV1(M ∩ V1).

Hence

(5.10) dualV1(M ∩ V1) = coneM0.

Combining (5.8), (5.9) and (5.10) we obtain the required equations.
The third equation is a consequence of the second one. The proof is complete.

http://jipam.vu.edu.au
mailto:zdzislaw.otachel@up.lublin.pl
http://jipam.vu.edu.au


Chebyshev Inequalities and
Self-Dual Cones

Zdzisław Otachel

vol. 10, iss. 2, art. 54, 2009

Title Page

Contents

JJ II

J I

Page 30 of 31

Go Back

Full Screen

Close

The second equation of the above propositions immediately gives:

Remark5. The convex cone of allL2-functions nonincreasing in mean with integral
equal to0 is self-dual w.r.t.V1.

TakingC = M in Theorem3.1, by Proposition5.3we easily obtain:

Corollary 5.4. If
∫

fdµ
∫

gdµ ≤
∫

fgdµ holds for all functionsf ∈ L2 monotone
in mean, theng ∈ L2 is also monotone in mean.
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