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ABSTRACT. In this paper, we obtain the general solution and the generalized Hyers-Ulam sta-
bility for quadratic functional equation&2z +y) + f(2z —y) = f(z+y)+ f(x —y) + 6 f (x)
andf(2z +y) + f(z +2y) = 4f(x +y) + f(x) + f(y).
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1. INTRODUCTION

In 1940, S.M. Ulam[[20] gave a wide ranging talk before the mathematics club of the Uni-
versity of Wisconsin in which he discussed a number of important unsolved problems. Among
those was the question concerning the stability of homomorphisms:

LetG, be a group and lefz, be a metric group with the metrit-, -). Givene > 0, does there
existad > 0 such thatif a functionh : G; — G, satisfies the inequality(h(xy), h(z)h(y)) < d
forall z,y € G, then there exists a homomorphigin: G; — G5 with d(h(z), H(x)) < € for
all z € G17

In other words, we are looking for situations when the homomorphisms are stable, i.e., if a
mapping is almost a homomorphism, then there exists a true homomorphism near it. If we turn
our attention to the case of functional equations, we can ask the question: When the solutions
of an equation differing slightly from a given one must be close to the true solution of the given
equation.

The case of approximately additive functions was solved by D. H. Hyérs [9] under the as-
sumption thatz; andG, are Banach spaces. In 1978, a generalized version of the theorem of
Hyers for approximately linear mappings was given by Th. M. Rassias [17]. During the last
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2 ICK-SOON CHANG AND HARK-MAHN KiM

decades, the stability problems of several functional equations have been extensively investi-
gated by a number of authors [2/6] L1} 15]. The terminology generalized Hyers-Ulam stability
originates from these historical backgrounds. These terminologies are also applied to the case
of other functional equations. For more detailed definitions of such terminologies, we can refer
to [10,/12)18].

The functional equation

(1.1) flx+y)+ flz—y)=2f(z)+2f(y)

is related to a symmetric biadditive function|([1], [16]). It is natural that each equation is
called a quadratic functional equation. In particular, every solution of the quadratic equation
(1.1) is said to be a quadratic function. It is well known that a funcjidretween real vector
spaces is quadratic if and only if there exists a unique symmetric biadditive funGtsurch

that f(x) = B(xz, z) for all  (see[1], [16]). The biadditive functioB is given by

1

(1.2) B(x,y) = 1 (f(z +y) = [z = y))-

A Hyers-Ulam stability problem for the quadratic functional equatjon|(1.1) was proved by
F. Skof for functionsf : F;, — E5 , whereE; is a normed space ant, a Banach space (see
[19]). P. W. Cholewa [3] noticed that the theorem of Skof is still true if the relevant doiiain
is replaced by an abelian group. In the papér [4], S. Czerwik proved the Hyers-Ulam-Rassias
stability of the quadratic functional equatign (|1.1). A. Grabiec [8] has generalized these results
mentioned above. K. W. Jun and Y. H. Lée|[13] proved the Hyers-Ulam-Rassias stability of the
pexiderized quadratic equatign ([L.1).

Now, we introduce the following functional equations, which are somewhat different from

€.,

(1.3) fQRr+y)+ fRr—y) = flz+y) + fle—y)+6f(x),
(1.4) fQr+y)+ flx+2y) = 4f(x+y)+ flz)+ f(y)

In this paper, we establish the general solution and the generalized Hyers-Ulam stability
problem for the equation$ (1.3}, (1L.4), which are equivalenf td (1.1). It is significant for us
to decrease the possible estimator of the stability problem for the functional equations. This
work is possible if we consider the stability problem in the sense of Hyers-Ulam-Rassias for the
functional equationg (1.3), (1.4). As a result, we have much better possible upper bounds for
the equationd (1}3)] (1.4) than those of Czerwik [4] and Skof-Cholewa [3].

2. SoLuTioN ofF (1.3), (1.4)

Let R* denote the set of all nonnegative real numbers and let Botnd E, be real vector
spaces. We here present the general solution of ([.3), (1.4).
Theorem 2.1. A functionf : E; — E, satisfies the functional equation (IL.1) if and only if
[ : E1 — E, satisfies the functional equation (IL.4) if and onlyif £, — E, satisfies the
functional equation[(1]3). Therefore, every solution of functional equatjons (1.3] and (1.4) is
also a quadratic function.

Proof. Let f : E; — E, satisfy the functional equatiop (1.1). Putting= 0 = y in (1.7), we

get f(0) = 0. Setz = 0 in (L.1) to getf(y) = f(—y). Lettingy = z andy = 2z in (1.1),
respectively, we obtain that(2z) = 4f(z) and f(3z) = 9f(z) for all x € E,. By induction,
we lead tof (kx) = k*f(z) for all positive integett. Replacingr andy by 2z + y andz + 2y
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in (I.7), respectively, we have
Q1) f@ety)+fet) = GGy + S —y)

= 4f(a+y) + i +y) + - y)

= 4f(z+y)+ f(2) + f(y)
forall z, y € E;.

Let f : By — E, satisfy the functional equatiof (1.4). Putting= 0 = y in (1.4), we get
f(0) = 0. Sety = 0in (1.4) to getf(2z) = 4f(z). Lettingy = z andy = —2z in (1.4), we
obtain thatf(3z) = 9f(z) and f(x) = f(—=x) for all x € F,. Puttingz andy by = + y and
x + y in (L.4), respectively, we obtain
(2.2) fQRz+3y)+ f(z+3y) = Af(z+2y)+ f(z+y)+ f(y),

(2.3) fBx+y)+ fBx+2y) = 4f2x+vy)+ f(x)+ f(z +y).

Adding (2.2) to[(2.B) and using (1.4), we obtain

(2.4) f(2x+3y)+ f(Bzx+2y) + f(x+3y) + fBr+y) =18f(x +y) +5f(x) + 5f(y)
for all z, y € E,. Replacingy by 2y andz by 2z in (1.4), respectively, we have

(2.5) Af(z+y)+ flz+4y) = 4f(z+2y) + f(z) +4f(y),
(2.6) Af(x+y)+ flAz+y) = 4f(2z+y)+4f(z)+ f(y)
forall z, y € E4. Adding (2.5) to[(2.6) and using (1.4), we get

(2.7) fle+4y) + fldz +y) =8f(z +y) + 9f(2) + 9f(y)

forall x, y € E;.
On the other hand, using (1.4), we get

(2.8) flx+4y)+ f4x +y) = f(6z+9y)+ f(9z + 6y) —4f(5x + 5y)
= 9f(2x + 3y) + 9 (3z + 2y) — 100f(z + v),
which yields the relation by virtue of (4.7)

(2.9) Qx4+ 3y) + Bz +2y) = 12f(x +y) + f(z) + f(y)
for all z, y € E,. Combining the last equation with (2.4), we get
(2.10) fle+3y)+ fBz +y) =6f(z +y) +4f(x) + 4f(y).

Replacingz andy by % and ;¥ in (2.10), respectively, we have the desired re1.3).

Now, let f : E; — E, satisfy the functional equatiop (1.3). Putting= 0 = y in (1.3), we
getf(0) = 0. Lettingy = 0 andy = z in (1.3), respectively, we obtain th#{2z) = 4f(z) and
f(3z) =9f(x) forall z € E;. Puttingy = 2z in (1.3), we getf(z) = f(—z). Replacingr and
y by x 4+ y andx — y, respectively, in[(1]3), we have

(2.11) fBr+y)+ f(z+3y) =6f(x+y) +4f(z) +4f(y)

for all z, y € E;. Replacingy by = + y in (1.3), we obtain

(2.12) fBr+y)+ f(z—y)=6f(x) + f2z+y)+ f(y).
Interchanger with y in (2.12) to get the relation

(2.13) fBy+z)+ flz—y)=6f(y) + f(2y +2) + f(z).
Adding (2.12) to[(2.183), we obtain

(2.14) 6f(x+y)+2f(x—y) = f2x+y) + f(z +2y) + 3f(x) + 3/ (y)
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for all z, y € E,. Setting—y instead ofy in (2.14) and using the evenness fofwe get the
relation

(2.15) 6f(z —y) +2f(x+y) = f(2x—y)+ f(2y —2) + 3f(x) + 3f(y).
Adding (2.14) to[(2.1p), we obtain the resilt (1.1). O

3. StaBiLITY oF (1.3)

From now on, letX be a real vector space and [Etbe a Banach space unless we give
any specific reference. We will investigate the Hyers-Ulam-Rassias stability problem for the
functional equatior (1]3). Thus we find the condition that there exists a true quadratic function
near an approximately quadratic function.

Theorem 3.1.Let¢ : X2 — R be a function such that

(3.1) i w (i 4"(;5(%, 0), respectiveg
=0

i=1

converges and

62w (mee(50) 0

forall z, y € X. Suppose that a functiofi: X — Y satisfies
(3.3) 1f2z+y)+ f(2z —y) — fla+y) — flz—y) —6f(2)] < o(x,y)

for all x,y € X. Then there exists a unique quadratic functibn X — Y which satisfies the
equation [(1.B) and the inequality

(3. @)~ Tl < £ 3 22D

1 o= T
(nf(x) ~ ()] < g 340 (§,0>>

for all z € X. The functioril’ is given by

(3.5) T(z) = lim M <T(:p) = lim 4" f (£>>

n—oo 4qn

forall z € X.

Proof. Puttingy = 0 in (3.3) and dividing byg, we have
2
36) 182 fo)| <

forall z € X. Replacings by 2z in (3.6) and dividing byt and summing the resulting inequality
with (3.6), we get

(3.7) H f(2%z)
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for all x € X. Using the induction on a positive integerwe obtain that

f(2ra 1 <= ¢(2iz,0)
| L

(3.8)

IN

- s

1 <= ¢(2',0)
< =

for all z € X. In order to prove convergence of the sequelﬁé%:—m)} , we divide inequality
(3.8) by4™ and also replace by 2™« to find that forn, m > 0,

1 &= p(202m2,0)

¢ (272mx.,0)
< Z gm+i ’
Since the right hand side of the inequality tends[)taSm tends to infinity, the sequence
% is a Cauchy sequence. Therefore, we may defifie) = lim,, ., 272" f(2"x) for
all z € X. By lettingn — oo in (3.8), we arrive at the formuléa (3.4). To show tHasatis-
fies the equatiorj (1].3), replacey by 2"z, 2™y, respectively, in[(3]3) and divide by*, then it
follows that

(222 4 y) + F(2"(22 —y) = F(2( +y))

— f2"(x —y)) = 6£(2"2))[| < 47"9(2"x, 2"y).

Taking the limit as» — oo, we find that?" satisfies[(1]3) for alt, y € X.

To prove the uniqueness of the quadratic funcfibsubject to[(3.4), let us assume that there
exists a quadratic functiofi : X — Y which satisfieq (1]3) and the inequality (3.4). Obviously,
we haveS(2"z) = 4"S(x) andT'(2"x) = 4"T'(x) for all € X andn € N. Hence it follows
from (3.4) that

[5(z) =T ()| = 47"[S2"x) —T(2")]
‘”(HS(T‘ ) = f(2") || + [ f(2"x) = T(2"x)]])
$(227x,0)
Z 4n+z
forall z € X. By lettingn — oo in the preceding inequality, we immediately find the unique-
ness ofl". This completes the proof of the theorem. O

IN

IN

and
B2 be left BanachB-modules with normg|-|| and||-||, respectively. A quadratic mapping
Q@ : sBB1— B, is called B-quadratic if

Q(ax) = a’Q(z), Va € B,Vx € gBy.
Corollary 3.2. Let¢ : gB;xpB;— RT be a function satisfyind (3.1) and (8.2) for all y
pB1. Suppose that a mapping: zpB; — pB, satisfies

[/ 20w + ay) + f (20w — ay) — o*f(z +y) — o* f(z —y) — 60 f(2)|| < d(x,y)
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forall « € B (o] = 1) and for allz,y € gB,, and f is measurable oif (tz) is continuous in
t € R for each fixedr € gB;. Then there exists a unigug-quadratic mappindl’ : gB; —
5B,, defined by[(3]5), which satisfies the equatjon|(1.3) and the inequality (3.4) focaliB; .

Proof. By Theoren{ 311, it follows from the inequality of the statementdoe= 1 that there
exists a unique quadratic mappifiy: B, — 5B, satisfying the inequality (3]4) for alt €
sB;. Under the assumption thgtis measurable of (tz) is continuous int € R for each fixed
x € gB;, by the same reasoning as the proofof [5], the quadratic magpingB,; — gB,
satisfies

T(tx) = *T(z), VY € pB;,Vt € R.
That is,T" is R-quadratic. For each fixed € B (|a| = 1), replacingf by T" and setting) = 0
in (1.3), we havél’(ax) = oT'(z) for all z € pB;. The last relation is also true for= 0. For
each element € B (a # 0), a = |a] - a7 SinceT" is R-quadratic and’(ax) = o*T(x) for
each element € B(|o| = 1),

T(ax) = T(|a\-%x)

= a’T(x), Va€ B(a#0), Va € gB,.

So the uniqueR-quadratic mapping” : B, — 3B, is also B-quadratic, as desired. This
completes the proof of the corollary. O

SinceC is a Banach algebra, the Banach spaceandE, are considered as Banach modules
overC. Thus we have the following corollary.

Corollary 3.3. Let F; and F, be Banach spaces over the complex fié|dand lete > 0 be a
real number. Suppose that a mappifig F;, — FE, satisfies

If (202 + ay) + f(2ax — ay) — o’ f(z +y) — o’ fz —y) — 6’ f(2)| < e

forall a € C (Ja| = 1) and for all z,y € Ey, and f is measurable oif (tx) is continuous in
t € R for each fixedr € F,. Then there exists a uniquUé&quadratic mappind’ : £y — F»
which satisfies the equation (IL.3) and the inequality

If (@) = T(@) < &

forall z € F.

The S. Czerwik([4] theorem for the functional equatipn(1.1) states that if a funttigh —
Y, whereG is an abelian group andl a Banach space, satisfies the inequdlifyz + y) +
flx—y)—=2f(x) =2f ()| <e(||z||” + ||ly||*) for p # 2 and for allx, y € G, then there exists
a unique quadratic functiopsuch that| f(x) — q(x)|| < 755 + Ol for all € @, and for
allz € G — {0} and||f(0)|| = 0if p < 0. From the main theorefn 3.1, we obtain the following
corollary concerning the stability of the equatipn {1.3). We notejiraged not be equal i

Corollary 3.4. Let X andY be a real normed space and a Banach space, respectively, and let
e, p, q be real numbers such that> 0, ¢ > 0 and eitherp,q < 2 or p,q > 2. Suppose that a
functionf : X — Y satisfies

1fQx+y)+ fRr —y) — flx+y) — flx —y) —6f(@)] <e(|z]”+ [lyl|?)
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for all =,y € X. Then there exists a unique quadratic functibn X — Y which satisfies the
equation [(1.B) and the inequality

If(2) = T(x) l]”

1< 309

forall x € X and forallx € X — {0} if p < 0. The functionl" is given by
L f@2ra) " .
T($)_7}LH010 1 ifp,qg<2 <T( ) = nh_}rgoél f< ) pr,q>2>

for all z € X. Further, if for each fixedv € X the mappingt — f(tz) fromR to Y is
continuous, thef'(rz) = r*T'(z) for all r € R.

The proof of the last assertion in the above corollary goes through in the same way as that of
[4].

The Skof-Cholewa [3] theorem for the functional equatjon](1.1) states that if a funttion
G — Y, whereG is an abelian group and a Banach space, satisfies the inequalifyx +
y) + flx —y) —2f(x) — 2f(y)|| < eforall z,y € G, then there exists a unique quadratic
function ¢ such thatl| f(z) — ¢(z)|| < § for all z € G. But we have a much better possible
upper bound concerning the stability theorem for the functional equéatign (1.3) as follows. The
following corollary is an immediate consequence of Thedrer 3.1.
Corollary 3.5. Let X andY be a real normed space and a Banach space, respectively, and let
¢ > 0 be a real number. Suppose that a functijpn X — Y satisfies

(3.10) 1fRr+y)+ fRr—y)— flz+y) - flx—y)—6f(x)| <e

for all z;y € X. Then there exists a unique quadratic functibn: X — Y defined by
T(z) = lim, o, {&2) .3) and the inequality
(3.11) I#(2) - Tl < =

for all z € X. Further, if for each fixedv € X the mappingt — f(tz) fromR to Y is
continuous, thef'(rz) = r*T'(z) for all r € R.

Remark 3.6. If we write y = x in the inequality of[(3.3), we get

(3.12) [f(3x) = 5f(x) — f(2x)[| < o(x, ) + || F(0)]]
Combining [3.1R) with[(3]6), we have
(313) 1£(32) ~ 9 @) < o(e.2) + Z2 0.
We can easily show the following relation by inductionotogether with[(3.13)
n n—1 i
1189 s < 5 g [tz + 220 4 o]
=0

forall z € X.
In Theorem 3.11, lep : X? — R be a function such that

i o(3z, 3ix)9j d(3iz,0) (i o [¢ (%7 %) Lo (; 0)] | respectivel;>
=1

1=0

converges and

lim w =0 <hm 9”gb< i) = 0)
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forall z, y € X. Note that in the second cagéd) = 0 since¢(0,0) = 0. Then, using the last
inequality and the same argument of Theofem 3.1, we can find the unique quadratic fiihction
defined byl'(z) = lim,, .., 372" f(3"x) which satisfies (1]3) and the inequality

(3.14) If (@) = T(x)| < %;9& {d)(gimim) N ¢(3Z§,0)1 N Hf;o)ll

(Hf( ol <+ Zgz[ o (% _>+@D

for all z € X. Thus we obtain an alternative result of Theofen 3.1. In Thefrem 3.1, we have
a simpler possible upper bourid (3.4) than thaf of (3.14). The advantage of the inequdlity (3.4)
compared td (3.14) is that the right hand sidg of|(3.4) has no terihffon||.

As a consequence of the above Renjark 3.6, we have the following corollary. Because of the
restricted conditiof) < p, we havef(0) = 0.

Corollary 3.7. Let X andY be a real normed space and a Banach space, respectively, and let
> 0,0 < p # 2 be real numbers. Suppose that a functfonX — Y satisfies

1f2x+y) + f2z —y) = fz+y) — fle—y) = 6f ()| < e(llz]” + [[y[I”)

forall x,y € X. Then there exists a unique quadratic functibn X — Y which satisfies the
equation [(1.B) and the inequality

1f(2) =T (@)l <

for all x € X. The functionl is given by
f(@3"x)
9n

p

T(z) = lim

n—oo

fo<p<2 <T() 11m9”f< ) ifp>2>

for all z € X. Further, if for each fixedv € X the mappingt — f(tz) fromR to Y is
continuous, thefi’(rz) = r*T(z) forall r € R.
Remark 3.8. If we puty = z = 0 in the inequality of[(3.10), we get| f(0)|| < =. Applying
RemarK 3.5 td (3.10), we know that there exists a unique quadratic furictiosi — Y defined
by T(z) = limy,_,o L&) '.3) and the inequality
L IO

1f(z) = T(x )IIS 16 < =51

for all z € X. But we have a better possible upper boynd (3.11) than that of the last inequality.

4. STABILITY OF (1.4)

We will investigate the Hyers-Ulam-Rassias stability problem for the functional equation
(1.4). Thus we find the condition that there exists a true quadratic function near an approxi-
mately quadratic function.

Theorem 4.1.Let¢ : X2 — R* be a function such that

o0

(4.1) Zgl [w +26(3', 0)}
i=0

(i 9 E¢ (%v %) +2¢ (%,Oﬂ : respectiveg

1=
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converges and

93"z, 3"y) n vy _
42 Jim S5 =0 (Jm o (50 50) =)
forall z, y € X. Suppose that a functiofi: X — Y satisfies
(4.3) 1f 2z +y) + f(z+2y) —4f (x +y) — f(2) = fW)ll < o(z,y)

forall x,y € X. Then there exists a unique quadratic functibn X — Y which satisfies the
equation [(1.4) and the inequality

[e.9]

w0 -TWI< 3 2822 4 voaia | + L

(Hf(:c) -1 < 530 36 (5. 5) +20 (£0)]. )

for all x € X. The functioril is given by

(4.5) T(z) = tim 1872 (T( ) = lim 9"f( ))

n—00 gn n—o00

forall z € X.
Proof. If we write y = x in the inequality of[(4.3), we get

(4.6) 17(3r) —2f (20) ~ f(2)]| < 5o(a, ).
Puttingy = 0 in (4.3) and multiplying by2, we have
(4.7) 12f (22) — 8 ()| < 2¢(x,0) + 2[|f(0)]

for all x € X. Adding the inequality[ (4]6) witH (4] 7) and then dividing Bywe get
3x 1 T,x

180 — o) < 5|25 + 206000+ 215001

for all z € X. Using the induction om, we obtain that

n |5 < 5[5

e o3 3in) 1£(0)]
< 5209— [T+2¢(3x,0)] +

(4.8)

T 26(3%,0) + 2]7(0 >||]

4

forallz € X.

Repeating the similar argument of Theorem 3.1, we obtain the desired result. The proof of
assertion indicated by parentheses in the theorem is similarly proved and we omit it. In this
case,f(0) = 0 since¢(0,0) = 0 by assumption. This completes the proof of the theoreril

The proof of the following corollary is similar to that of Corollgry B.2.
Corollary 4.2. Let¢ : gB;xpB;— RT be a function satisfying (4.1) and (%.2) for all y €
pB1. Suppose that a mapping: zB; — gB, satisfies
(4.10)  [[f20z + ay) + flaz + 2ay) — 4a®f(z +y) — o*f(z) — *f(y)]| < d(z,y)
forall a € B (|a| = 1) and for allz,y € gB,, and f is measurable of (tz) is continuous in

t € R for each fixedr € gB;. Then there exists a unigue-quadratic mappind” : gB; —
5B,, defined by[(4]5), which satisfies the equatjon|(1.4) and the inequality (4.4) foaliB; .
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Corollary 4.3. Let E; and E; be Banach spaces over the complex fiéJdand lete > 0 be a
real number. Suppose that a mappifig £; — FE, satisfies

|/ 2oz + ay) + flaz + 2ay) — 40> f(z +y) — a’f(z) — o f(y)]| < ¢

forall « € C (Jo| = 1) and for allz,y € E}, and f is measurable oif (tz) is continuous in
t € R for each fixedr € F,. Then there exists a uniqué-quadratic mappind : £, — F»
which satisfies the equation (IL.3) and the inequality

)
1(2) - T < 2=
forall z € F,.

In Theoren 4.]L, we obtain the alternative result if the conditiong afe replaced by the
following.

Remark 4.4. Let ¢ : X2 — R™ be a function such that

i %éﬁ(%ﬁa 0) (i 4 (% 0) , respectivel;)

=1
converges and

th:O <hm4”<b< 2%):0)
forall z, y € X. Suppose that a functiofi: X — Y satisfies

1F e +y)+ flz+2y) —4f(z +y) = f(2) = fW)l < oz, y)

forall z,y € X. Then there exists a unique quadratic function X — Y which satisfies the
equation[(1.4) and the inequality

(4.11) £~ T@l < 3>

1=0

(nf(as) T < > 46 (;,o)>
for all z € X. The functionT" is given by
T(z) = lim f@'z) <T(:1:) = lim 4"f (1»

n—oo 4qn
forallx € X.
From Remark 4]4, we obtain the following corollary concerning the stability of the equation

(1.4). We note thap need not be equal tpand|| f(0)|| = 0 if p > 0.

Corollary 4.5. Let X andY be a real normed space and a Banach space, respectively, and let
e, p, q be real numbers such that> 0, ¢ > 0 and eitherp,q < 2 or p,q > 2. Suppose that a
functionf : X — Y satisfies

1f 2z +y) + fz+2y) —4f(z +y) = f2) = fF@WI < ellzl” + [lyl)

for all =,y € X. Then there exists a unique quadratic functibn X — Y which satisfies the
equation [(1.4) and the inequality

1 () — T(@)] < HOI

[l ]|” +

\4!
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forall z € X and forallx € X — {0} if p < 0. The functioril" is given by

T(x) = lim f(2"z) ifp,qg <2 <T(a7) = nlggo 4" f <2£n> if p,q > 2)

4n
for all z € X. Further, if for each fixedv € X the mappingt — f(tz) fromR to Y is
continuous, thefl'(rz) = r*T'(z) for all r € R.

As a consequence of the above Theoyem 4.1, we have the following.
Corollary 4.6. Let X andY be a real normed space and a Banach space, respectively, and let
e > 0,0 < p # 2 be real numbers. Suppose that a functfonX — Y satisfies

1f (22 +y) + flz +2y) = 4f (@ +y) = f(x) = FWI < ell]” + ly[”)

for all x,y € X. Then there exists a unique quadratic functibn X — Y which satisfies the
equation [(1.4) and the inequality

If (@) = T(2)|| <
for all x € X. The functiorl” is given by
f(3"x) . (TN

g—nlf0<p<2 <T(x)—7}LI£109f<3—n> pr>2>

for all z € X. Further, if for each fixedv € X the mappingt — f(tz) fromR to Y is
continuous, thef'(rz) = r*T'(z) for all r € R.

The following corollary is an immediate consequence of Thegreim 4.1.

Corollary 4.7. Let X andY be a real normed space and a Banach space, respectively, and let
¢ > 0 be a real number. Suppose that a functipnX — Y satisfies

(4.12) 1f 22 +y) + flz+2y) —Af(z +y) — flx) = f)l < e
for all z,y € X. Then there exists a unique quadratic functibn: X — Y defined by
—i

3e
|9 — 37|

(138

T(z) = lim

T(z) = lim,_.., {2*) which satisfies the equation (1.4) and the inequality
o€
(4.13) 1f (@) = T@)ll < 5

for all x € X. Further, if for each fixedr € X the mappingt — f(tx) fromR to Y is
continuous, thefi’(rz) = r*T'(z) for all r € R.

Remark 4.8. If we puty = 2 = 0 in the inequality of[(4.12), we get]| f(0)|| < . Applying
Remark 4.4 td (4.12), we know that there exists a unique quadratic furiction — Y defined
by T'(z) = lim,_... L& which satisfies the equati.4) and the inequality

e O] _ 5e
I7) ~ 7)) < &+ IO 22

for all z € X. But we have a better possible upper boynd (4.13) than that of the last inequality.
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