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ABSTRACT. By using subtraction-free expressions, we are able to provide a new proof of the
Turén inequalities for the Taylor coefficients of a real entire function when the zeros belong to a
specified sector.
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1. INTRODUCTION

In the study of entire functions it is natural to ask whether simple conditions on the Taylor
coefficients of a function can be used to determine the location of its zeros. For example, let
C(s) = >~ n~*for Re(s) > 1 be the Riemann zeta function. The meromorphic continuation
of {(s) to C has a simple pole at= 1 and has simple zeros at the negative even integers. The
Riemannrg-function is defined by

£(s) = 5s(s — Dr 2T (s/2)C(s).

Note thatl’(s/2) has simple poles at the non-positive even integers. It is relatively straightfor-
ward to show thaf(s) is an entire function satisfying(s) = £(1 — s) for all complexs and that

the zeros of(s) satisfy0 < Re(s) < 1. The prime number theorem is equivalent to the fact
that the zeros of (s) satisfy the strict inequalit) < Re(s) < 1, and the Riemann hypothesis

is the conjecture that all of the zeros&dk) are on the lindRe(s) = 1/2. The&-function has a
Taylor series representation

o0 2k
§(1/2+1iz) = kz:;(—l)kakm,

We wish to thank Craven and Csordas for their inspiring papers that helped us to become interested in this topic. Furthermore, we wish to
thank the participants in a workshop on Pdlya-Schur-Lax problems held at the American Institute of Mathematics in May 2007 for several very
helpful conversations regarding this paper. Finally, the reviewer made a number of suggestions for improving the paper.

002-08


mailto:cardon@math.byu.edu
http://math.byu.edu/cardon
http://www.ams.org/msc/

2 DaviD A. CARDON AND ADAM RICH

wherea;, > 0 for all £, and it is possible to state inequality conditions on the coefficignis

this representation df(s) that are equivalent to the Riemann hypothesis (see for exahiple [5],
[6], [7]). However, to date, the verification of such strong conditions has been intractable.
Instead, it is reasonable to consider weaker conditions om,tteat would be necessary should
the Riemann hypothesis be true. It is known that a necessary condition for the z&festof
satisfyRe(s) = 1/2is

(1.1) Dy = (2k + 1)ai — (2k — 1) ag_1az41 > 0, k>1.

The set of inequalities if (1.1) is an example of a class of inequalities called Turan-type inequal-
ities which we will explain in more detail irff §3 an{|§4.

The Turén inequalities fof(s) have been studied by several authors. Matiyasevitch [10]
outlined a proof of the positivity oD,. In [3], Csordas, Norfolk, and Varga gave a complete
proof thatD, > 0 for all ¥ > 1. Csordas and Varga improved their earlier proofin [4]. Conrey
and Ghosh[[1] studied Turan inequalities for certain families of cusp forms. The argument of
Csordas and Varga inl[4] is based on an integral representatibyp a$

(12)  Dp— %/_Z /_Zﬁ%?kcp(@@@){@?-ﬁ) /u (-f’q;((?))/dt} dudv,

where

(13) (I)(U) Z (4”4 2 9u/2 6n27r65“/2) e—n27r62u‘
n=1

A long, detailed argument shows that the integrand of the innermost intedrallin (1.2) is positive,
proving the Turan inequalities f@(s). This important result relies heavily on the representation
of ®(u) in (I.3), making the generalization to othefunctions from number theory difficult.

In this paper, we study the Turan inequalities from a different point of view. Our main
result is to represent the Turan inequalities in termsubtraction-freeexpressions. This allows
us to derive, as corollaries, several previously known results. Our method of proof is more
combinatorial and algebraic in nature than the previously used analytic method which relied on
the Gauss-Lucas theorem about the location of the zeros of the derivative of a polynomial.

2. STATEMENT OF MAIN RESULTS

Let G(z) be a real entire function of gendof the form

G(z) = H1+pkz Zan ok

where the numberg, are the negative reciprocal roots Gfz). It is notationally simpler to

work with the negative reciprocal roots rather than with the roots themselves. Denote the set of
these negative reciprocal roots (with repetitions allowedyashe setk may be either infinite

or finite, and we are interested in both cases. SiHe) is a real entire function, ip € R,

eitherp is real or the complex conjugages also inR. If 0 < |Im(px)| < Re(py) for all k, we

will show in Theorenj 22 that the strict Turan inequalities holddgr), i.e.,

2
a, — Qp—1Gpy1 > 0

forl1 <n <|R].
The Taylor coefficient,,, expressed in terms of the negative reciprocal roots, is

a, = nlsg(n)
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wheresg(n) is thenth elementary symmetric function formed from the elementB.of hat is,
Y. P
11 <<l
where the summation is over all possible strictly increasing lists of indices of lengithe
expression? — a,_1a,,; becomes
a; — ap_1an41 = nl(n — 1) [nsg(n)® — (n+ 1)sg(n — 1)sp(n +1)]

which we wish to be positive. It will be convenient to define a symmetric functign, k) re-
lated to the elementary symmetric functiongn) that naturally arises when forming products
of elementary symmetric functions. Let

(2.1) sen k)= Y picpi
11<-<ip
k repetitions
where the summation is taken over all lists of indices of the form
(2.2) 1 < <-ee <y,

such thatt of the values are repeated exactly twice. In other wotds, the relations in[(2]2)
are equal signs, the remaining- 1 — & relations are strict inequalities, and no two consecutive
relations are equal signs. Note that

sr(n) = sg(n,0).
We follow the convention thatz(m, k) = 0 whenever its defining summatidn (R.1) is empty.
Example 2.1.1f A = {p1, p2, p3}, then

sa(3,1) = pipa + pips + p1ps + paps + p1p5 + paps

since the list of all possible ways to write ascending lists of the indf¢e8, 3} with exactly
one repetition is

1=1<2, 1=1<3, 1<2=2, 2=2<3, 1<3=3, 2<3=3.

The following theorem represents the Turan expressjon,, 1a,+1 as a linear combination
of the symmetric functionsg(n, k) in which all the coefficients are nonnegative. We refer to
such a sum as subtraction-freeexpression.

Theorem 2.1 (Subtraction-Free Expressions)he Turan expression? — a,_ia,,; may be
written in terms of the symmetric functiong(m, k) as

- k 2n — 2k
(2.3) a2 — p_10py1 = nl(n —1)! Z —( ok )SR(Qn, k).

—~n+ 1—k
As a consequence of Theorém|2.1, we are able to obtain a new proof of the following previ-
ously known result without appealing to the Gauss-Lucas theorem on the location of the roots
of the derivative of a polynomial.

Theorem 2.2.Let G(z) be a real entire function with product and series representations

G(z) = H 1+ prz) = Zann'
k n=0

and suppose thdt < |Im(px)| < Re(px) for all k. Then, the Turan inequalities

2
a, — Qp—1Gp41 > 0
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hold for all n > 1 if G(z) has infinitely many roots and fdr < n < d if G(z) is a polynomial
of degreed.

Notice that the hypothesis of Theorém|2.2 requite® have a genu8 Weierstrass product
which is equivalent to saying that), |px| converges. Since the coefficients are real, the
non-real zeros of7 occur in complex conjugate pairs. The conditidre | Im(px)| < Re(pk)
on the negative reciprocal roots @f ») is the same as saying that all of the zerog-dfelong
to the wedge shaped region

{z € C|z# 0and3r/4 < arg(z) < b /4}.

Our main interest is to apply Theor¢m 2.2 to the entire funcfie(s) associated with the
Dedekind zeta functiogk (s), whereK is a number field. It is known that the functigpi (s)
is entire, has all zeros in the critical stfip< Re(s) < 1, and satisfies the functional equation
¢k (s) = £k (1 — s). For the general theory of the Dedekig¢idunctions and -functions, se€ |8,
Ch.13] or [11, Ch.7]. As a consequence of Theofem 2.2 we are able to deduce the following
result about k(s):

Corollary 2.3. Lets = 1/2 + iz and write

€x(s) = Ex(1/2+iz) = ];(—n’fak@.

If £x(s) has no zeros in the closed triangular region determined by the three points
\f .
1/2, 1, 1+ (%) i
then the(strict) Turan inequalities
(2k + 1)a; — (2k — 1)ag_1ap11 > 0
hold fork > 1.

The organization of the remainder of this paper is as follows| |n §3 we recall several relevant
facts about the Turan inequalities. In] 84 we discuss how these inequalities are applicable to
even real entire functions and to the study of Dedekind zeta functions. Proofs of Th¢orgms 2.1
and[2.2 and Corollary 2.3 are given in]|85. For the interested readef] in §6, we outline the
original proof of Theorenj 2|2 based on the Gauss-Lucas theorem. Finally] in §7 we state
several questions for further study.

3. THE LAGUERRE-POLYA CLASS AND TURAN INEQUALITIES

In this section we will review a few facts about the Laguerre-Pdlya class and the Turan in-
equalities.

In the study of real entire functions having only real zeros, it is natural to begin with the
simplest case: real polynomials with only real zeros. The set of functions obtained as uniform
limits on compact sets of such polynomials is called the Laguerre-Pdlya class, dérdted
is known (see[[9, Ch.8,Thm.3]) that a real entire functfgn) = > ¢,2; is in LP if and
only if it has a Weierstrass product representation of the form

_n az—B22 2\ 2/
f(z) =cz"e H(l ak)e k
k

wherec, o, 5, € R,n € Z,n > 0, # > 0, anday # 0. Note that, if3 = 0, the genus of
f(z)is0or 1. The subset ofP such that all the Taylor coefficients satigfy > 0 is denoted
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by £LP*. The derivative of the logarithmic derivative ¢fz) is

AN C) (O N NN T
(f(Z))_ for 7 P g

Consequently, for real,

f = f(2)f"(z) 2 0.

Since the derivative of a function iiP is also inLP,
(3.1) FE () = fED(2) fED(2) > 0

for allrealz and allk = 1,2, 3, .... The inequalities in (3]1) are sometimes called the Laguerre
inequalities.

As a consequence df (3.1), fz) = > "7, akzk—f is a real entire function of genusor 1, a
necessarygondition for f(z) to belong toLP is that

(3.2) aj — aprapn >0 (k> 1).

Definition 3.1. The inequalities in[(3]2) are called tA@ran inequalities We say thatf(z)
satisfies thestrict Turan inequalitiesf

2
Ay — Qg 1Qkr1 > 0

for all K > 1 when f(z) is a transcendental function or for< £ < n if f(z) is a polynomial
of degreen.

4. TURAN INEQUALITIES FOR EVEN REAL ENTIRE FUNCTIONS

Consider a real entire function of genusr 1 of the form

F(z) = Z(—l)kaké—z)!

wherea;, > 0 for £ > 0. The Turén inequalitie$ (3.2) are trivially true fb¥ ). We wish to find
a nontrivial application of the Turan inequalities to the functiofx). We define a companion
functionG(w) by making the substitution- 2% — w.

2 (=22 Kla, wk
k=0 ——

by

The seriesF(z) in powers ofz? has alternating coefficients while the associated séfies)
in powers ofw has positive coefficients. Observe ttatz) has only real zeros if and only if
G(w) has only negative real zeros. Thus we consider the Turan inequalities for the companion
functionG(w):
b2 —bp_1bpy1 >0 (k>1)
which hold if and only if
4.2) (2k + 1)a; — (2k — Dag_1ap1 >0 (k> 1).
This explains conditiorf (I} 1) as a necessary condition for the Riemann hypothesig($ifice
iz) is an even entire function of genus 1 with alternating coefficients.

Definition 4.1. For an even entire functiof’(z) with alternating coefficients, as in (4.1), we
will refer to the inequalitied (4]2) as tHeuran inequalitiedor F'(z).

The following fundamental example helped us to discover our proof of Theorem 2.2.
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Example 4.1.Let F'(z) be the monic polynomial with roots« + 3i wherea, 3 > 0. Then

4
~~ 4|

a2

F(z) = (o + ) — 4(o® — ZZ_ 24 =

~~
ao al

The coefficients alternate signs provided that- 3, which we assume to be the case. What
additional hypothesis ensures thfatz) satisfies the Turan inequalities? The only interesting
inequality would b2k + 1)a? — (2k — 1)ay_1ax41 > 0 with & = 1 (if this is possible). A short
computation gives

302 — agay = 24 [(\/§+1) a? — (\/5—1>ﬁ2} [(ﬂ—l) a? — <\/§+ 1) 62} .
Sincea > $3, the quantity(v/2 + 1) o® — (v/2 — 1) 3? is strictly positive. Then
(\/5—1)@2—(\/5+1)62>0 N a>(1+\/§>6

Thus, the strict Turan inequalities hold 81 2) if and only if a > (1 + v/2)2.
Sincetan(7/8) = —1 4+ /2 = (1 ++/2)7, the strict Turan inequalities hold fd#(>2) if and
only if the four roots off’(z) lie in the region

{zeC|z#0and—n/8 < arg(z) < m/80r 7m/8 < arg(z) < 97/8}
if and only if the two roots of the companion polynomiz(w), defined in[(4.]L), lie in the region
{w e C|lw # 0and3n/4 < arg(w) < b /4}.

5. PROOFS OF THEOREMS [2.JAND [2.2AND COROLLARY [2.3

In this section we will prove Theorenis .1 gnd|2.2 and Corollary 2.3.d(e} be a real
entire function of genu8 of the form

G(z) = Hl—l—pkz Zan ok

where the numberg, are the negative reciprocal roots @fz). The set of these negative
reciprocal roots (with repetitions allowed) is denotedad he Taylor coefficient,,, expressed
in terms of the negative reciprocal roots, is

a, = nlsg(n)
wheresg(n) is thenth elementary symmetric function formed from the elementg.oRecall
from equation[(Z]1) that we define the symmetric functigtn, k) as

se(m k)= > pu-pi

i1 < <in
k repetitions
where the summation is taken over all lists of indices of the form
(5.1) 1 < <o <y,

such that: of the values are repeated exactly twice.[In]|(5k19f the relations are equal signs,
the remaining: — 1 — k relations are strict inequalities, and no two consecutive relations are
equal signs. We consider(m, k) = 0 whenever its defining summatidn (.1) is empty. Several
of these trivial cases are listed in Lemmal5.1.
Lemma 5.1. sg(m, k) = 0 in all of the following cases:

M ifm<lork<DO,
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(i) if & > m/2 since there can be at most/2 repeated values in an ascending list of
lengthm,
(iii) if m — k > |R| since the length of an ascending list can be at mast

Thus, necessary conditions feg(m, k) to be nonzero are
m>1 and 0<2k<m<|R|+k.

The next lemma shows how to express the product of two elementary symmetric functions in
terms of the functionsg(m, k).

Lemmab5.2.Let0 < m < n. Then

sr(m)sgr(n) = kzg (m ;:Ln_ k2k> sr(m +n, k).
Proof. Each term in the product of the sumg(m) andsg(n) is a termin the sumag(m+n, k)

for somek with 0 < & < m. Conversely, each term in the sum(m +n, k) with0 < k < m s
obtainable as a product of terms from the sumgn) andsg(n). We need to count how often
this happens. A given terpy, - - - p,,, .. containing exactly: repeated indices can be obtained
as the product op;, - -- p;,, andp;, - - - p;, each of which sharek indices. The terms in the
productp;, - - - p;,, contain thek repeated terms as well as— k terms chosen from among the
m +n — 2k non-repeated terms of, - - - py,..... The choice op;, - - - p;,, determines the choice
of pj, -+ p;.. S0, there ar¢™ " **) ways to obtain the produgt, - - - py,., .- O

We will now prove Theorerh 2|1 by representing the Turan expresgjon a,,_1a,; as a
linear combination of the symmetric functiong(m, k) having nonnegative coefficients. In
other wordsa? — a,_1a,,1 can be written as a subtraction-free expression.

Proof of Theorer 2]1Sincea,,, = m!sg(m),

a2 — ap_1api1 = nl(n — 1! [nsp(n)® — (n+ 1)sp(n — 1)sp(n+1)] .
Applying Lemmd 5. to the expression on the right gives

nsp(n)? — (n+ Dsg(n — 1)sp(n + 1)

n—

s (QZ 3 2’“) sn(2n, k) — (n+ 1) 2:: (ﬁi’;) sr(2n, k)

1
k=0 k=0

— nsn(2n,n) + :Zé [n <QZ - 2’“) (1) (ﬁi’fk)} sn(2n, k)

- k on — 2k
1n+1—k; n—k

- )sR(Qn, k).

k=
l
Lemmd 5.8, below, will provide conditions under whigh(n, k) is positive when its defining

sum is not empty as in Lemma b.1. Then the subtraction-free expression in Tieorem 2.1 is also
positive.

Lemma 5.3. Let A be a nonempty set (finite or countable) of nonzero complex numbers (with
repetitions allowed) such that

(1) if p € A, thenp € A with the same multiplicity,
(2) if p € A, then0 < |Im(p)| < Re(p), and
(3) ZpeA ‘p‘ < Q.
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Then,ss(m, k) > 0 whenevern > 0 and0 < 2k < m < |A| + k.

Note that the condition on the negative reciprocal roots in Lefma 5.3 coincides with the
condition in the statement of Theorem |2.2. The third conditlpl), , || < oo, guarantees
convergence of the produff ., (1 + pz) and convergence of the susn (m, k) whenA is an
infinite set.

Proof. If A is a finite set, we will prove the lemma by induction on the cardinalitydlofThe
case in whichA is an infinite set will follow immediately from the finite case.

First, supposed = {p} consists of a single positive number. Siricé = 1, the set of
possible choices fam, k) is {(1,0), (2,1)}. Then

SA(1,0> =p>0,
54(2,1) = p*> > 0.

The lemma holds in this case. Next, suppase= {p,p} and0 < |Im(p)| < Re(p). Since
|A| = 2, the set of all possible choices fon, k) is

{(170)7 (27 0)7 (27 1)7 (37 ]‘>7 (47 2)}
Then

The lemma also holds in this case.

Let A be a finite set (with repetitions allowed) as in the statement of the lemma. Assume, by
way of induction, that the lemma holds for the setThus,s4(n, ¢) > 0 whenevem > 1 and
0 <20 <n<|A|+¢. Letp be a positive number and |& = AU {p}. From the definition of
sg(m, k), it follows that

(5.2) sp(m, k) = sa(m, k) + psa(m —1,k) + p*sa(m — 2,k — 1).

Choose the paifm, k) so thatn > 1 and0 < 2k < m < |B|+ k. By the induction hypothesis,
each term on the right hand side of equation](5.2) is either positive or zero. Potentially, some
of the terms on the right hand side pf (5.2) could be zero by Lemnja 5.1. It will suffice to show
that at least one term is positive. Let

La={(m,k)|0<m and 0<2k<m<|A|+k},

and letLy be similarly defined. Sinced| < |B| = |A|+ 1, La C Lg. If (m,k) € La, then
sa(m, k) > 0 which implies thatsg(m, k) > 0. Now, assumém, k) € Lg but(m,k) & L.
In this casem = |A| + 1+ kwhere0 < k < |A|+ 1. If m = |[A]+ 1+ kand0 < k < |A|,
the pair(m — 1,k) = (|A| + k, k) isin L4. Thenss(m — 1,k) > 0 which implies, by[(5.R),
thatsg(m, k) > 0. If m = |A| + 1+ kandk = |A| + 1, the pair(m — 2,k — 1) isin L4. Then
sa(m — 2k —1) > 0so thatsg(m, k) > 0. This proves that the lemma holds when the 4et
is enlarged by adjoining a positive real number.
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Next we will enlargeA by adjoining a paif p, p}. LetC' = AU{p, p} where0 < |Im(p)| <
Re(p). From the definition ok (m, k) it follows that

(53) SC(ma k) = SA(m’ k) + (p + ﬁ) SA(m -1, k)
+ppsalm —2,k) + (p* + p?) sa(m — 2,k = 1)
+pplp+p)salm — 3,k — 1)+ p?p* sa(m — 4,k — 2).

Choose the paifm, k) so thatn > 1 and0 < 2k < m < |C|+ k. By the induction hypothesis,
each term on the right hand side of equation](5.3) is nonnegative. It will suffice to show that
at least one term is positive. (in,k) € Ly, thensa(m,k) > 0 so thatsc(m, k) > 0. If
(m,k) € Lo, but(m, k) & La, thenm = |A|+1+kwhere0 < k < |A|+1orm = |A|+2+k
where0 < k < |A| + 2. The casen = |A| + 1 + k is exactly the same as in the previous
paragraph. Ifn = |A|+2+kand0 < k < |A|,then(m—2, k) isin L4 sothats4(m—2,k) > 0
andsg(m,k) > 0. If m = |A| + 2 + kandk = |A| + 1, then(m — 2,k — 1) isin L4 so that
sa(m—2,k—1) > 0andsc(m, k) > 0. If m = |A|+2+kandk = |A|+2, then(m—4,k—2)
isin Ly sothatsq(m — 4,k —2) > 0 andsc(m, k) > 0. This proves that the lemma holds
when the set! is enlarged by adjoining a pajp, p}. Thus, the lemma holds # is a finite set.
Suppose now thatl is an infinite set (with repetitions allowed) as in the statement of the
lemma and suppose< 2k < m. Let

BiCBy,CB;C---

be a sequence of finite subsets Afsatisfying the hypotheses in the lemma such that
U By,. Then
lim sg, (m, k) = sa(m, k).

The nonnegativity of each term on the right hand sides of equafioris (5.2) ahd (5.3) implies that
sp,(m, k) < sp,(m, k) < sp,(m, k) <--- < sa(m, k).

Sincesp, (m, k) > 0 as soon a$B, | is sufficiently large, it follows that 4(m, k) > 0. There-
fore, the lemma also holds whehis an infinite set. O

Combining Theorerp 2|1 and Leminal5.3 immediately gives Theprgm 2.2.
For Corollary 2.8, we recall from analytic number theory that the Dedekifuthction for a
finite extensionk’ of Q has a Taylor series representation of the form

e sz
Ex(1/2 +1iz) = Z(—l)kakm,

wherea,, > 0 for all k. Thenéx(1/2 + iz) is a real entire function with alternating coefficients

to which Theorenj 2]2 applies. By standard facts from analytic and algebraic number theory,
¢x(s) has no zeros outside the closed stiig< Re(s) < 1, and the prime number theorem,
generalized to number fields, is equivalent to the fact there are no zeros outside the open strip
0 < Re(s) < 1. Combining this with Theorein 2.2 shows that the strict Turan inequalities hold
for £ (1/2 + iz) if there are no roots ofx (s) in the closed triangular region determined by the

three pointsl /2, 1, and1 + (%) i, which completes the proof.

6. PROOF OF THEOREM [2.2USING THE GAUSS-LUCAS THEOREM

We will now briefly recall the proof of Theorem 2.2 that relies on the Gauss-Lucas theorem.
This argument would have been known to researchers such as Jensen, Laguerre, Pélya, and
Turén. (See, for example, Theorem 2.4.2 and Lemma 5.4.4in [12]).
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Let f(z) be a real monic polynomial whose negative reciprocal roots lie in the sector
|Im(z)| < Re(z) as in Theorerh 2]2. If the real roots ate. .., r,,, and the complex roots are
(075] + 7;61, RN 79 + i/Bna then

m—+2n k m n
f(Z):Zak%: H z— o)+ G;).
k=0 ’ j=1 =1

Taking the derivative of the logarithmic derivative pfz) results in

/2= FR(2) (z—ap)? = 3}
(6.1) e Z:: (2—7"] +2Z o T 2

The hypothesis causes the right hand sid¢ of (6.1) to be positive=fdb giving

a% — apas > 0.

The Gauss-Lucas theorem (see Theorem 2.1[1in [12]) says that every convex set containing the
zeros off (z) also contains the zeros ¢f(z). Since the negative reciprocal rootsfdt) belong

to the sectof < |Im(z)| < Re(z), which is a convex region, the negative reciprocal roots of
f'(z) also belong to that sector. By the previous argument applig¢d t9,

a3 — ayaz > 0.
Proceeding in this manner for the remaining derivativeg(e) proves the theorem.

Note that the original proof of Theorem 2.2 is not really shorter than our proof. Including
the details of the proof of the Gauss-Lucas theorem and its extension to transcendental entire
functions would make the argument as long and complicated as our new proof.

7. QUESTIONS FOR FURTHER STUDY

We conclude the paper by stating several problems suggested by our studies.
In proving Theorem 2]1, we actually proved tteongerresult (Lemma 513) that if the neg-
ative reciprocal rootg,, of the real entire function

G(z) = H + pi2) Zanz—!

satisfy0 < |Im(px)| < Re(px), thensg(m, k) > 0 whenevern > 0and0 < 2k < m < |R|+k
whereR is the set of negative reciprocal roots (with repetitions allowed). In other words, we
produced a stronger set of inequalities than the set of Turan inequalities since the Turan expres-
sions were formed as subtraction-free expressions involving the symmetric fungtionsk).

Problem 7.1. Determine other interesting sets of inequalities related to the location of the zeros
of G(z) that naturally result from considering subtraction-free expressions.

To be more concrete, if(z) is a real entire function, set
T (6(2) = (0W(2))" = 64 V(=)o) ik 21,
and forn > 2, set
T (0(2) = (T (0(2)" = TV (0@) TV (0=) k2 n>2.
For¢(z) € LP (defined in §B) Craven and Csordas askedlin [2] if it is true that
(7.1) T (6(2)) > 0
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for all = > 0 andk > n. They refer to the inequalities ip (7.1) israted Laguerre inequalities

Our own studies have suggested tﬁé’f) (¢(z)) ‘z:O can be expressed in terms of subtraction-
free expressions. Hence we have the problem:

Problem 7.2. Represen‘ﬂjf”) (qb(z)) ’z:O in terms of subtraction-free expressions and determine

sectors inC such that if the negative reciprocal roots belong to the sectors?ﬂ?é(rb(z)) | >
0 for certain values of andk which depend on the sector.
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